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Abstract. We study the set of nilpotents t (tn = 0) of a type II1 von Neumann
algebra A which verify that tn−1 + t∗ is invertible. These are shown to be all
similar in A. The set of all such operators, named by D.A. Herrero very nice
Jordan nilpotents, forms a simply connected smooth submanifold of A in the
norm topology. Nilpotents are related to systems of projectors, i.e. n-tuples
(p1, ..., pn) of mutually orthogonal projections of the algebra which sum 1, via
the map

ϕ(t) = (Pker t, Pker t2 − Pker t, ..., Pker tn−1 − Pker tn−2 , 1 − Pker tn−1).

The properties of this map, called the canonical decomposition of nilpotents
in the literature, are examined.
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1. Preliminaries

D.A. Herrero introduced the class of very nice Jordan operators as a solution to
many aproximation problems in operator theory ([9]). For example, the problem
of existence of similarity local cross sections. A very nice Jordan nilpotent operator
t of order n of a C∗-algebra A is an element t ∈ A such that tn = 0, tn−1 �= 0 and
tn−1 + t∗ is invertible. The typical example of a very nice Jordan nilpotent occurs
when A = Mn(C): consider the n × n Jordan cell Qn, given by

Qn = E1,2 + E2,3 + ... + En−1,n

where Ei,j is the elementary matrix with 1 in the i, j entry and zero elsewhere.
Let us transcribe the abstract characterization of these operators [9], Lemma 7.20:

Let A be a unital C∗-algebra and t ∈ A a nilpotent of order n. Then the
following are equivalent:
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1. tn−j + t∗j is invertible for all j = 1, ..., n − 1.
2. tn−j + t∗j is invertible for some j = 1, ..., n − 1.
3. There exists a faithful unital *-homomorphism α : Mn(C) → A and an

invertible element s ∈ A such that α(Qn) = sts−1.
4. For every faithful representation ρ : A → B(H), one has ker ρ(tj) =

R(ρ(tn−j)) for all j = 1, ..., n − 1.

In this paper we study the set of very nice Jordan nilpotents of a type II1

algebra A. We show that they are all similar. We also consider the subset consisting
of very nice Jordan nilpotents which are partial isometries. These are shown to be
all unitarily equivalent. Both sets are first considered in the norm topology. It is
shown that they are smooth simply connected submanifolds of A. Next they are
considered in the strong operator topology. Here a stronger assumption on A is
required, namely that A be a II1 factor with the scaling trace property [12]. For
these algebras we study fibrations relating very nice Jordan nilpotents to systems
of pojections of A [7].

Let us establish some preliminary facts.
If A is a finite von Neumann algebra, one can find such nilpotents. This is

clear for matrix algebras. If A is of type II1, pick a projection p with Tr(p) = 1/n,
where Tr is the center valued trace of A. Then there exist equivalent projections
p = p1, ..., pn which are mutually orthogonal and sum 1. Let vi, i = 1, ..., n − 1 be
partial isometries such that vi : pi+1 ∼ pi, i.e. v∗

i vi = pi+1 and viv
∗
i = pi. Then

Lemma 1.1. The element a =
∑n

i=1 vi is a very nice Jordan nilpotent and a partial
isometry with kernel p and range 1 − p.

The proof follows from elementary computations. Also note that for each
0 ≤ j ≤ n−1, ajpn is a partial isometry with initial space pn and final space pn−j .

The so called canonical decomposition of a nilpotent operator will be useful.
Given t a nilpotent of order n acting on H, one has the proper inclusions

ker t ⊂ ker t2 ⊂ ... ⊂ ker tn−1 ⊂ ker tn = H.

Put H1 = ker t, H2 = ker t2 � ker t, ..., Hj = ker tj � ker tj−1. The orthogonal
subspaces H1, ...,Hn decompose H, and if one regards the n×n block matrix form
of t in this decomposition, it is strictly upper triangular. We shall prefer to deal
with the projections instead of the spaces, and will call the n-tuple (pH1 , ..., pHn

)
the canonical decomposition of t, denoted by ϕ(t). Note that if a is the operator
defined above, then ϕ(a) = (p1, ..., pn).

The canonical decomposition considered as a map was studied in [3], where
the points of norm continuity of ϕ were characterized.

In this paper we shall consider the set Vn(A) of very nice Jordan nilpotents
of order n in the norm as well as in the strong operator topology. Continuity
properties, both in the norm and strong operator setting, will follow from an
explicit formula for ϕ(t) for the case when t is very nice Jordan. In the strong
operator topology though, one has to restrict to operators which are uniformly
norm bounded. Let us end this section with the formula for ϕ.
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Proposition 1.2. Let A be a C∗-algebra and t ∈ Vn(A). Then

Pker tk = tn−kt∗n−k[(tn−k + t∗k)(t∗n−k + tk)]−1,

for k = 1, ..., n − 1.

Proof. Since tn−k +t∗k is invertible, and tk has closed range, the operator given by
the right hand expression has range R(tn−kt∗n−k) = R(tn−k) = ker(tk). It remains
to see that this expression defines a projection in A. It is selfadjoint, because
tn−kt∗n−k commutes with (tn−k + t∗k)(t∗n−k + tk) = tn−kt∗n−k + t∗ktk. Moreover,
(tn−kt∗n−k)2 = tn−kt∗n−k(tn−kt∗n−k + t∗ktk) = tn−kt∗n−k(tn−k + t∗k)(t∗n−k + tk).
Therefore (

tn−kt∗n−k[(tn−k + t∗k)(t∗n−k + tk)]−1
)2 =

= (tn−kt∗n−k)2[(tn−k + t∗k)(t∗n−k + tk)]−2 =

= tn−kt∗n−k[(tn−k + t∗k)(t∗n−k + tk)]−1.

QED
Note that Pker tk+1�ker tk = Pker tk+1 −Pker tk . Therefore the statement above gives
an explicit formula for ϕ(t) in terms of the powers of t and t∗. In particular,

ϕ : Vn(A) → Pn(A) := {(q1, ..., qn) ∈ An : qiqj = δi,jqi, qi = q∗i , q1 + ... + qn = 1}
is norm continuous.

2. Similarity and unitary equivalence in Vn(A)

In this section we shall prove that if A is a type II1 von Neumann algebra, then all
very nice Jordan nilpotents of A of order n are similar in A. Also we will prove that
all very nice Jordan nilpotents of order n, which additionally are partial isometries,
are unitarily equivalent. The proof of the first fact proceeds in two steps.

Proposition 2.1. Let A be a type II1 von Neumann algebra with center valued trace
τ . If t ∈ Vn(A), then τ(ϕ(t)i) = 1/n, i = 1, ...n.

Proof. By the characterization of Vn(A) transcribed before, there exists a unital
injective *-homomorphism α : Mn(C) → A and an invertible element s ∈ A such
that α(Qn) = sts−1. The canonical decomposition of Qn is (E1,1, ..., En,n). Then
ϕ(sts−1) = ϕ(α(Qn)) = (α(E1,1), ..., α(En,n)), which are projections which are
equivalent in A. Therefore τ(ϕ(sts−1))i = 1/n, i = 1, ..., n. We claim that the
n-tuples ϕ(t) and ϕ(sts−1) are unitarily equivalent in A (i.e. there exists a unitary
element u ∈ A such that , uϕ(t)iu

∗ = ϕ(sts−1)i, i = 1, ..., n) and this clearly ends
our proof. Indeed, since the invertible group of A is connected, there is a norm
continuous path of invertibles joining 1 and s. Since ϕ is norm continuous, this
induces a norm continuous path joining ϕ(t) and ϕ(sts−1) in Pn(A). In [7] it was
shown that if the unitary group UA is connected, then the connected components
of Pn(A) coincide with the unitary orbits of the elements of Pn(A). It follows that
ϕ(t) and ϕ(sts−1) are unitarily equivalent. QED
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Recall that we have fixed an n-tuple (p1, .., pn) with τ(pi) = 1/n and an element
a ∈ Vn(A) with ϕ(a) = (p1, ..., pn). Let us define the following element of A, for
t ∈ Vn(A),

µ(t) =
n−1∑

i=0

tipna∗i.

Proposition 2.2. Suppose that t ∈ Vn(A) with ϕ(t) = (p1, ..., pn). Then µ(t) is
invertible and satisfies tµ(t) = µ(t)a.

Proof. Suppose A acting in H. First note that tipna∗i are operators with closed
ranges which are in direct sum. Indeed, for i = 0, ..., n − 1, tipn = (ti + t∗n−i)pn,
because R(pn) = (ker an−1)⊥ = (ker tn−1)⊥ = R(t)⊥ = ker t∗, i.e. t∗n−ipn = 0 for
i < n. Since pna∗i is a partial isometry and ti +t∗n−i is invertible, this implies that
tipna∗i has closed range. Let us see that R(tipna∗i) ∩ R(tjpna∗j) = {0} if i �= j.
Indeed, suppose i > j and suppose that tipnξ = tjpnη, then 0 = tn−i+jpnη, i.e.
pnη ∈ ker tn−(i−j) ⊂ ker tn−1. On the other hand R(pn) = (ker tn−1)⊥. Therefore
pnη = 0. Therefore µ(t) =

∑n−1
i=0 tipna∗i has closed range. Moreover, it has trivial

kernel: µ(t)ξ = 0 implies, tipna∗iξ = (ti+t∗n−i)pna∗iξ = 0, which implies pna∗iξ =
0, because ti + t∗n−i is invertible. Then ξ is orthogonal to the ranges of the partial
isometries aipn, which sum H, i.e. ξ = 0. Since the algebra A is finite, it follows
that µ(t) is invertible. Let us prove now that tµ(t) = µ(t)a.

tµ(t) =
n−1∑

i=0

ti+1pna∗i =
n−2∑

i=0

ti+1pna∗i.

On the other hand, µ(t)a =
∑n−1

i=0 tipna∗ia. We claim that pna∗ia = pna∗i−1 for
i ≥ 1 and pna = 0. These two facts clearly imply the equality tµ(t) = µ(t)a. The
second fact is apparent, R(a) = ker an−1 = ker pn (R(pn) = (ker a∗n−1)⊥). Let us
prove that pna∗ia = pna∗i−1 for i ≥ 1. Recall that a =

∑n−1
j=1 vj where vj , are

a partial isometries such that vi : pi+1 ∼ pi. Then aipn = vn−ivn−i+1...vn−1. It
follows that

pna∗ia = v∗
n−1...v

∗
n−i(v1 + ... + vn−1) = v∗

n−1...v
∗
n−ivn−i,

because v∗
n−ivj = 0 if j �= n − i. The right hand term above equals

v∗
n−1...v

∗
n−ivn−i = v∗

n−1...vn−i+1pn−i = v∗
n−1...v

∗
n−(i−1) = pna∗i−1,

and the proof is complete. QED
With these two results we can prove our result on similarity.

Theorem 2.3. Suppose that A is a type II1 von Neumann algebra. Then all the
elements of Vn(A) are similar in A.

Proof. It suffices to show that if t ∈ Vn(A), then t is similar to a. By the lemma
above, ϕ(t) and ϕ(a) are unitarily equivalent. Indeed, ϕ(t)i and ϕ(a)i have the
same trace, therefore there exists a partial isometries wi : ϕ(t)i ∼ ϕ(a)i, i =
1, ..., n. Since both the ϕ(t)i and ϕ(a)i sum 1, then w =

∑n
i=1 wi is a unitary
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operator such that wϕ(t)iw
∗ = ϕ(a). Note that w ker ti = ker wtiw∗, therefore

wϕ(t)w∗ = ϕ(wtw∗). By the proposition above wtw∗ and a are similar. Therefore
t and a are similar. QED

Remark 2.4. Note that in particular, this result implies that the set Vn(A) is
connected when A is finite.

Let us consider now elements of Vn(A) which are partial isometries. Note that the
element a ∈ Vn(A) is one of these.

Theorem 2.5. Let A be a type II1 von Neumann algebra, t ∈ Vn(A) and a as
above. The following are equivalent:

1. t is a partial isometry (between (ker t)⊥ and R(t)).
2. t + t∗n−1 is a unitary element.
3. There exists u ∈ UA such that t = uau∗

Proof. Suppose first that t + t∗n−1 is unitary. Since (ker t)⊥ = R(t∗) = ker t∗n−1

it follows that t = (t + t∗n−1)P(ker t)⊥ is a partial isometry.
On the other hand, if t is a partial isometry, then t maps ker ti�ker ti−1 onto

ker ti−1 � ker ti−2. Indeed, tn = 0 implies that t(ker ti) ⊂ ker ti−1, and because t
is very nice Jordan one has equality: pick ξ ∈ ker ti−1 = R(tn−i+1), ξ = tn−i+1η,
then if ν = tn−iη, tν = ξ and ν ∈ ker ti. Since t is isometric on ker ti � ker ti−1 for
i ≥ 2, this implies that t(ker ti � ker ti−1) = ker ti−1 � ker ti−2 for i ≥ 2. Therefore
if ϕ(t) = (q1, ..., qn), tlqi is a partial isometry with initial space qi and final space
qi−l for l ≤ i − 1 and 0 if l ≥ i. In particular, since qn = 1 − Pker tn−1 = PR(t∗n−1),
t∗n−1 = qnt∗n−1 is a partial isometry between q1 and qn. Therefore t + t∗n−1 is
isometric between Pker t ⊕ q1 = 1 and R(t) ⊕ qn = 1, i.e. a unitary.

Morever, if t is a partial isometry, then t is unitarily equivalent to a. In
fact, t has an analogous description as a, t =

∑n
i=2 tqi with tqi : qi ∼ qi−1. By

the same argument as in 2.3 there exists a unitary u ∈ A such that uϕ(t)u∗ =
ϕ(utu∗) = (uq1u

∗, ..., uqnu∗) = ϕ(a) = (p1, ..., pn). Recall the map µ, and put
µ(utu∗). As in 2.2, µ(utu∗) intertwines utu∗ and a. Let us see that in this case
µ(utu∗) is a unitary. Indeed, tiqn is, as shown above, a partial isometry between
qn and qn−i. Then utiqnu∗ = (utu∗)ipn is a partial isometry between uqnu∗ = pn

and pn−i. Then (utu∗)ipna∗i is a partial isometry with final and initial space pn−i

for i = 1, ..., n − 1. Therefore µ(utu∗) =
∑n−1

i=0 (utu∗)ipna∗i is a unitary operator.
QED

Let us denote by V ⊥
n (A) the set of very nice Jordan nilpotents of order n which

are partial isometries.
These results imply that given a ∈ V ⊥

n (A), one can regard the elements of
A as n by n matrices with entries in pAp, and replace a by a canonical model,
which is unitarily equivalent to a, whose matrix looks like the matrix Qn ∈ Mn(C).
We shall make use of this representation when examining the homotopy groups of
these sets Vn(A), V ⊥

n (A) and Pn(A) in section 4.
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3. Norm continuous local cross sections

Regarding the way that the above results are proved, it follows that if one can
exhibit an explicit (continuous, smooth) way to intertwine two systems of projec-
tions (p1, ..., pn) and (q1, ..., qn), then one would obtain a cross section from Vn(A)
to the invertible group GA of A, and for the unitary orbit of a , V ⊥

n (A), as well
. Let us briefly recall some facts from [7] concerning the geometry of systems of
projections. Fix the n-tuple 	p = (p1, ..., pn) ∈ Pn(A) and consider the map

π�p : UA → Pn(A), π�p(u) = u	pu∗ = (up1u
∗, ..., upnu∗).

This map has continuous local cross sections. Let V�p = {	q ∈ Pn(A) : s�p(	q) =∑n
i=1 qipi ∈ GA}. Note that since s�p(	p) = 1 and GA is open in the norm topology,

it follows that V�p is open in Pn(A) (considered with the norm topology of An).
If 	q ∈ V�p, then it is apparent that the invertible element s�p(	q) intertwines 	p and
	q, i.e. s�p(	q)	p = 	qs�p(	q). In order to obtain a unitary intertwiner one proceeds as
follows: s�p(	q)∗s�p(	q) conmmutes with pi, i = 1, ..., n, therefore if we put σ�p(	q) the
unitary part of the polar decomposition s�p(	q) = σ�p(	q)(s�p(	q)∗s�p(	q))1/2, one has

σ�p(	q)	pσ�p(	q)∗ = 	q,

in other words,
σ�p : V�p → UA

is a continuous, in fact smooth, local cross section for π�p. One can obtain local cross
sections (neighbourhoods and maps) around any point in Pn(A) by translating
this one with unitaries. Combining this fact with the proof of the theorem of the
previous section one obtains:

Proposition 3.1. The map

πa : GA → Vn(A), πa(g) = gag−1

is a principal bundle, with fibre equal to the group of invertible operators which
commute with a.

Proof. Put 	p = ϕ(a). Consider the following map

Λ(t) = σ�p(ϕ(t))µ(σ�p(ϕ(t))∗tσ�p(ϕ(t)))

defined on the set {t ∈ Vn(A) : ϕ(t) ∈ V�p}, which is open in Vn(A). This map
Λ is a continuous cross section for πa on this subset of Vn(A). Indeed, note that
σ�p(ϕ(t))∗tσ�p(ϕ(t)) has the same canonical decomposition as a, because σ�p(ϕ(t)) in-
tertwines ϕ(t) and ϕ(a) = 	p. Therefore, by the proposition of the previous section,
µ(σ�p(ϕ(t))∗tσ�p(ϕ(t))) intertwines a and σ�p(ϕ(t))∗tσ�p(ϕ(t)), and a simple compu-
tation shows that Λ(t) intertwines a and t. Clearly it takes values in GA, and is
continuous, therefore it defines a continuous local cross section for πa. Another way
of phrasing 2.3 above, is that the action of GA is transitive on Vn(A). Therefore
this cross section can be carried over any point of Vn(A) in a standard fashion. It is
apparent that the fibre of πa over a is the subgroup of invertibles which commute
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with a. Therefore Vn(A) is in fact a homogeneous space, with norm continuous
local cross sections! , in particular it is a principal bundle. QED
One can obtain the analogous result for V ⊥

n (A) and the unitary group UA. The
proof follows from the observation in the proof of 2.5, that µ(t) is in fact a unitary
if t ∈ V ⊥

n (A) with ϕ(t) = 	p.

Proposition 3.2. The map

πa : UA → V ⊥
n (A), πa(u) = uau∗

is a principal bundle, with fibre equal to the group of unitary operators which
commute with a.

One can obtain more from the explicit fashion in which the map Λ is con-
structed. In [4] it was shown that if the cross section of a homogeneous space can
be extended in a smooth manner to a neighbourhood of the algebra, then the
homogeneous space becomes a complemented smooth submanifold of the algebra,
and the map a smooth submersion. Let us cite this result, which is a more or less
straightforward consequence of the inverse function theorem for Banach spaces:

Let B be a complex Banach algebra, GB the Banach Lie group of invertible
elements of B, let b ∈ B and πb : GB → S(b) = {gbg−1 : g ∈ GB} given by
πb(g) = gbg−1. Then the following two conditions are equivalent:

1. There exists a neighbourhood b ∈ W ⊂ B and a smooth map wb : W → B
such that the restriction wb|S(b) is a local cross section for πb.

2. πb : GB → S(b) is a smooth submersion and S(b) is a complemented
submanifold of B.

For a proof of this fact see [4].

Corollary 3.3. The map πa : GA → Vn(A) is a smooth submersion and Vn(A) is
a smooth complemented submanifold of A.

Proof. By the fact cited, it suffices to show that the cross section Λ has an
extension to an open neighbourhood of a in A. But this is apparent: Λ(t) =
σ�p(ϕ(t))µ(σ�p(ϕ(t))∗tσ�p(ϕ(t))) is defined in terms of ϕ, which has an explicit ex-
pression given in section 1, and clearly extendible beyond Vn(A), to the set of
x ∈ A such that xj + x∗n−j ∈ GA for j = 1, ..., n, a set which is clearly open. This
set must be eventually adjusted in order that the natural extension of s�p remains
invertible.

QED

Remark 3.4. The restriction of the above map πa to the unitary group has also
unitary cross sections which can be smoothly extended to neighbourhoods of the
norm topology of A. It follows that V ⊥

n (A) is a complemented submanifold of
Vn(A) (and of A). This fact can also be obtained from the main result of [5],
where it is shown that the unitary orbit of an element b ∈ A is a submanifold of
A if b generates a finite dimensional C∗-algebra. Note that this is the case for a.
In fact C∗(a) ∼= Mn(C).
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4. Homotopy type

In this section we examine the first homotopy groups of V ⊥
n (A), Vn(A) and P 0

n(A).
We make here again the assumption that A is of type II1. In the previous sections
we obtained that the maps

πa : UA → V ⊥
n (A), πa(u) = uau∗

and
π�p : UA → P 0

n(A), π�p(u) = (up1u
∗, ..., upnu∗)

are fibre bundles (homogeneous spaces) with fibre equal to (respectively) the uni-
tary groups of {a}′∩A and {p1, ..., pn}′∩A. In particular, V ⊥

n (A) is homeomorphic
to UA/U{a}′∩A and P 0

n(A) is homeomorphic to UA/U{p1,...,pn}′∩A. In order to carry
on the computation of the homotopy groups, it suffices to consider the quotient
maps instead of πa and π�p.

The element a provides a system of matrix units ei,j ∈ A, i, j = 1, ..., n,
which satisfy ei,jek,l = δj,kei,l, e∗i,j = ej,i and ei,i = pi. These elements enable
one to identify A with Mn(pAp). Indeed, since p ∼ pi, the algebras ei,iAei,i are
isomorphic to pAp (p = e1,1), via x = ei,ixei,i �→ e1,ixei,1. Then if x ∈ A, x �→
(xi,j)i,j , with xi,j = e1,ixej,1 ∈ pAp yields the *-isomorphism. This isomorphism
carries the subalgebra {a}′∩A to the algebra En(pAp) of diagonal matrices which
have the same element repeated along the diagonal. Indeed, if an element of A
commutes with a, it commutes with the whole set of matrix units (which belong
to the C∗-algebra generated by a). The subalgebra {p1, ..., pn}′ ∩ A is carried to
the algebra Dn(pAp) of diagonal matrices.

Therefore the study of the bundles πa and π�p reduces to the study of the
maps

ρ1 : UMn(pAp) → UMn(pAp)/UEn(pAp)

and
ρ2 : UMn(pAp) → UMn(pAp)/UDn(pAp).

We shall need the following result, which is based on results from [6],[8] and [13],
where it is shown that if M is a type II1 von Neumann algebra, then π1(UM , 1) ∼=
Z(M)sa the set of selfadjoint elements of the center of M , regarded as an additive
group.

Lemma 4.1. Let N ⊂ M be an inclusion of von Neumann algebras of type II1,
and denote by ı the inclusion map ı : UN ↪→ UM . Then the group homomorphism
ı∗ : π1(UN ) → π1(UM ) identifies with the map τM |Z(N)sa

: Z(N)sa → Z(M)sa,
where τM is the center valued trace of M .

Proof. The group isomorphism between π1(UM , 1) and the additive group Z(M)sa

is implemented as follows ([6], [8]):
π1(UM , 1) is generated by classes of loops of the form t �→ eitπq, where q

ranges over all projections of M . The class of this loop is mapped to the element
τ(q), where τ is the center valued trace of M .
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The group π1(UN , 1) is generated by the classes of the loops t �→ eitr for
r a projection in N , which identifies with the element τN (r). The image of the
class of this same loop under ı∗ identifies with τM (r). Since Z(M) ⊂ Z(M), the
assignment τN (r) �→ τM (r) is just the restriction of τM to Z(N)sa.

QED
As an inmediate corollary, we obtain

Corollary 4.2. With the above notations,(A of type II1), πk(V ⊥
n (A), a) is trivial

for k = 0, 1, 2.

Proof. Clearly Mn(pAp) and En(pAp) are von Neumann algebras of type II1

with the same center. Therefore in the the lemma above, ı∗ is the identity. In the
homotopy exact sequence of the fibration ρ1 : UMn(pAp) → UMn(pAp)/UEn(pAp)

∼=
V ⊥

n (A), one has

· · · → π2(V ⊥
n (A), a) → π1(UEn(pAp), 1) ı∗→ π1(UMn(pAp), 1) → . . .

· · · → π1(V ⊥
n (A), a) → π0(UMn(pAp)) = 0.

Since ı∗ is an isomorphism, it follows that π2(V ⊥
n (A), a) = π1(V ⊥

n (A), a) = 0. We
had already seen that V ⊥

n (A) is connected. QED
Consider now the inclusion Dn(pAp) ⊂ Mn(pAp) = A.

Corollary 4.3. With the above notations,(A of type II1), P 0
n(A) is simply connected

and
π2(P 0

n(A), 	p) � (pZ(A)sa)n−1
.

Proof. In this case, the inclusion to consider is Dn(pAp) ⊂ Mn(pAp). The center
of Dn(pAp) consists of diagonal matrices with entries in Z(pAp). By the lemma
above, the inclusion UDn(pAp) ↪→ UA at the π1-level is given by the map

(a1, ..., an) �→ 1
n

(a1 + ... + an),

where the n-tuple (a1, ..., an) is identified with the diagonal matrix with such
entries (in Z(pAp)sa). In [13] Schröeder proved the if M is of type II1, then
π2(UM , 1) = 0. The exact sequence of the bundle ρ2 is

0 = π2(UA, 1) → π2(P 0
n(A), 	p) → π1(UDn(pAp), 1) → π1(UA, 1) → π1(P 0

n , 	p) → 0.

The homomorphism π1(UDn(pAp), 1) = (Z(pAp)sa)n → π1(UA, 1), (a1, ..., an) �→
1/n(a1 + ... + an) is clearly onto, which implies that π1(P 0

n(A)) = 0. Its kernel
equals π2(P 0

n(A)). This kernel clearly identifies with (pZ(A)sa)n−1. QED
The result above, which states that the connected component P 0

n(A) of 	p ∈
Pn(A) (and of every system of n projections consisting of equivalent projections)
has trivial π0 and π1, holds in a weaker form for the unitary orbits (connected
components) of arbitrary system of projections. In order to prove it, we need the
following lemma, which was proved in [2] (lemma 6.2):
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Lemma 4.4. Let M be a type II1 von Neumann algebra with center valued trace
τ , and p ∈ M a projection. Consider the map  : UpMp → UM given by (w) =
w + 1 − p. Then the image of

∗ : π1(UpMp, p) → π1(UM , 1) ∼= Z(M)sa

consists of the selfadjoint multiples of τ(p), i.e. {τ(p)c : c ∈ Z(M)sa}.
Proposition 4.5. Let 	q = (q1, ..., qn) ∈ Pn(A) be a system of projections of the II1

von Neumann algebra A. Then the connected component of 	q in Pn(A) has trivial
π1 group.

Proof As noted above, the connected component of 	q ∈ Pn(A) coincides with the
unitary orbit of 	q [7]. Consider the principal bundle

π�q : UA → {u	qu∗ : u ∈ UA}, π�q(u) = u	qu∗.

The fibre of this bundle is the unitary group of the relative commutant {q1, ..., qn}′∩
A, i.e. Uq1Aq1⊕···⊕qnAqn

, which identifies with the product Uq1Aq1 × · · · × UqnAqn
.

Therefore the unitary orbit of 	q is homeomorphic to the quotient UA/Uq1Aq1 ×
· · · × UqnAqn

. By the lemma above, the image of

ı∗ : π1(Uq1Aq1 × · · · × UqnAqn
, 1) → π1(UA, 1)

induced by the inclusion ı : Uq1Aq1 × · · · × UqnAqn
↪→ UA contains the selfadjoint

multiples of τ(qi), i = 1, ..., n. Since these add up to 1, the image of ı∗ is Z(A)sa,
i.e. ı∗ is onto. Then π1(UA/Uq1Aq1⊕···⊕q1Aq1 , [1]) is trivial (using the exact sequence
of the fibre bundle π�q).

QED

Remark 4.6. The above result implies that any projection r ∈ A is unitarily
equivalent to a projection which is diagonal with respect to the decomposition
(q1, ..., qn). Indeed, given any projection r, τ(r) equals the trace of some projection
r′ in q1Aq1 ⊕ · · · ⊕ qnAqn. Then r is unitarily equivalent to r′, which is a diagonal
projection.

Let us turn now our attention to the similarity orbit of a, i.e. the set Vn(A).
The fibre bundle πa : GA → Vn(A), πa(g) = gag−1 identifies with the quotient map
of the invertible group GA of A and the invertible group of the Banach algebra
T of all elements of A which commute with a. A straightforward computation
shows that (under the identification A ∼= Mn(pAp)) T consists of matrices which
have zeros below the diagonal, and are constant on the main diagonal and on the
diagonals above: b = (bi,j) ∈ T if bi,j = 0 for i > j and bi,j = bi+l,j+l, for i ≤ j.
Clearly the invertible group GT consists of elements with b1,1 invertible in pAp.

Proposition 4.7. Let A be a type II1 von Neumann algebra. Then Vn(A) is simply
connected

Proof. In an arbitrary von Neumann algebra, the invertible group is homotopically
equivalent to the unitary group, via the polar decomposition (the set of positive
invertible elements is convex). If α(t) , t ∈ [0, 1], is a curve in GA whose endpoints
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are unitary elements, it can be continuously deformed to a curve α′(t) of unitaries
(keeping the endpoints fixed). Let γ(t) be loop in Vn(A), with γ(0) = γ(1) = a.
Since πa : GA → Vn(A) is a fibre bundle, there exists a curve α(t) ∈ GA with
α(0) = 1 such that α(t)aα(t)−1 = γ(t). Note that α(1) lies in T . By the remark
above, it is clear that GEn(pAp) is a strong deformation retract of GT . For example,
consider the deformation Ft((bi,j)) which multiplies by t ∈ [0, 1] the entries above
the diagonal, and leaves de diagonal entries fixed. Furthermore, since UEn(pAp)

is a strong deformation retract of GEn(pAp), the curve α(t) can be continuously
deformed to another curve, say again α(t), with α(0) = 1 and α(1) a unitary
element ! of En(pAp), the commutant of a. It follows that the original curve γ(t)
can be deformed to the loop α′(t)aα′(t)∗ ∈ V ⊥

n (A). Now 4.2 above implies that
this loop can be deformed to the constant loop. Therefore π1(Vn(A), a) = 0.

QED
Now we consider the fibration properties of ϕ

Proposition 4.8. The map ϕ : Vn(A) → P 0
n(A) is a fibration if A is of type II1.

Proof. Consider the following diagram

GA
πa−→ Vn(A)

π
�

�ϕ

{g	pg−1 : g ∈ GA} GS−→ P 0
n(A).

The vertical arrow π is given by π(g) = g	pg−1 = (gp1g
−1, ..., gpng−1), and GS is a

process of orthonormalization of the (non orthogonal) n-tuple (gp1g
−1, ..., gpng−1),

called in [3] the Gram-Schmidt map. It is defined as follows: denote by Qn(A) the
set of n-tuples 	r = (r1, ..., rn) of idempotents of A such that rirj = 0 if i �= j and
r1 + ... + rn = 1, put

GS1(	r) = PR(r1)

for k ≥ 2
GSk(	r) = PR(r1+...+rk) − PR(r1+...+rk−1)

and
GS(	r) = (GS1(	r), ..., GSn(	r)).

This map is continuous (and smooth). It has an explicit form if one uses the well
known formula, for r an idenpotent of a C∗-algebra:

PR(r) = rr∗(1 − (r − r∗)2)−1.

It is straightforward to verify that the diagram commutes [3]. Let us prove that π :
GA → P 0

M (A) is a fibre bundle. First note that the fibre π−1(	p) over 	p is a group.
Indeed, it consists of the elements g ∈ GA such that GS(gp1g

−1, ..., gpng−1) =
(p1, ..., pn), i.e.

R(g(p1 + ... + pk)g−1) = g(R(p1 + ... + pk)) = R(p1 + ... + pk)

for k = 1, ..., n − 1, a rule which clearly defines a subgroup of GA. On the other
hand, π has local cross sections: if 	q is close to 	p in P 0

n(A), then s�p(	q) = q1p1 + ...+
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qnpn is an invertible element which intertwines 	q and 	p, and GS(s�p(	q)	ps�p(	q)−1) =
GS(	q) = 	q.

Therefore in the diagram above both the horizontal and diagonal arrows are
fibre bundles. It follows by an elementary argument that the vertical arrow ϕ has
the homotopy lifting property, and therefore is a fibration.

QED

Remark 4.9. Let us denote by Q0
n(A) the set of system of idempotents whose

ranges are equivalent in A. In [3] it was proven that GS : Q0
n(A) → P 0

n(A) is
a homotopy equivalence. It follows that the results obtained for the homotopy
groups of P 0

n(A) hold for Q0
n(A).

5. The canonical decomposition in the strong topology

In this section we shall regard the sets Vn(A) and V ⊥
n (A) with the strong operator

topology of A. There is the problem though, that Vn(A) is not a bounded set, a
fact which will trouble the strong continuity of ϕ, which is crucial in our exposition.
For a constant C > 0, let V C

n (A) denote the set of t ∈ Vn(A) such that ‖t‖ ≤ C.
The first result is certainly well known, we include a proof because we could not
find a reference for it.

Lemma 5.1. Let A be a finite von Neumann algebra, then the inversion map g �→
g−1 is strong operator continuous on norm bounded subsets of GA.

Proof. Let B ⊂ GA be a norm bounded set and suppose that A is finite. Since B
is metrizable in the strong operator topology, we can deal with sequences instead
of nets. Let gn, g ∈ B such that gn converges strongly to g. Then g∗ngn converges
strongly to g∗g, because A is finite and the sequence is bounded. By the strong
continuity of the functional calculus it follows that (g∗ngn)−1/2 converges strongly
to (g∗g)−1/2. Then one has strong convergence of the unitary parts of the polar
decompositions,

un = gn(g∗ngn)−1/2 strongly→ u = g(g∗g)−1/2,

(here we use that the sequence (g∗ngn)−1/2, being strong convergent, is norm
bounded). Therefore u∗

n converges strongly to u∗, and

g−1
n = (g∗ngn)−1/2u∗

n

strongly→ g−1 = (g∗g)−1/2u∗.

QED
As a consequence of this lemma, one obtains that the canonical decomposition ϕ
is continuous when restricted to V C

n (A), if A is finite. This is clear by the formula
given for ϕ in the first section, in terms of products, ∗ operation and inversion.
Also it can be seen that the boundedness restriction is necessary. On the other
hand, always under the assumption that A is finite, ϕ is strongly continuous in
V ⊥

n (A), because it consists of elements with norm 1
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To follow the same argument as in the previous section, this time with the
strong topology, we need a result stating the existence of strongly continuous local
cross sections for the set of systems of projections Pn(A). In full generality (A
finite) we do not know if this holds. However one can prove the existence of global
strongly continuous cross sections for a special class of finite II1 factors. Let M
be a II1 factor such that when tensored with B(H) (H separable) admits a one
parameter automorphism group θt which scales the trace τ of M ⊗ B(H), i.e.
τ ◦ θt = e−tτ . For these factors S. Popa and M. Takesaki proved [12], among
other results, that the unitary group UM is strongly contractible and admits what
E. Michael [11] calls a geodesic structure. In this setting, one can use Michael’s
continuous selection principle [11]: if X → X/Y is a ! quotient map, where X is a
complete metric space, and Y admits a geodesic structure, then the quotient map
admits a continuous global cross section. We shall apply these results to obtain
a global cross section for the unitary orbits of elements 	q ∈ Pn(A). Let P 0

n(A)
be as before, the set of systems of projections where the projections are pairwise
equivalent. Note that P 0

n(A) is connected in norm, and therefore also in the strong
operator topology.

Proposition 5.2. Let A be finite. The map

π�p : UA → P 0
n(A), π�p(u) = (up1u

∗, ..., upnu∗)

is open, when both sets are considered with the strong operator topology.

In order to prove this we need the following elementary result.

Lemma 5.3. Let A ⊂ B(H) be a finite von Neumann algebra, and let an ∈ A such
that ‖an‖ ≤ 1 and a∗

nan tends to 1 in the strong operator topology. Then there
exist unitaries un in A such that un − an converges strongly to zero.

Proof. Consider the polar decomposition an = un|an|, where un can be chosen
unitaries because A is finite. Note that |an| → 1 strongly. Indeed, since ‖an‖ ≤
1, a∗

nan ≤ (a∗
nan)1/2. Therefore, for any unit vector ξ ∈ H, 1 ≥ (|an|ξ, ξ) ≥

(a∗
nanξ, ξ) → 1. Therefore

‖(an − un)ξ‖2 = ‖un(|an| − 1)ξ‖2 ≤ ‖|an|ξ − ξ‖2 = 1 + (a∗
nanξ, ξ) − 2(|an|ξ, ξ),

which tends to zero. QED

Proof (of the proposition). Let uk(p1, ..., pn)u∗
k be a sequence in P 0

n(A) converg-
ing strongly to (p1, ..., pn), i.e. ukpiu

∗
k → pi strongly to pi for i = 1, ..., n. This

implies that (piukpi)(piu
∗
kpi) → pi. By the above lemma, applied in the finite von

Neumann algebra piApi for each i = 1, ..., n, there exist unitaries wk,i in piApi

such that piukpi − wk,i → 0 strongly. Let wk =
∑n

i=1 wk,i. Then wk is a unitary
in A which commutes with (p1, ..., pn). Then

ukw∗
k = uk(w∗

k −
n∑

i=1

piu
∗
kpi) + uk

n∑

i=1

piu
∗
kpi

strongly→ 1.
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Indeed, the first summand converges to 0, for each ξ ∈ H,

‖uk(w∗
k −

n∑

i=1

piu
∗
kpi)ξ‖ ≤

n∑

i=1

‖(wk,i − piu
∗
kpi)ξ‖

and each one of these terms tend to zero. The other summand

uk

n∑

i=1

piu
∗
kpi =

n∑

i=1

(ukpiu
∗
k)pi

strongly→
n∑

i=1

pi = 1.

If π�p(uk) = uk(p1, ..., pn)u∗
k → π�p(u) = u(p1, ..., pn)u∗ strongly in P 0

n(A), then
u∗uk(p1, ..., pn)(u∗uk)∗ converges strongly to (p1, ..., pn). By the computation
above, there exist unitaries wk commuting with (p1, ..., pn), such that u∗ukw∗

k → 1
strongly, i.e ukw∗

k → u strongly. Since wk commutes with 	p, π�p(ukw∗
k) = π�p(uk).

Therefore π�p is open. QED
Suppose now that A is a II1 factor which when tensored with B(H) admits a one
parameter group of automorphisms scaling the trace. Then one has the following

Theorem 5.4. If A is a II1 factor as above, the map

π�p : UA → P 0
n(A), π�p(u) = (up1u

∗, ..., upnu∗)

is a trivial bundle in the strong operator topology.

Proof. Note that if A is finite, UA is a complete metrizable topological group in
the strong operator topology. We will show that π�p has a continuous global cross
section. By the proposition above, π�p induces the homeomorphism

P 0
n(A) ∼= UA/UB

where B = {p1, ..., pn}′ ∩ A, and π�p is equivalent to the quotient map

π : UA → UA/UB.

It suffices to show that this map has a continuous global cross section. Here we
can apply the result of Popa and Takesaki [12] (based on Michael’s theory of
continuous selections [11]), because the fibre UB has a geodesic structure. Indeed,
B ∼= p1Ap1 ⊕ · · · ⊕ pnApn, and each piApi is a factor which is *-isomorphic to A,
because the trace sclaing property implies A ∼= pAp for any non trivial projection
p ∈ A (see [10], chapter 13). Then UB ∼= Up1Ap1 × · · · × UpnApn

has a geodesic
structure. Therefore π has a continuous global cross section. QED
Let a ∈ Vn(A) as before. Note that the map

πa : GA → Vn(A), πa(g) = gag−1

is strongly continuous when restricted to norm bounded subsets of GA.

Proposition 5.5. The map

πa : GA → Vn(A), πa(g) = gag−1

has a global cross section which is continuous in the strong operator topology on
the norm bounded subsets V C

n (A) of Vn(A).
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Proof. Denote by Ω : P 0
n(A) → UA a cross section for π�p. Recall the map Λ of 3.1

Λ(t) = σ�p(ϕ(t))µ(σ�p(ϕ(t))∗tσ�p(ϕ(t)))

and modify it by replacing the local cross section σ�p (of π�p) by the global cross
section Ω, i.e.

∆(t) = Ω�p(ϕ(t))µ(Ω�p(ϕ(t))∗tΩ�p(ϕ(t))).
This map is strongly continuous on norm bounded subsets of Vn(A). QED
By the same argument as in 2.5 of the previous section, if t ∈ V ⊥

n (A), then the
global cross section ∆ takes values in the unitary group UA. In this case the cross
section is continuous in the whole V ⊥

n (A). One has the following result.

Proposition 5.6. If A is a II1 factor as above, then the map

πa : UA → V ⊥
n (A), πa(u) = uau∗

is a trivial bundle with fibre equal to the group of unitary operators which commute
with a.

Corollary 5.7. If A is a II1 factor as above, then P 0
n(A) and V ⊥

n (A) in the strong
operator topology, have trivial homotopy groups of all orders.

Proof. Consider the fibrations π�p and πa above. The total space and the fibres of
both fibrations are contractible in the strong operator topology [12]. In the case
of π�p, the fibre is homeomorphic to (UpAp)n � (UA)n. In the case of πa, it is
UpAp � UA. QED

We return to the case of a general II1 von Neumann algebra A. Let t be
an arbitrary (not necesarilly very nice Jordan) nilpotent of order n. We shall
establish that the canonical decomposition ϕ is strongly continuous on this set on
the unitary orbit of t. Since we do not have the formula of section 1 to compute
the projections onto the kernels, we need the following result.

Proposition 5.8. Let A be a finite algebra and P the set of projections of A. For
a fixed p ∈ P denote by Kp the set of elements of A whose kernel projections are
equivalent to p. Then the map

k : Kp → P, k(a) = Pker a

is continuous on norm bounded subsets of Kp, when both Kp and P are considered
in the strong operator topology.

Proof. The proof is based on a result in [1], which states that the map which assigns
to a positive normal functional its support projection is continuous when restricted
to the set of positive functionals with equivalent supports, regarded with the norm
topology, to the set P in the strong operator topology. Fix a faithful tracial state
τ in A. Suppose that bn is a sequence (bounded in norm) in Kp which converges
strongly to b in Kp. Let ψn, ψ be the positive normal functionals of A given by
ψn(x) = τ(b∗nxbn) and ψ(x) = τ(b∗xb). Clearly the support of ψn is the projection
onto the kernel of bn, and the support of ψ is the projection onto the kernel of b,
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which are are equivalent projections by hypothesis. Note that ‖ψn − ψ‖ tends to
zero. Indeed,

|ψn(x) − ψ(x)| = |τ(x(b∗nbn − b∗b))| ≤ τ(x∗x)1/2τ((b∗nbn − b∗b)2)1/2

≤ ‖x‖‖b∗nbn − b∗b‖2

where ‖ ‖2 denotes the L2-norm induced by τ . Since bn are uniformly bounded
in norm, and A is finite, it follows that b∗nbn → b∗b strongly, and therefore in the
norm ‖ ‖2 as well. Then ψn → ψ in norm , and by the continuity result cited
above, the supports converge strongly, i.e. Pker bn

→ Pker b strongly. QED

Corollary 5.9. Let A be a finite von Neumann algebra and t ∈ Nn(A). The canon-
ical decomposition ϕ restricted to the unitary orbit of t is continuous in the strong
operator topology.

Proof. For any 1 ≤ k ≤ n − 1, the map utu∗ �→ Pker(utu∗)k is continuous in the
strong operator topology by the result above. Indeed, since (utu∗)k = utku∗, the
elements (utu∗)k have the same norm and equivalent kernels. Then it is clear that
ϕ is continuous when restricted to this set. QED
The canonical decomposition restricted to the similarity orbit of an arbitrary t ∈
Nn(A) is also continuous, but only on bounded subsets of the similarity orbit. The
proposition above applies because if t is similar to t′, then they have equivalent
kernel projections.
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