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Several studies have been published regarding the interaction between the spike protein of the novel
coronavirus SARS-CoV-2 and ACE2 receptor in the host cells. In the presente work, we evaluated the in silico
properties of two sea urchin pigments, Echinochrome A (EchA) and Spinochromes (SpinA) against the Spike
protein (S) towards finding a potential therapeutic drug against the disease caused by the novel coronavirus
(COVID-19). The best ensemble docking pose of EchaA and SpinA showed a binding affinity of -5.9 and -6.7
kcal mol-1, respectively. The linked aminoacids (T505, G496 and Y449 for EchA and Y449, Q493 and G496
for SpinA) are in positions involved in ACE2 binding in both RBDs frim SARS-CoV and SARS-CoV-2
suggesting that EchA and SpinA may interact with Spike proteins drom both viruses. The results suggest that
these pigments could act as inhibitors of S protein, pointing them as antiviral drugs for SARS-CoV-2.
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Abstract 22 

In the last few months, several studies have been published regarding the interaction between 23 

the Spike protein of the novel coronavirus SARS-CoV-2 and ACE2 receptor in the host cells. 24 
In the present work, we evaluated the in silico properties of two sea urchin pigments, 25 
Echinochrome A (EchA) and Spinochromes (Spin A) against Spike protein (S) towards finding 26 
a potential therapeutic drug against the disease caused by the novel coronavirus (COVID-19). 27 
The best ensemble docking pose of EchA and SpinA showed a binding affinity of -5.9 and -6.7 28 
kcal mol-1, respectively. The linked aminoacids (Y505, G496 and Y449 for EchA and Y449, 29 
Q498, Q493 and G496 for SpinA), are in positions involved in ACE2 binding in both RBDs 30 
from SARS-CoV and SARS-CoV-2 suggesting that EchA and SpinA may interact with Spike 31 
proteins from both viruses. The results suggest that these pigments could act as inhibitors of S 32 
protein, pointing them as antiviral drugs for SARS-Cov-2. Since this study is performed 33 

computationally, it requires in vitro and in vivo experiments for further validation. 34 

 35 
Keywords: 2019 pandemic, 1,4-naphtoquinones polihydroxilate, Echinochrome A, 36 
Spinochromes, antiviral drug. 37 

  38 



Introduction 39 

 40 

Coronaviruses include a wide range of hosts that infect mammalian and avian species. These 41 

viruses comprise a large and diverse family of enveloped, positive-stranded RNA viruses. 42 

Worldwide, three betacoronaviruses have crossed the species barrier and produced deadly 43 

pneumonia in humans. Despite this, the infection by human coronavirus was not considered 44 

serious to be controlled by vaccination or to devise specific antivirals until the emergence of 45 

severe acute respiratory syndrome (SARS) in 2003 (De Clercq, 2004). Two strains of SARS 46 

have generated epidemics: severe acute respiratory syndrome coronavirus (SARS-CoV) and, 47 

Middle-East respiratory syndrome coronavirus (MERS-CoV), but it is the current strain that is 48 

globally important as a pandemic situation (SARS-CoV-2).  49 

 50 

The SARS-CoV-2 disease, COVID-19, has already cost near 479K lives and more than 9 51 

million people are positive confirmed all over the world (https://covid19.who.int/, June 25th 52 

2020). This pandemic is evidence of the potential of coronaviruses to continuously evolve in 53 

wild reservoirs and jump to new species (Jaimes et al., 2020).  54 

 55 

In this global scenario, there is an urgent requirement for a specific antiviral drug against virus 56 

infection and finding the most efficient antiviral drugs available to treat or prevent the disease 57 

concerned. New demands for antiviral strategies have increased markedly. The lack of available 58 

therapies and vaccines for COVID-19 treatment has led to use of several unsuccessful 59 

treatments from drug repositioning of antivirals unable to prevent the death or recovery of 60 

patients who ended up with serious lung and heart failures (Guan et al., 2020; Wang et al., 2020; 61 

Xu et al., 2020; Zheng et al., 2020; Wang et al., 2020). 62 

 63 

The huge variations in host range and tissue tropism among coronaviruses are largely 64 

attributable to changes in the homotrimeric spike glycoprotein, liable for binding to the cellular 65 

receptors. The spike protein (S) that protrudes from the envelope of the virion, becomes a 66 

potential target for vaccines and therapeutic design, as it mediates viral entry into host cells and 67 

membrane fusion (Li, 2016; Tortorici et al., 2019). Spike residues in the viral envelope are 68 

responsible for membrane fusion by engaging angiotensin-converting enzyme 2 (ACE2) 69 

receptors. ACE2 is found in the heart, lungs, kidney, endothelium, and intestine (Chen et al., 70 

2020; Zhang et al., 2020). Protein S, a trimeric class I fusion protein, is composed of two 71 

subunits, S1 (which contains a receptor binding domain or RBD), responsible for binding to the 72 



ACE2 receptor on the host cell and S2 (which mediates viral-membrane fusion through the 73 

exposure of a highly conserved fusion peptide). Analysis of experimental structures of the 74 

SARS-CoV-2 S protein RBD in complex with ACE2 showed that this interface represents an 75 

active area of research for therapeutic development (Zhang et al., 2020). Residues on RBD in 76 

S protein, essential for ACE2 binding, are highly conserved or share similar side chain 77 

properties between SARS-CoV and SARS-Cov-2 which indicate convergent evolution between 78 

both RBDs, for improved binding to ACE2 (Lan et al., 2020). 79 

 80 

Until date no treatment has been effective in any of these strategies. In order to interfere with 81 

key protein required for viral entry into cells and to neutralize essential proteins in viral 82 

replication, molecules capable of reaching strategic binding-sites that sometimes are 83 

inaccessible to others, are needed. For example, to prevent the virus from entering the cell it is 84 

necessary to avoid the successful union of the S protein and the ACE2 receptor by using small 85 

molecules (Zhang et al., 2020). The binding of potential small molecules to spike protein can 86 

possibly inhibit the replication and transcription of the virus (Rout et al., 2020). In addition to 87 

different drug compounds, researchers also look for natural molecules having antiviral activity 88 

(Rout et al., 2020). 89 

 90 

Among the small molecules, sea urchin pigments are a very interesting group of bioactive 91 

compounds that not only have antiviral and antibacterial properties but also reduce ROS stress 92 

(Cirino et al., 2017; Fedoreyev et al., 2018). One of the relevant families of sea urchin pigments 93 

is 1,4-naphtoquinones polihydroxilate (PHNQs), which includes Spinochrome A and 94 

Echinochrome A (Cirino et al., 2017; Fedoreyev et al., 2018; Hou et al., 2020; Vasileva et al., 95 

2017). Specifically, Echinochrome A (EchA) is the active compound of Histochrome® and 96 

Gistochrome® (xx), two Russian preparations for cardiopathies and glaucoma diseases that 97 

reached the pharmaceutical market and passed all the regulatory requirements. Due to their 98 

particular molecular structure, PHNQs pigments possess important antioxidant actions, 99 

although their antimicrobial, anti-inflammatory, ion chelating, antiallergic, antidiabetic, 100 

antihypertensive, cardioprotective and hypocholesterolemic properties are also highlighted 101 

(Jeong et al., 2014; Lebedev et al., 2005; Lennikov et al., 2014; Shikov et al., 2018). The 102 

pharmacological activity observed in patients with various alignments, together with the 103 

identified low toxicity profiles, strongly support the potential and therapeutic benefits of these 104 

natural pigments for the treatment of various human diseases, particularly inflammation, cardio-105 

protection and diabetes (Shikov et al., 2018). One of the computational tools, molecular 106 



docking, has gained attention as an essential one to investigate potential inhibitor molecules 107 

(Rout et al., 2020). 108 

 109 

Hence, considering the urgent requirement for a specific antiviral drug, this study aims to 110 

examine the in silico properties of EchA and SpinA against Spike protein of SARS-CoV-2, and 111 

in this way, suggest a potential therapeutic drug especially against COVID-19, and other 112 

coronaviruses as well. 113 

 114 

 115 

Materials and Methods 116 

 117 

In silico study was performed to evaluate the interaction between Echinochrome A (EchA) and 118 

Spinochrome A (SpinA) against the viral glycoprotein Spike.  119 

 120 

The receptor preparation was done according to Forli et al. (Forli et al., 2016) with a few 121 

modifications. SARS-CoV-2 receptor-binding domain (RBD) of the Spike protein co-122 

crystalized with ACE2 (6M0J, resolution 2.45 Å) was downloaded from RCBS 123 

(https://www.rcsb.org/). Water and ligand molecules were removed from the file and the 124 

software AutoDockTools (ADT version 1.5.7) was used for receptor preparation. Polar 125 

hydrogens were added and partial Kollman charges were assigned. The prepared structures 126 

were individually saved in .pdbqt format.  127 

 128 

The SMILE of EchA and SpinA were downloaded from Chemical Entities of Biological Interest 129 

(ChEBI) and PubChem (https://pubchem.ncbi.nlm.nih.gov/) and, transformed to PDB.  130 

 131 

The docking simulations were performed using AutoDock vina 1.1.2 (Trott and Olson, 2010). 132 

The center of the search space size for Spike protein docking (-29.04, 30.288, 7.61; 133 

37.50x47.25x46.50 Å) were set to cover the receptor-binding motif (Lan et al., 2020).  134 

The exhaustiveness has been set to 24 while remaining of AutoDock Vina parameters have 135 

been kept at default values. The results of the docking experiment were ranked according to 136 

their Vina score and docking poses were visually inspected with UCSF Chimera software 137 

(Pettersen et al., 2004). The top ranked candidates were selected for further analysis of protein-138 

ligand interactions. Hydrogen bonds (H-bonds) were detected with UCSF Chimera relax H-139 

bonds constraints (0.5 Å and 25°). All direct interactions were also identify as clashes and 140 



contact. Note that clashes are unfavorable interactions where atoms are too close together while 141 

contacts denote all kinds of direct interactions (polar and nonpolar, favorable and unfavorable) 142 

including clashes.  143 

 144 

 145 

Results and discussion  146 

 147 

The auto dock software was used for molecular docking analyses of EchA and SpinA against 148 

the receptor-binding domain (RBD) complex of the spike protein. The docking consisted of 149 

positioning ligands (EchA and SpinA) into the active site and predict how aminoacids will 150 

interact in the binding site of the receptor. This technique helps to enhance the success rate of 151 

an experiment and cuts down the experimental cost. The molecular docking study can help to 152 

analyze the possible binding pose of a small molecule on the active site of a macromolecule 153 

(Rout et al., 2020). 154 

 155 

The best ensemble docking pose of EchA and SpinA showed a binding affinity of -5.9 and -6.7 156 

kcal mol-1, respectively. These Vina docking scores indicate the stability of the complex for 157 

both urchin pigment molecules.  158 

 159 

Phylogenetic analysis of RBD showed a similarity between SARS-CoV and SARS-CoV-2 (five 160 

out of six hotspot aminoacids in SARS-CoV-2 have their equivalent in SARS-CoV) and the 161 

importance of the linked-aminoacids in it (Othman et al., 2020). Computer modelling of the 162 

interaction between the SARS-CoV-2 RBD and ACE2 has identified some residues potentially 163 

involved in this interaction (Lan et al., 2020). Our molecular docking analyses showed that 164 

EchA and SpinA formed hydrogen bonds with different aminoacids residing on the RBD of the 165 

Spike protein (Fig. 1).  166 

 167 

In particular, the interaction between Spike and EchA (Fig. 2-A) showed three H-bonds with 168 

Y449 and Q498 (in green), and 32 Van der Walls (VdW) contacts with R403, S494, Q498, 169 

Q493, Y449, Y505, G496, Y495 (in orange), and no clashes. On the other hand, SpinA (Fig. 2-170 

B) showed five H-bonds interacted with R403, Y449, Q498, Q493 and S494. Besides, 32 VdW 171 

contacts with Q493, Q498, Y495, R403, S494, Y449 and G496, with no clashes. It is important 172 

to mention that linked-aminoacids –i.e., Y449, Q498, Q493, Y505, and G496- are part of the 173 

receptor-binding motif (RBM) that interacts directly with ACE2 (Lan et al., 2020). 174 



With regard to the linked aminoacids (Y505, G496 and Y449 for EchA and Y449, Q498, Q493 175 

and G496 for SpinA), they are in positions involved in ACE2 binding in both RBDs from SARS 176 

CoV and SARS CoV 2 suggesting that EchA and SpinA may interact with Spike proteins from 177 

both viruses. From this, we suggest that these sea urchin pigments could become possible 178 

antiviral drugs because they may interfere with viral infection through binding to Spike 179 

glycoprotein with particular interest for experimental evaluation. Actually, there is an urgent 180 

need for secure and effective therapeutic options for SARS-CoV-2 infections; in particular, 181 

there is no approved therapy for COVID-19. Taking into account the results obtained in this in 182 

silico study, we propose an in vitro analysis for evaluating the effect of these two small natural 183 

molecules in coronavirus inhibition. Especially EchA is a natural compound already available 184 

for other illnesses, and neither toxicity at test concentration nor adverse reactions were found; 185 

in addition, all the clinical regulations have been approved. The results showed in this study are 186 

part of a provisional patent under revision. 187 

 188 

 189 

Conclusion 190 

 191 

Our results suggest that sea urchin pigments, EchA and SpinA, could act as inhibitors of S 192 

protein, pointing them as antiviral drugs for SARS-Cov-2.  193 

 194 
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Figure caption  280 

Figure 1. SARS-CoV-2 RBD Spike protein interaction with urchin pigments. (A) 281 

Structure of SARS-CoV-2 RBD Spike bound to EchA best docking pose. EchA is shown 282 

in green, SARS-CoV-2 RBD Spike core is shown in blue and the RBM is shown in red. 283 

(B) Structure of SARS-CoV-2 RBD Spike bound to SpinA best docking pose. SpinA is 284 

shown in green, SARS-CoV-2 RBD Spike core is shown in blue and the RBM is shown 285 

in red. 286 
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Figure 2. Details of H-bonds and Van der Waals interactions between urchin pigments 296 

and RBD. (A) Analyzed interactions between EchA best docking pose and SARS-CoV-297 

2 RBD and (B) Analyzed interactions between SpinA best docking pose and SARS-CoV-298 

2 RBD. The H-bonds are highlighted in green, and VdW interactions in orange. Main 299 

amino acids participating on the interactions are labeled. 300 
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