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Abstract
The neutral to negative charge fluctuation of a hydrogen atom in front of a graphene surface is
calculated by using the Anderson model within an infinite intra atomic Coulomb repulsion
approximation. We perform an ab initio calculation of the Anderson hybridization function
that allows investigation of the effect of quantum-mechanical interference related to the Berry
phase inherent to the graphene band structure. We find that consideration of the interaction of
hydrogen on top of many C atoms leads to a marked asymmetry of the imaginary part of the
hybridization function with respect to the Fermi level. Consequently, Fano factors larger than
one and strongly dependent on the energy around the Fermi level are predicted. Moreover, the
suppression of the hybridization for energies above the Fermi level can explain the unexpected
large negative ion formation measured in the scattering of protons by graphite-like surfaces.

(Some figures may appear in colour only in the online journal)

1. Introduction

Many theoretical works based on first-principles density-
functional theory are performed in order to provide an
atomic level understanding of the interactions between
adatoms and graphene. These works discuss mainly the
stable configurations of different adatoms such as alkali,
hydrogen, or transition metal atoms, on either graphene
or graphite [1–8]. Graphene is a two-dimensional sheet of
carbon atoms that has singular spectroscopic and transport
properties derived from electronic excitations that behave
as chiral Dirac quasiparticles. As an open surface, the use
of scanning tunnelling microscopy (STM) probes opens the
possibility of controlling the positions of adatoms with atomic
precision and at the same time switching the magnetic
local moments on and off by gating [9–11]. The theoretical
analysis of the spectral, thermodynamic, and scattering
properties of the adatoms on graphene is performed in most
cases by using the Anderson model [12–14]. The single
impurity Anderson model provides a suitable framework
for describing the lifetime of the impurity levels and the

Fano factors arising in local spectroscopy of impurity
resonances in graphene. For instance, in the case of a
resonant s-wave impurity a strong adsorption site dependence
of the Fano factor was found, this anomaly being an
example of quantum-mechanical interference related to the
phases inherent to the graphene band structure [7]. But
important conclusions like this are usually obtained by using
very approximate Hamiltonian parameters. The originally
developed Hamiltonian for describing magnetic impurities in
a metal [15] was naturally extended to treat chemisorption
and ion–surface scattering processes [16, 17]. Nowadays, the
Anderson Hamiltonian continues to be one of the most used
ones for describing experimental results related to charge
fractions of ions backscattered by a surface [18–20] and to
the electronic transport through single atom contacts [21–24].

The basic and simple idea behind the Anderson model
is a mixed basis set of orthonormalized extended solid states
φEk and localized atomic states φa in which the Hamiltonian
can be written as the sum of three well differentiated terms,
Ĥ = Ĥsolid+ Ĥatom+ Ĥatom−solid. The Ĥsolid term corresponds
to the diagonalized description of the solid, Ĥatom includes
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the one and two electron interactions in the atom site, where
only the intra atomic Coulomb repulsion U is involved in
the particular case of an s-wave atom. The interaction term
Ĥatom−solid concerns the hybridization matrix VEk,a between
the solid and atomic states. Anderson in his work presented
a useful expression for VEk,a obtained in terms of Wannier

functions χα(Er − ERn) belonging to the bands and assuming a
Hartree Fock approximation ĤHF(Er) of the Hamiltonian [15]:

VEk,a =
1
√

N

∫
dEr φ∗a (Er)Ĥ

HF(Er)
∑
n,α

eiEk·ERnχα(Er − ERn)

=
1
√

N

∑
n,α

eiEk·ERnVa,α(ERn).

It is important to notice that in this expression the
orthonormalization condition required for the mixed basis set
{φEk, φa} is necessarily traduced to an orthonormalized basis
set of Wannier functions χα(Er − ERn) and atomic states φa(Er).
Thus, the main difficulties are related to ab initio calculations
of the hopping and on-site energy contributions and this is the
reason why in most cases a semiempirical parametrization of
the Anderson Hamiltonian terms is used.

In this work we investigate the charge exchange process
between a hydrogen atom and a graphene surface. An
infinite intra atomic Coulomb repulsion approximation to the
Anderson Hamiltonian is used to treat the hydrogen neutral
to negative charge fluctuation. This is the most probable
charge fluctuation process, taking into account the ionization
and affinity energy levels contrasted with the band states of
graphene. For an ab initio calculation of the Hamiltonian
terms we use a bond-pair model Hamiltonian developed
previously for systems consisting of interacting atoms [25].
By proposing a mixed basis set involving localized adatom
orbitals and extended surface states, and by application of a
mean field approximation, the Hamiltonian can be reduced to
the form of the single-particle Anderson model [26]. In this
way the on-site atom energy and the hybridization term are
determined by both the surface band structure and the atomic
properties of the one and two electron interactions, including
the effects arising from the lack of orthogonality between the
adsorbate and substrate orbitals. A very important magnitude
is the Anderson hybridization function

40σ (ω) =
∑
Ek

|Vσ
Ek,a
|
2

ω̃ − εEk
,

because from it we can make inferences about many
physical properties of interest. For instance, the relation
between Im40σ (ω) and the intra atomic Coulomb repulsion
integral (U) determines whether the coupling regime is
weak or strong; Re40σ (ω)/ Im40σ (ω) can be assumed as a
prediction of the sensitivity of the Fano factor to local changes
in the chemical potential of graphene caused by either doping
or gate voltages [27, 7]; Im40σ (ω) evaluated at the atom
energy level (ω = εa) gives the atom level broadening. The
resonance structure of the density of states projected on the
atom is also intimately related with the hybridization function.
All these important quantities allow for an understanding
of the adsorption and ion–surface scattering processes. The

effect of the quantum-mechanical interference between the
neighbouring C atoms is analysed by means of our ab initio
calculation that allows variation of the number of substrate
atoms interacting with the adatom. We will see that the
broadening of the affinity level in this system can justify the
negative ion fraction measured in the scattering of low energy
protons by a highly oriented pyrolytic graphite (HOPG)
surface [20].

2. Theory

2.1. Bond-pair model: Anderson Hamiltonian

A model Hamiltonian developed to describe pairs of
interacting atoms [26] was generalized to any atom–surface
system by assuming that one of the two atoms consists
of a system having a quasicontinuum of states (including
extended valence and ‘localized’ or corelike flatband states).
A symmetrically orthogonalized [28] mixed basis set of
localized adatom orbitals and extended surface states was used
in this case to finally reduce the Hamiltonian to the form of the
Anderson model:

Ĥ =
∑
Ek,σ

εEk,σ n̂Ek,σ +
∑
σ

(εI +
1
2 Un̂a,σ̄ )n̂a,σ

+

∑
Ek,σ

(Vσ
Ek,a

ĉ†
Ek,σ

ĉa,σ + h.c), (1)

where Ek denotes the solid states with energy εEk and a
the ‘impurity’ atom s-valence orbital with energy εI. Their
respective occupation number operators are n̂Ek,σ = ĉ†

Ek,σ
ĉEk,σ ,

n̂a,σ = ĉ†
a,σ ĉa,σ , σ being the spin projection index. The

U parameter represents the intra-site electronic Coulomb
repulsion in the unique atomic orbital a considered, and Vσ

Ek,a
is the hopping integral between the solid and the ‘impurity’
atom state.

The one electron hybridization term Vσ
Ek,a

includes one

and two electron contributions determined consistently with
a mean field approximation and an overlap expansion of the
many body Hamiltonian. Basically the Vσ

Ek,a
term is expanded

according to the overlap expansion of the orthogonal Ek- and
a-states:

Vσ
Ek,a
= Vσ(0)

Ek,a
−

1
2 SEk,a(V

σ(0)
Ek,Ek
+ Vσ(0)a,a )+ · · · , (2)

where the superscript (0) indicates that the matrix elements
are referred to the states of the isolated subsystems (atom and
solid), and SEk,a is the overlap between them. By performing

in equation (2) the expansion of the non-perturbed Ek-surface
states in the atomic states ϕi centred on the different atoms at
ERs (LCAO),

ϕEk,σ (Er) =
∑
i,ERs

c
Ek,σ
i (ERs)ϕi(Er − ERs), (3)

and approximating the three-centre integrals consistently with
the overlap expansion, it is found that the non-dimeric
contributions are cancelled. The hybridization term is finally
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recovered as a superposition of the atomic hopping integrals
Vσ(dim)

i,a defined only with atomic functions orthogonalized in

each dimeric subspace (ERa, ERs) that include the one and two
electron interactions within a mean field approximation [26]:

Vσ
Ek,a
=

∑
i,ERs

c
Ek,σ
i (ERs)V

σ(dim)
i,a (ERs, ERa). (4)

The approximated treatment of the three-centre atomic
integrals is crucial in the modelling of the atom–surface
complex, since in this form the whole system is rebuilt from
the calculation of each elemental dimer. In equation (3) the
coefficients cEk,σµ correspond to the expansion of ϕEk,σ (Er) in
terms of the atomic orbitals ϕµ (now the index µ indicates
the site ERs and the atomic state i). Now, we want to refer
them to the symmetrically orthonormalized atomic basis
set {χα} assumed in tight-binding-like calculations of the
surface electronic structure. Both basis sets are related in the
following manner [28]:

χα =
∑
β

(1+ S)−1/2
αβ ϕβ , (5)

where the elements of the overlap matrix S are defined as
Sµα =

∫
ϕ∗µϕα dτ − δµα . From the expansion of ϕEk,σ (Er) in

one or other basis set

ϕEk,σ (Er) =
∑
µ

c
Ek,σ
µ ϕµ =

∑
α

c̃
Ek,σ
α χα (6)

and taking into account equation (5), the following relation is
obtained between the expansion coefficients:

c
Ek,σ
β =

∑
α

c̃
Ek,σ
α (1+ S)−1/2

αβ . (7)

By introducing the expression equation (7) into
equation (4), the LCAO expansion of the matrix element
Vσ
Ek,a

is written in terms of quantities referred to the

orthonormalized atomic basis set of the substrate:

Vσ
Ek,a
=

∑
α

c̃
Ek,σ
α Ṽσ(dim)

α,a , (8)

where Ṽσ(dim)
α,a =

∑
λ (1+ S)−1/2

αλ Vσλ,a.

The coefficients c̃Ek,σα define the density matrix through the
following elements:

ρ̃σα,β(ε) =
∑
Ek

c̃
Ek,σ∗
α c̃

Ek,σ
β δ(ε − εEk). (9)

An ab initio calculation of the non-interacting self energy
40σ (ω) and, therefore, of the hybridization width 0σ (ω) =
Im40σ (ω) is now possible through the LCAO expansion (8)
of Vσ

Ek,a
:

40σ (ω) =
∑
α,β

Ṽσ(dim)
a,α Ṽσ(dim)

β,a

∫
∞

−∞

dε
ρ̃σα,β(ε)

ω − ε − iη
. (10)

The one electron energy levels (εI, εI + U) of the atom
are calculated as the difference between total energies of
the atom–surface system without allowing charge transfer

(frozen atomic charges) and by taking into account the
orthogonalization effects and a mean field approximation of
the two electron interactions [26].

2.2. Electronic structure of the graphene surface

In a graphene sheet, the carbon atoms are held together via
sp2-hybridized covalent bonds, while the electronic transport
takes place by hopping along the π orbitals which can
participate in covalent bonding with adsorbates. In the
negative hydrogen formation from the neutral atom the active
state corresponds to the affinity level, which resonates mainly
with the π -band states.

The electrons in the π -band of graphene can be quite well
described using a tight binding (TB) Hamiltonian within the
first neighbours approximation [11]. The LCAO expansion of
the graphene π -band states in the orthonormalized pz-atomic
states χpz(

ERA(B)
j ) is

ϕEk(Er) =
1
√

2N

∑
j

[
±eiθ(ξEk)e−iEk·ERA

j χpz(
ERA

j )

+ e−iEk·ERB
j χpz(

ERB
j )
]
, (11)

where ‘+’ corresponds to the upper (antibonding) band, ‘−’
to the lower (bonding) band and

ξEk = −t
∑
Eδj(j=1,3)

e−iEk·Eδj ,

where θ(ξEk) = arg(ξEk) and

Eδ1 =
a

2
(1,
√

3), Eδ2 =
a

2
(1,−
√

3)

and Eδ3 = −a(1, 0).

The lattice parameter a is 1.42 Å and the hopping t is
assumed equal to 2.7 eV.

In figure 1 we show diagonal and crossed in site elements
of the density matrix (equation (9)) calculated within the TB
approximation, for the π -band of graphene.

2.3. Infinite U approximation of the Anderson Hamiltonian

The most relevant charge fluctuation process is between
H0 and H−; if it is accomplished εI � εF, εI + U > εF
and 0/U < 1, where εF is the Fermi level of the surface
and 0 is the hybridization width. In this case the change
from the one electron configurations |↑, 0〉, |0,↓〉 to the two
electron configuration |↑,↓〉 involves a spin fluctuation that is
treated by assuming holes instead of electrons. The following
notation is used:

|↑,↓〉 ⇒ |0〉 for zero holes.

|↑, 0〉; |0,↓〉 ⇒ |σ 〉 for one hole with ‘spin σ ’.

Taking into account this notation, the Hamiltonian that
describes the ‘impurity’ atom can be written as

Hat = E0|0〉〈0| + E1(|↑〉〈↑| + |↓〉〈↓|). (12)

In equation (12) we have considered spin degeneration,
and the total energies Ei are related to the εI and U parameters

3
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Figure 1. Diagonal and off-diagonal elements of the density matrix
for the graphene π -band calculated within the tight binding
approximation. The site notation corresponds to the atom sites
indicated in the inset.

of equation (1), defining the affinity level in the following
way:

E0 − E1 = (εI + U).

The correct normalization of the subspace including the
selected atomic configurations is

|0〉〈0| + |↑〉〈↑| + |↓〉〈↓| = 1̂. (13)

We also have to write down the interaction Hamiltonian
within the spirit of the Anderson model which involves only
one electron atom–solid interaction terms. The transitions
between one and two electrons in the atom can be written as∑

Ek

V↑
Ek,a

ĉ†
Ek,↑

ĉa,↑ ≡
∑
Ek

V↑
Ek,a

ĉ†
Ek,↑
|0,↓〉〈↑,↓|,

∑
Ek

V↓
Ek,a

ĉ†
Ek,↓

ĉa,↓ ≡ −
∑
Ek

V↓
Ek,a

ĉ†
Ek,↓
|↑, 0〉〈↑,↓|.

These terms written within the picture of holes are given
by the expression∑
Ek,σ

(−1)pσ Vσ
Ek,a

ĉ†
Ek,σ
|σ 〉〈0|,

where pσ =

{
0 si σ =↑,

1 si σ =↓ .

Finally, the Anderson Hamiltonian (equation (1)) when
only spin fluctuations in the H0

↔ H− transition are
considered is

Ĥ =
∑
Ek,σ

εEkn̂Ek,σ + E0|0〉〈0| + E1

∑
σ

|σ 〉〈σ |

+

∑
Ek,σ

(−1)pσ
[
Vσ
Ek,a

ĉ†
Ek,σ
|σ 〉〈0| + Vσ∗

Ek,a
|0〉〈σ |ĉEk,σ

]
. (14)

Equation (14) defines our basic Hamiltonian. We
can calculate the probabilities of the selected atomic

configurations by means of the following advanced Green
function in the static case and for equilibrium processes:

Gσ (t, t′) = iθ(t′ − t)〈{|0〉 〈σ |t′ , |σ 〉 〈0|t}〉, (15)

while for time-dependent or non-equilibrium stationary
processes we require also to calculate the following
Green–Keldysh functions [29, 30]:

Fσ (t, t′) = i〈[|0〉 〈σ |t′ , |σ 〉 〈0|t]〉. (16)

The [ ] and { } symbols indicate commutator and
anticommutator respectively; and 〈 〉 means the average
over the Heisenberg state 80 that describes the interacting
system. The probabilities of atomic configurations having one
electron (one hole) (nσ ) or two electrons (zero holes) (n2) are
calculated from the corresponding spectral density ρσ (ω) =
1
π

Im Gσ (ω) as

n2 = 〈|0〉〈0|〉 =
∫
∞

−∞

dω f≺(ω)ρ
σ (ω),

nσ = 〈|σ 〉〈σ |〉 =
∫
∞

−∞

dω (1− f≺(ω))ρ
σ (ω),

where f≺(ω) is the Fermi function. The following normaliza-
tion property is valid:∫

∞

−∞

dω ρσ (ω) = 〈|0〉〈0|〉 + 〈|σ 〉〈σ |〉.

The Green function given by equation (15) is calculated
using the EOM method closed up to a strict order (Vσ

Ek,a
)2

which leads to the following expression [31] (ω̃ = ω − iη):

Gσ (ω) =
1− nσ̄ − Iσ̄ (ω)

ω̃ − εI − U −40σ (ω)−4≺σ̄ (ω)
. (17)

The quantities Iσ̄ (ω) and 4≺σ̄ (ω) introduced in
equation (17) are

Iσ (ω) =
∑
Ek

Vσ∗
Ek,a

〈|0〉〈σ |cEk,σ 〉

ω̃ − εEk
,

4≺σ (ω) =
∑
Ek

|Vσ
Ek,a
|
2

ω̃ − εEk
〈1− n̂Ek,σ 〉,

where

〈|0〉〈σ |cEk,σ 〉 =
Im
π

∫
∞

−∞

dω f≺σ (ω)
Vσ
Ek,a

ω̃ − εEk
Gσ (ω)

and 40σ (ω) is the non-interacting self-energy given by
equation (10). Similar expressions to equation (10) are
obtained for Iσ (ω) and4≺σ (ω) by using equations (8) and (9).

3. Results and discussion

3.1. Hybridization function

The atomic hopping integral Vσ(dim)
i,a between the 1s state of

H and the 2pz state of C is shown in figure 2. In this figure the
hopping integral is shown as a function of H distance to the
different neighbouring carbon atoms. The H atom is placed

4
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Figure 2. The atomic hopping integral between C 2pz and H 1s
states as a function of distance to the different C neighbouring shells
shown in the inset. The hydrogen position is on top at 3 au from the
surface (star in the inset).

at 3 au from the surface on top of the central C atom, as is
shown in the inset of figure 2. The atomic basis sets used in
this calculation are taken from [32].

In figure 3 we compare the hybridization functions,
Im40σ (ε), for the on top and on hollow positions and
including all the C neighbours that are able to interact with
the adatom at 3 au from the surface. In the on top position
there are 58 carbon atoms involved while in the on hollow
position there are 54 (see the insets of figures 2 and 3). The
orthonormalized hopping matrix in equation (10) is calculated
by taking into account the overlap matrix defined in the
corresponding subspace with the same number of C atoms.

From figure 3 we can see that the adatom at the hollow
site has an essentially flat and zero hybridization with the
graphene sheet near the Fermi energy, while in the case
of the on top position the hybridization function vanishes
linearly near the Fermi energy, reflecting the linear DOS of the
graphene. Interestingly, the hybridization functions are very
different for energies below and above the Fermi level. In
both adsorption positions the hybridization is more important
for negative energies. We can say that the interference
between C neighbouring atoms interacting with hydrogen has
a constructive effect in the bonding valence band while it is
destructive in the case of the antibonding upper band.

It is also observed from figure 3 that, in contrast to
what happens in the Li case [33], for the hydrogen atom the
hybridization function is strongly dependent on the adsorption
site. This fact is due to the less extended behaviour of the
atomic hydrogen state, as can be seen from figure 2. There is
a more significant hybridization in the on top position which
is found to be the most stable adsorption site [34, 35, 4].

The importance of considering the interference effects
can be seen in figure 4. In figure 4(a) a comparison is made
of the hybridization functions calculated in the case of H on
top at 3 au from the surface by including only the interaction
with the C atom below, with the first four, with 19 and
with 58 neighbouring carbon atoms. In this figure we can

Figure 3. Hybridization functions for H interacting with the
graphene π -band at the on top position (black solid line) and at the
centre of the hexagon (grey solid line). The hydrogen atom is placed
at 3 au from the surface. The on hollow position is shown by a star
symbol in the inset.

see that consideration of 19 neighbours is quite enough. The
other way, with the on top adatom interacting with only one
substrate atom, does not provide a correct description. It is
necessary to include at least the first neighbours to take into
account the marked asymmetry in the energy dependence
of the hybridization function around the Fermi level and
the very different behaviour above and below the Fermi
level. Figure 4(b) corresponds to the H placed above the
middle of the hexagon in which case the hydrogen atom
interacts with at least six C atoms. It is observed in this
case that the interaction with the first neighbours is good
enough to describe satisfactorily the energy dependence of the
hybridization function.

The energy dependence of the hybridization function can
be understood from the Ek dependence of the coupling term
|Vσ
Ek,a
|
2 shown in figures 5(a) and (b) for on top and on hollow

adsorption sites respectively.
For Ek values near the 0(Ek = 0) point |Vσ

Ek,a
|
2 reaches its

maximum value in the bonding band while in the antibonding
band it is minimum in the on top case and zero in the hollow
site. The corresponding values are determined by the way in
which the atomic hopping decays with distance (figure 2).
We observe practically no dependence with Ek around the 0
point when all the effective interacting C atoms are included.
By comparing in the on top case the |Vσ

Ek,a
|
2 calculated by

including the interaction with only one or many C atoms,
we can see that the interference between the C atoms has
a constructive effect in the bonding band and a destructive
character in the antibonding band. The peak structure for
energies around ±2.7 eV (Ek = M = 2π

3a (1, 0)) is maintained,
but it is strongly diminished for the upper band energies in
which the interference terms have a strong destructive effect
on |Vσ

Ek,a
|
2. The important differences in the on hollow position

(figure 5(b)) are the disappearance of the peak structure at
−2.7 eV (Ek = M) and the negligible values of |Vσ

Ek,a
|
2 near

the Fermi level (Ek = K = 2π
3a (1,

1
√

3
)). All these results are

5
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Figure 4. The energy dependence of the hybridization width
Im40σ . (a) In the case of hydrogen on top at 3 au from the
graphene, by considering the interaction with 58 carbon atoms
(solid line), with 19 (dashed line), with 4 (dashed–dotted line) and
with only one carbon atom (dotted line) (see the inset of figure 2).
(b) In the case of hydrogen above the middle of the hexagon at 3 au
from the surface, by considering the interaction with 54 carbon
atoms (solid line) and with the first six neighbours (dash line) (see
inset of figure 3). The insets are a blow up to show the details
around the Fermi level.

striking examples of quantum-mechanical interference related
to the Berry phase, θ(ξEk) = arg(ξEk), inherent to the graphene
band structure [11]. This can be seen by analysing the LCAO
expansion of Vσ

Ek,a
and taking into account that |ξEk| = 0 for

Ek = K, θ(ξEk) = 2π/3 for Ek = M and θ(ξEk) = π for Ek = 0. For
instance, in the on top position and considering the first four
neighbours, we have the following expression:

Vσ
Ek,a
=

1
√

2N

[
±eiθ(ξEk)Ṽa,C(ER)+ Ṽa,C(ER− Eδ1)

|ξEk|

−t
e−iθ(ξEk)

]
,

while in the on hollow position and considering the first six
neighbours

Vσ
Ek,a
=

1
√

2N
Ṽa,C(ER− Eδ1)

|ξEk|

−t
{±e2iθ(ξEk) + e−iθ(ξEk)}.

3.2. Energy levels and widths

The analysis of the atom energy levels as a function of
atom–surface distance (z) allows one to make inferences

Figure 5. (a) The square modulus |Vσ
Ek,a
|
2 as a function of |Ek| for the

H on top at z = 3 au. The black lines correspond to the valence
band, and the grey lines to the conduction band: calculation
including all the C atoms that are capable of interacting (solid
lines); the one including the four nearest neighbours (dashed line);
and the calculation including only the C below the H atom (dotted
line). (b) The same as (a) for hydrogen placed at the centre of the
hexagon: calculation including all the C atoms that are capable of
interacting (solid lines); and the one including the six nearest
neighbours (dashed line). (c) The band energies εEk = ±

√
ξ∗
Ek
ξEk as a

function of |Ek|.

about the possibility of resonant charge transfer processes.
The ionization and affinity levels of the hydrogen atom
calculated by using the bond-pair model [26] are shown in
figure 6 contrasted with the graphene π - and σ -band states.
The shift by the image potential at large distances is accounted
for and the short range interactions are properly considered
within the mean field approximation. The pronounced down
shift at distances close to the surface (z = 0) is mainly due to
the attractive interaction with the nuclei. Figure 6 shows from
a purely energetic point of view that the fluctuation between
neutral and negative charge is the most probable.

The affinity level and 0A = 2 Im40σ (εI(z) + U(z)) are
shown in figure 7. The quantity 0A gives an estimation of
the widening of the energy level by the interaction, but it
only represents correctly the level width in the case of a
flat band. The results in figure 7 correspond to the on top
site, by considering all the C atoms that effectively interact
in figure 7(a), the four nearest neighbours in figure 7(b)
and only the C atom below in figure 7(c). The energy level
variation with the distance to the surface, calculated by using

6
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Figure 6. Energy levels of a H atom placed on top of a carbon atom
as a function of the distance to the surface. The black (grey) line is
the affinity (ionization) level. The shadowed region is the LDOS of
the π -band calculated in this work. The s and p LDOS of graphene
calculated using the fireball method of [36] are also shown. The
energies are referred to the Fermi energy set equal to 0.

the bond-pair model [26], is consistent with the number of
C atoms in each case. An upward shift of the affinity level is
found for distances between 4 and 2.5 au due to the interaction
with many C atoms (figure 7(a)).

The most striking feature of figure 7 is the diminution
of 0A for energies above the Fermi level caused by the
interference effects. The weak coupling regime, characterized
by a relation 0/U < 1 that validates the infinite U-limit
approximation, is achieved for distances ≥2 au only in the
case of including the interaction with more than one C atom
(see also figure 6).

3.3. Adatom local density of states and double occupation

The density of states projected on the atom state (LDOS) is
shown in figure 8(a) for the case of hydrogen on top and
distant 2.4 au from the surface. In this figure the LDOS is
compared for the cases of hydrogen interacting with one,
four and all the C atoms that it can see. The resonance
structure depends strongly on both the hybridization function
and the atom level position. According to equation (17) the
energy resonance positions are the solutions of ω− εI −U =
Re[40σ (ω) + 4<σ (ω)], which can be seen in the inset of
figure 8(a). The inclusion of many C atoms in the interaction
moves the atom level resonance to energies above the Fermi
level, giving in this form a double occupation notably smaller
than in the case of considering the interaction with only
the first neighbour. The double occupation probability n2 =

〈|↑↓〉〈↑ ↓|〉 is shown as a function of distance to the surface
in figure 8(b). The interferences associated with the crossed
terms of the density matrix lead to a smaller probability
of double occupation for distances close to the surface,
while consideration of the interaction with only one surface
atom underestimates the negative charge probability for large
distances (z > 3.5 au).

In figure 9(a) one can see that Re40σ (ω) is antisymmet-
ric with respect to the Fermi energy in the case of considering

Figure 7. The hydrogen level and 0A (shown as error bars) as a
function of distance for the on top position, by considering (a) all
the effective interacting C atoms, (b) the first four neighbours and
(c) only the C atom below.

the interaction with only one C atom. This fact is due to the
symmetry of the π -band density of states calculated within
the first neighbour tight binding approximation. The marked
loss of symmetry of Im40σ (ω) caused by the quantum
interference between the neighbouring C atoms leads to
an Re40σ (ω) different from zero at the Fermi level. The
relation between Re40σ (ω) and Im40σ (ω) can be viewed
as an ab initio prediction of the Fano q factor [7]. We find
that q = Re40σ (ω)/ Im40σ (ω) is strongly energy-dependent
and larger than 1 around the Fermi level in the case of
considering the interaction not only with the carbon below the
hydrogen atom but also with the first neighbours (figure 9(b)).
Therefore, a Fano factor sensitive to local changes in the
chemical potential of graphene caused by either doping or gate
voltages can be expected.

3.4. Negative ion fraction

In a collision process the negative charge state becomes
probable when the hydrogen atom is close to the surface due to
the downshift and width of the affinity level. The possibility of

7
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Figure 8. (a) Energy dependence of the density of states projected
on the hydrogen atom on top at a distance z = 2.4 au from the
graphene. In the inset we show the energy dependence of the
corresponding Re[40σ (ω)+4<σ (ω)] and their intersections with
the ω − εI − U straight lines. (b) Adiabatic charge state probability
n2 as a function of distance to the surface. The inset shows a blow
up of the large distances region. The solid line corresponds to the
calculation including all the effective interacting C atoms, the
dashed–dotted line to the calculation including the first four
neighbours and the dashed line to the calculation including only the
C atom below.

electron loss when the affinity level is again above the Fermi
level along the outgoing trajectory is drastically reduced due
to the interference between neighbouring C atoms according
to the results shown in figure 7. It is possible to explain in
this form the large negative ion fraction measured in the case
of hydrogen scattering by HOPG [20] at low normal to the
surface velocity components. We can estimate roughly the
charge state occupation of an atom colliding with a surface
at low velocity within the semiclassical limit that neglects the
quantum interferences inherent to a dynamical evolution. The
objective in this case is to have only a qualitative idea of the
incidence of the level broadening in a charge transfer process
out of equilibrium. In this approximation the probability of
charge exchange per unit of time is given by 20A(z)/h̄ and the
following rate equation determines the time dependence of the
hole state occupation when the spin fluctuation is also taken
into account [37]:

d〈|σ 〉〈σ |〉
dt
= 20A(z)[−〈|σ 〉〈σ |〉(1− f h

<(εa))+ 〈|0〉〈0|〉f h
<(εa)]

= 20A(z)[−〈|σ 〉〈σ |〉 + [1− 〈|σ 〉〈σ |〉]f h
<(εa)]. (18)

In equation (18) f h
<(εa) = 1−f<(εa) is the Fermi function

for holes evaluated at the affinity energy. By considering the

Figure 9. (a) Energy dependence of Re40σ (ω) for a hydrogen
atom on top at a distance z = 2.4 au from the graphene. In the inset
the corresponding Im40σ (ω) are shown. (b) The energy
dependence of the q factor defined as q = Re40σ (ω)/ Im40σ (ω).
The solid line corresponds to the calculation including all the
effective interacting C atoms, the dashed–dotted line to the
calculation including the first four neighbours and the dashed line to
the calculation including only the C atom below.

atom trajectory z(t) = z0 + vin(out)t, with different velocities
vin(out) in the incoming and outgoing parts, we can write

d 〈|σ 〉 〈σ |〉
dz

= 2
0A(z)

vin(out)
[−〈|σ 〉〈σ |〉 + [1− 〈|σ 〉〈σ |〉]f h

<(εa)].

(19)

Figure 10 shows the evolution with distance of the
double occupation n2 in the case of an incoming kinetic
energy Ek = 2 keV and vin(out) related to the perpendicular
components of the velocity for trajectories with angles of
θin = 10◦ and θout = 35◦ with respect to the surface plane
(negative values of z represent the incoming trajectory). The
movement perpendicular to the surface within an on top
configuration is referred to the turning point z0 chosen at
2 au from the surface. In this figure the results obtained by
considering the interaction with one, four and the all involved
C atoms are compared.

Charge and discharge processes take place depending
on the atom level position and its width according to
equation (19). The interaction with many C atoms determines
an affinity level position which makes negative ion formation
along the incoming part of the trajectory less favourable,

8



J. Phys.: Condens. Matter 24 (2012) 045004 M Romero et al

Figure 10. Double occupation probability n2 as a function of
distance to the surface obtained from the rate equation
(equation (19)), by considering the interaction with only the C atom
below (dashed line), the C below and its three first neighbours
(dashed–dotted line) and all the C atoms that the hydrogen atom can
see (solid line). The inset corresponds to a zoom of the exit
trajectory at large distances.

but there is also less chance of electron loss during the exit
trajectory due to the smaller level width (see figure 7). Finally,
the diminished rate of electron loss in the case of considering
properly the quantum-mechanical interference between the
surface atoms involved in the interaction leads to a larger
negative ion fraction. Notice that in the case of including
only the first four C neighbours there is an increasing atom
population to values near 1 close to the surface but a loss rate
far from the surface considerably larger than in the case of
considering all the C atoms able to interact with the hydrogen.

4. Conclusions

We have studied the interaction of a hydrogen atom with
graphene by using an ab initio Anderson model. The
effect of the quantum-mechanical interference between the
neighbouring C atoms is analysed by varying the number
of C atoms involved in the interaction. We find that the
hybridization is strongly dependent on the adsorption site and
that it is largely suppressed for the upper band energies. We
also find a marked asymmetry of the hybridization function
around the Fermi level due to the interference between the
many C atoms able to interact with the hydrogen on top.
This result leads to a relation Re40σ (ω)/ Im40σ (ω) strongly
dependent on the energy and larger than 1 around the Fermi
level, which suggests a Fano factor sensitive to local changes
in the chemical potential of graphene. We treat the hydrogen
neutral to negative charge fluctuation within an infinite intra
atomic Coulomb repulsion approximation. The affinity level
and its width validate the infinite U-limit approximation
in the case of including the interaction with more than
one C atom. The affinity level width is strongly reduced
due to the quantum-mechanical interference associated with
the graphene band structure. This result can explain the
unexpectedly large negative ion fraction measured in the
scattering of low energy protons by HOPG.
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