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Abstract

We prove the almost sure convergence in the sense of Schwartz distributions of certain random series.
This result is useful to construct some type of fractional random fields. These series resemble the
Karhunen–Loéve expansions.
r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Stochastic fields with 1=f spectral behavior, first introduced by Kolmogorov in the context of
turbulent flows, have numerous applications in engineering, general science and whenever strong
long-range (long memory) dependence (LRD) phenomena appear.
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A long memory process or field X ðxÞ with spectral density FX ðoÞ (Section 3.1) verifies
the following spectral condition (see Beran, 1994, Reed et al., 1995): there exist b and cf

such that

lim
o!0

FX ðoÞ
cf joj�b ¼ 1. (1)

As some authors have pointed out (Medina and Cernuschi Frı́as, 2002; Bojdecki and Gorostiza,
1999) this suggests looking for a relation between these processes and certain fractional
integration differencing operators (see Eqs. (19), (20)). Considering these processes not as point
processes but as random elements in a space of distributions (in the Schwartz sense), we provide a
method to construct a series which converges a.s. to a generalized fractional random field, that is,
in the weak-� topology of the dual space of an appropriate linear vector space. The natural space
is DðRdÞ. In particular, it is useful to obtain random fields which show LRD or more generally
with spectral density of the form

FX ðoÞ ¼ ð1 þ joj2Þ�g
joj�a g 2 R40; 0oaod=2. (2)

Processes of this type are sometimes considered as solutions of the d-dimensional fractional order
differential equation:

ðI � DÞg=2ð�DÞa=2X ¼ Z, (3)

where Z is white noise and D denotes the Laplacian operator. Here we construct series such that
given fxngn a set of independent, identically distributed random variables, then if fgkgk is a set of
appropriate functions, thenX1

n

xngn ¼ X ,

where X verifies condition (2) and the convergence is a.s. in the sense of Schwartz distributions.
The general discussion follows some of the ideas developed in Angulo and Ruiz-Medina (1997),
Medina and Cernuschi Frı́as (2002) and Yves Meyer et al. (1999).

This work is organized as follows: first we give some definitions and auxiliary results
(Section 2), and finally in Section 3 we describe a general method to construct a random series
which converges (a.s.) to a generalized random field with a prescribed covariance structure
(Theorem 3.1). This result which is interesting on its own, combined with some results on
fractional integration, is in particular very useful for constructing a series which converges to a
random field with spectral density as (2) (Theorem 3.3).
2. Some definitions and auxiliary results
Remark. In the following, if x 2 Cd
ðdX1Þ we will denote its usual norm by jxj and

Suppðf Þ ¼ Clfx : f ðxÞa0g.
The Schwartz class of functions SðRdÞ is defined as the linear space of smooth functions

rapidly decreasing at infinity, together with its derivatives. This means that f 2 SðRdÞ whenever
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f 2 C1ðRdÞ and

sup
ðx1;...;xd Þ2R

d

Yd

i¼1

jxij
ai

q

qx
b1

1

� � �
q

qx
bd

d

fðx1; . . . ;xdÞ

�����
�����o1 8aj; bj 2 N

endowed with its usual topology. We will denote by DðRdÞ the space of functions which are in
C1ðRdÞ and have compact support. Both spaces are topological vector spaces (Stein and Weiss,
1970), and their duals are denoted as S0ðRdÞ (tempered distributions) and D0ðRdÞ (distributions),
respectively. Clearly, DðRdÞ � SðRdÞ and then S0ðRdÞ � D0ðRdÞ.

2.1. Fourier transforms

The Fourier transform bf of f 2 SðRdÞ is defined as

Fðf ÞðoÞ ¼ bf ðoÞ ¼ Z
Rd

f ðxÞ e�2pio:x dx;

from this F can be defined, as usual as a linear map F : L1ðRdÞ7!C#ðR
dÞ, or as an isometry on

L2ðRdÞ and by duality over the class of tempered distributions, that is, F : S0ðRdÞ7!S0ðRdÞ.

Definition 1. The Sobolev spaces Hs (Calderón, 1976) are defined as

HsðRdÞ ¼ f 2 S0ðRdÞ :

Z
Rd

jbf ðoÞj2ð1 þ joj2Þs doo1

� �
. (4)

2.1.1. Remark
Let s 2 R, then HsðRd Þ is a Hilbert space with the product ð:; :ÞHs : HsðRdÞ � HsðRdÞ7!C

ðh; gÞHs ¼

Z
Rd

bhðoÞbgðoÞð1 þ joj2Þs do. (5)

Definition 2. For f ; g 2 DðRdÞ we define the pairing h:; :i : DðRdÞ �DðRd Þ�!R as

hf ; gi ¼

Z
Rd

f ðxÞgðxÞdx,

This can be extended by a density argument over Lp � Lq, 1=p þ 1=q ¼ 1 (when p ¼ 2 this is the
usual inner product) or Hs � H�s.

Definition 3. Let V and W be two RðCÞ vectorial spaces. Then the vectorial space of all bounded
linear mappings with domain in V and range in W is denoted by LðV;WÞ.

2.2. Generalized stochastic processes

In the following ðO;F;PÞ will denote a probability space. A generalized stochastic process
is a random element in D0ðRdÞ (or in S0ðRdÞ). This means that if $ 2 O and j 2 SðRdÞ

then a generalized stochastic process X ðxÞ is defined by the random variable X ðjÞ : O7!R
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(Rozanov, 1969):

X ðjÞ ¼ hX ;ji ¼
Z
Rd

X ðxÞjðxÞdx,

where the last equality may be only formal. The covariance functional is defined by the bilinear
form G : DðRdÞ �DðRdÞ7!R

GX ðu; vÞ ¼ EX ðuÞX ðvÞ.

If GX ðu; vÞ can be written as GX ðu; vÞ ¼ hu;R � vi where RðxÞ may be a generalized
function, sometimes, it informally as E½X ðxÞX ðx0Þ� ¼ Rðx � x0Þ. For example, if X ðxÞ is the white
noise RðxÞ ¼ dðxÞ in the sense of hd; ui ¼ uð0Þ, then Gðu; vÞ ¼

R
Rd uðxÞvðxÞdx for all u and v in

DðRdÞ. If R 2 S0ðRdÞ, it is also possible to define the spectral density of the process as
FX ¼ FR ¼ bR.

The following result will be useful.

Theorem 2.1 (Variant of the Shannon–Kotoélnikov theorem). If f 2 L2ðRd Þ is such that Suppðf Þ �
½�l0; l0�

d with l0o1=2, then there exists y 2 SðRdÞ such that

bf ðoÞ ¼ X
k2Zd

bf ðkÞyðo� kÞ. (6)

Proof. Let ef ðxÞ ¼Pk2Zd f ðx þ kÞ be the periodization of f. The identification ef with the torus

verifies ef 2 L2ðTdÞ � L1ðTd Þ, and, if ef�Pk2Zd ake
�2pix:k, then liml!1

P
k2Dl

ake
�2pix:k ¼

L2ðTd Þ ef and

in L1ðTd Þ for a suitable domain Dl � Rd . Now, we can take yðxÞ 2 SðRdÞ such that

byðoÞ ¼ 1; joijol0

0; joijX1 � l0;

(

and define SlðxÞ ¼ byðxÞPk2Dl
ake

�2pix:k. On the other hand f ¼ efby; then, it is easy to show that

liml!1 kSl � f kL1ðRd Þ ¼ 0. This implies liml!1 Supo2Rd jcSlðoÞ � bf ðoÞj ¼ 0, but (see Stein and

Weiss, 1970) ak ¼ bf ðkÞ. Then

cSlðoÞ ¼
X
k2Dl

bf ðkÞyðo� kÞ.

Then (6) follows immediately from this. &

Now, we can prove the following proposition, which is an easily extended d-dimensional
version of a result of Yves Meyer et al. (1999).



ARTICLE IN PRESS

J.M. Medina, B.C. Frı́as / Statistics & Probability Letters 74 (2005) 39–49 43
Proposition 2.1. Let f 2 L2ðRdÞ be with the same hypotheses of the previous theorem. Then

kf kHspKðsÞ
X
k2Zd

jbf ðkÞj2ð1 þ jkj2Þs

 !1=2

.

Proof. Recall Peetre’s inequality ð1 þ ða þ bÞ2Þsp2jsjð1 þ a2Þ
jsj
ð1 þ b2

Þ
s, and by Theorem 2.1 we

have Z
Rd

jbf ðoÞj2ð1 þ joj2Þs dop
Z
Rd

X
k2Zd

jbf ðkÞyðo� kÞjð1 þ joj2Þs=2
 !2

do

p
Z
Rd

X
k2Zd

u2
kðoÞ

X
k2Zd

v2
kðoÞdo,

where vkðoÞ ¼ jyðo� kÞj1=2 and

ukðoÞ ¼ jbf ðkÞjð1 þ jkj2Þs=22jsj=2ð1 þ jjoj � jkjj2Þjsj=2jyðo� kÞj1=2.

Since yðxÞ 2 SðRdÞ we have C ¼
P

k2Zd v2
kðoÞ ¼

P
k2Zd jyðo� kÞjo1 and

KðsÞ2�jsj ¼

Z
Rd

ð1 þ jjoj � jkjj2Þjsjjyðo� kÞjdo

p
Z
Rd

ð1 þ jo� kj2Þjsjjyðo� kÞjdoo1.

Then,Z
Rd

jbf ðoÞj2ð1 þ joj2Þs dopCKðsÞ
X
k2Zd

jbf ðkÞj2ð1 þ jkj2Þs: &

2.3. Some auxiliary results on a.s. convergence

The following mimic a celebrated theorem of Kolmogorov about the convergence of sums of
independent random variables, but here we need a version for random elements (for a definition
of random element see Taylor, 1978) in a Hilbert space (Kahane, 1985).

Theorem 2.2. Let fxkg be a sequence of independent random variables in L2ðO;F;PÞ such that
Exk ¼ 0 and ff kg is a sequence in H a Hilbert space. IfX1

n¼1

Ejxnj
2kf nk

2
Ho1, (7)

then Sn converges in H a.s., where X k ¼ xkf k and Sn ¼
Pn

k¼1 X k .

Sn are well-defined random elements in H as a consequence of Lemma 2.1.5 or 2.1.1 by Taylor
(1978).
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2.3.1. A basic result

In finite measure spaces there is a basic relationship between almost everywhere (almost sure)
convergence and convergence in norm (mean convergence) (Billingsley, 1968, 1994). For this
purpose we need the following definition.

Definition 4. Let fxngn be a sequence of random variables. We say that fxngn is uniformly
integrable if

lim
a!1

sup
n

Z
fjxnj4ag

jxnjdP ¼ 0. (8)

Then the following can be proved (Billingsley, 1968, 1994).

Theorem 2.3. Let pX1 and fxngn � LpðO;F;PÞ be a sequence, such that xn�!x a.s. as n�!1.
Then, Ejxn � xjp�!0 when n�!1 () fjxnj

pgn is uniformly integrable.

It is easy to prove that a sufficient condition for fxngn to be uniformly integrable is

9 �40;K40 such that Ejxnj
1þ�pK 8n. (9)

3. Main results

In this section we will prove in Theorem 3.1 that given T 2 LðL2ðRdÞ;LpðRdÞÞ it is possible to
construct a series which converges almost surely to a generalized random field, namely X, with
covariance functional GX ðf;cÞ ¼ hf;T � T�ci with f; c 2 DðRd Þ. This result will be used in
Section 3.1, Theorem 3.3 to construct a generalized fractional random field.

In the following F will denote any s-algebra on O for which the family fxnf ngn is measurable
considering the s-algebra BðD0ðRd ÞÞ. ff ngn and fxngn are as above.

Theorem 3.1. Let fxngn2N � L4ðO;F;PÞ be a sequence of independent identically distributed

random variables such that Exn ¼ 0 . If ff ngn2N is an orthonormal basis of L2ðRdÞ and T 2

LðL2ðRdÞ;LpðRdÞÞ with pX1, then:
(I)
 X ¼
X1
n¼0

xnTf n (10)

converges to a generalized process a.s.

(II)
 The covariance functional of X, GX : DðRdÞ �DðRdÞ�!R is GX ðf;cÞ ¼ hf;T � T�ci.
(III)
 Given j 2 DðRdÞ, then

X ðjÞ ¼
X1
n¼0

xnhTf n;ji in the L2ðO;F;PÞ sense. (11)
Proof (Part I). Let fQpgp be a denumerable family of disjoint cubes such that by some translation
tp equals ð�1=2; 1=2�d and Rd ¼

F
pQp. Then by Proposition 2.1,

kðTf nÞ1Qp
kHspKðsÞ

X
k2Zd

j dðTf nÞ1Qp
ðkÞj2; ð1 þ jkj2Þs

 !1=2

,
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with

j dðTf nÞ1Qp
ðkÞj ¼ jhðTf nÞ1Qp

; ekij and ek ¼ ei2pk:x1t�1
p ½�1=2;1=2�d .

Then,X
n

kðTf nÞ1Qp
k2

Hsp
X

n

KðsÞ
X
k2Zd

j dðTf nÞ1Qp
ðkÞj2ð1 þ jkj2Þs.

Taking s ¼ �d, and since ek 2 Lp0 ðRdÞ, 1=p þ 1=p0 ¼ 1 and SuppððTf nÞ1Qp
Þ ¼ SuppðekÞ, the last

term equalsX
k2Zd

KðsÞð1 þ jkj2Þ�d
X

n

jhðTf nÞ1Qp
; ekij

2

¼
X
k2Zd

KðsÞð1 þ jkj2Þ�d
X

n

jhf n;T
�ekij

2p
X
k2Zd

KðsÞð1 þ jkj2Þ�d
kT�ekk

2
L2

p
X
k2Zd

KðsÞð1 þ jkj2Þ�dK 00kekk
2
Lp0pK 000

Z
Rd

ð1 þ jxj2Þ�d dxjQpj
2=p0o1. ð12Þ

Since fxngn2N are independent random variables for which we can assume, without loss of
generality, Ejxnj

2 ¼ 1, thenX
n

Ejxnj
2kðTf nÞ1Qp

k2
H�d ¼

X
n

kðTf nÞ1Qp
k2

H�do1.

By Theorem 2.2 and Remark 2.1.1 we have k
P

n xnðTf nÞ1Qp
kH�do1 a.s. But convergence in

H�d ffi ðHdÞ
� implies convergence in S0ðRdÞ � D0ðRdÞ.

(Part II). If X : O�!D0ðRdÞ is the limit field, then its covariance is GX ðf;cÞ :¼EX ðfÞX ðcÞ. This
is well defined since X ðjÞ is a random variable as a consequence of Lemma 2.2.1 in Taylor (1978),
since j is Borel-measurable and X is F-measurable as a consequence of Lemma 2.1.3 in Taylor
(1978, p. 22), since X m ¼

Pm
k¼0 xnTf n is F-measurable (Taylor, 1978, Lemma 2.1.5, p. 24).

In order to prove that EX mðfÞX mðcÞ�!EX ðfÞX ðcÞ ¼ hf;T � T�ci when m�!1, with
f ;c 2 DðRdÞ, first we prove the uniform integrability of the sequence fX mðfÞX mðcÞgm. This
result will follow if we find �40; K40 such that

EjX mðfÞX mðcÞj1þ�pK 8m. (13)

Given f 2 DðRdÞ let us call cm :¼hTf m;fi ¼ hf m;T
�fi, c :¼ðcmÞm 2 RN; then

EjX mðfÞj4 ¼ E
Xm

ijkl¼0

cicjckclxixjxkxl

0@ 1A,

but, since the xm are independent, we have the following factorization: dijkl :¼EðxixjxkxlÞ ¼

EðxiÞEðxjxkxlÞ ¼ 0 whenever iaj; k; l. From this fact and since the xm are identically
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distributed, we get

dijkl ¼

ðEjx1j
2Þ

2 whenever two pairs of indexes are equal;

Ejx1j
4 if i ¼ j ¼ k ¼ l;

0 whenever only one index differs from the others:

8><>:
From this,

EjX mðfÞj4 ¼
Xm

i¼0

c4
i Ejx1j

4 þ 3
Xm

i;j¼0 iaj

c2
i c2

j ðEjx1j
2Þ

2

pEjx1j
4kc2kl1kT�fk2

L2ðRd Þ
þ 3kT�fk2

L2ðRd Þ
ð14Þ

pðEjx1j
4kc2kl1 þ 3ÞkT�kkfk2

Lp0 ðRd Þ
o1. (15)

Now, since EjX mðfÞX mðcÞj2pðEjX mðfÞj4Þ
1=2

ðEjX mðcÞj4Þ
1=2 and from (14) condition (13) is

verified for � ¼ 1¼)EX mðfÞX mðcÞ�!EX ðfÞX ðcÞ ¼ GX ðf;cÞ when m�!1.
Let us prove that GX ðf;cÞ ¼ hf;T � T�ci. Given m, let us define the bilinear form Gm :

DðRdÞ �DðRdÞ7!R as follows:
Let kmðx; yÞ :¼

Pm
jk¼0 ExjxkTf kðxÞTf jðyÞ, and for f;c 2 DðRd Þ, define

Gmðf;cÞ ¼
Z
Rd

Z
Rd

kmðx; yÞfðyÞcðxÞdx dy.

Since fxngn2N is a sequence of independent random variables with VarðxnÞ ¼ 1 and E½xn� ¼ 0, then
Exnxm ¼ dnm. From this it follows that kmðx; yÞ ¼

Pm
k¼0 Tf kðxÞTf kðyÞ. Hence,

Gmðf;cÞ ¼
Z
Rd

Xm

k¼0

Z
Rd

Tf kðxÞcðxÞdxTf kðyÞ

 !
fðyÞdy

¼

Z
Rd

T
Xm

k¼0

Z
Rd

f kðxÞT
�cðxÞdxf kðyÞ

 !
fðyÞdy

¼

Z
Rd

Xm

k¼0

Z
Rd

f kðxÞT
�cðxÞdx f kðyÞ

 !
T�fðyÞdy. ð16Þ

Then, if Pm 2 LðL2ðRdÞÞ is the orthogonal projection over Spanff 0; . . . ; f mg, (16) equals
hPm � T�c;T�fiL2ðRd Þ, and since the ff ngn is complete, given �40, there exists Mð�Þ 2 N such
that kPm � T�f� T�fkL2o�=kT�ckL2 if mXM. On the other hand, hf;T � T�ci ¼ hT�f;T�ci,
and from these facts, taking for example mXMð�Þ, it follows that

jhf;T � T�ci � Gmðf;cÞj ¼ jhT�f;T�ci � hPm � T�f;T�cij

¼ jhPm � T�f� T�f;T�cij

pkT�ckL2kPm � T�f� T�fkL2 o�. ð17Þ

(Part III). From Eqs. (14), (15), given j 2 DðRdÞ we have that fjX nðjÞj2gn is uniformly
integrable, since condition (9) is verified for � ¼ 2. Since X nðjÞ�!X ðjÞ a.s. from Part I, then from
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Theorem 2.3 we have

lim
n!1

EjX nðjÞ � X ðjÞj2 ¼ 0: &

3.1. Some consequences and applications: Construction of a fractional random field

We will need the following well-known result:

Theorem 3.2. Let T 2 LðLpðRdÞ;LqðRdÞÞ; if T conmute with translations then there exists a unique
tempered distribution m such that for every f 2 SðRd Þ: Tf ¼ m � f .

Then, from the above theorem and the definition of Fourier transform of a distribution, we
have the following immediate and intuitive result on the covariance functional of the limit process
X of Proposition 3.1: if T is translation invariant (conmute with translations) and m 2 S0ðRdÞ is
the distribution of Theorem 3.2, then

GX ðf;cÞ ¼
Z
Rd

f̂ðoÞ jm̂ðoÞj2bcðoÞdo. (18)

Moreover, FX ðoÞ ¼ jm̂ðoÞj2. The previous results are useful for constructing random fields with
spectral behaviour given by Eq. (2). For this purpose we need some results on fractional
potentials.

Let us consider the usual Laplacian of f : Df ¼
Pd

j¼1 ðq
2f =qx2

j Þ. Then, at least formally,cDf ðoÞ ¼ �ð2pÞ2joj2bf ðoÞ. From this we could define the operators ð�DÞ�a=2 as

ð�DÞ�a=2f ¼ F�1ð2pÞ�a
j:j�aFf . (19)

The formal manipulations have a precise meaning (Stein, 1970).

Definition 5. Let 0oaod. For f 2 SðRdÞ we can define its Riesz potential:

ðð�DÞ�a=2f ÞðxÞ ¼
1

gðaÞ

Z
Rd

f ðyÞ

jx � yjd�a dy, (20)

where gðaÞ ¼ pd=22aGða=2Þ=Gðd=2 � a=2Þ.

This linear operator has the following properties (Stein, 1970).

Proposition 3.1. Let 0oaod. Then: (a) The Fourier transform of jxj�dþa is gðaÞð2pÞ�a
joj�a in the

senseZ
Rd

jxj�dþajðxÞdx ¼

Z
Rd

gðaÞð2pÞ�a
joj�abjðoÞdo

for all j 2 SðRdÞ.
(b) The Fourier transform of ðð�DÞ�a=2f ÞðxÞ is ð2pÞ�a

joj�abf ðoÞ in the senseZ
Rd

ðð�DÞ�a=2f ÞðxÞgðxÞdx ¼

Z
Rd

bf ðoÞð2pÞ�a
joj�abgðoÞdo

for all f ; g 2 SðRdÞ.
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It is easy to check that 8f 2 SðRd Þ: if aþ bod then ð�DÞ�a=2
ðð�DÞ�b=2f Þ ¼ ð�DÞ�ðaþbÞ=2

ðf Þ;
and Dðð�DÞ�a=2f Þ ¼ ð�DÞ1�ða=2Þ

ðf Þ.
We recall the following bound for these operators acting in LpðRd Þ (Calderón, 1960, Stein,

1970).

Proposition 3.2 (Hardy, Littlewood and Sobolev). Let 0oaod, 1ppoqo1 and 1=q ¼ 1=
p � a=d. Then:
(a)
 8f 2 LpðRdÞ, the integral that defines ð�DÞ�a=2f converges a.e.

(b)
 If p41 then

kð�DÞ�a=2f kLqpCpqkf kLp . (21)
Remark. These operators are the inverses of the (positive) fractional powers of the Laplacian
operator. For the class SðRdÞ, ð�DÞa=2 is given by

�ð�DÞa=2f ðxÞ ¼ c

Z
Rd

f ðyÞ � f ðxÞ �
rf ðxÞðy � xÞ

1 þ jy � xj2

� �
dy

jy � xjdþa .

This expression follows from Stein (1970, Section 6.10), and from this formula a short proof of the
existence of the fractional Brownian field with exponent a=2 can be given (Bojdecki and
Gorostiza, 1999).

Now, introduce another fractional integration operator defined formally as

ðI � DÞs=2f ¼ F�1ð1 þ j:j2Þs=2Ff . (22)

This operator is continuous (Stein, 1970).

Proposition 3.3. If so0 and pX1, ðI � DÞs=2 : LpðRdÞ�!LpðRdÞ defines a continuous linear
operator, i.e. there exists Cp40 such that

kðI � DÞs=2f kLppCpkf kLp .

With all this, now we can claim the following assertion on fractional random fields.

Theorem 3.3. If T ¼ ð�DÞ�a=2
ðI � DÞ�g=2 with 0oaod=2, g40, then the series defined by (10)

converges to a generalized stochastic field with spectral density as (2).

Proof. The operator T is a well-defined bounded linear operator as a consequence of Theorems
3.2 and 3.3; moreover it maps L2ðRdÞ into LpðRdÞ for some p41 which depends on a. Then the
desired result follows from Theorems 3.1 and 3.2, and Eq. (18). &

It is straightforward to see from the proof of Proposition 3.1 that this assertion may fail if
aXd=2. In Anh et al. (1999), by means of operators (22) and (20) is proved the existence of a
process with spectral density as (2) with a 2 ð0; dÞ. This result is based on the following assertion:
if D � Rd is a measurable bounded domain, there exists C40 such that for every f 2 L2ðRdÞ and
Suppðf Þ � DZ

Rd

j
d

ð�DÞ�a=2f ðoÞj2dopC

Z
Rd

jf̂ ðoÞj2 do. (23)
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But this is false for aXd=2: take D ¼ Bð0; 1Þ the ball of radius 1 and f ¼ 1D. We prove that for
such f, ð�DÞ�a=2f does not belong to L2ðRdÞ. From (20) we have

ð�DÞ�a=2f ðxÞ ¼
1

gðaÞ

Z
Bð0;1Þ

dy

jx � yjd�a ,

but jx � yjpjxj þ jyjpjxj þ 1, then ðjxj þ 1Þ�dþapjx � yj�dþa if jyjp1, so

jð�DÞ�a=2f ðxÞjXK
jBð0; 1Þj

ðjxj þ 1Þ�dþa

for all x 2 Rd . Then we have the following bound:

kð�DÞ�a=2f k2
X

Z
Rd

ðjxj þ 1Þ�2dþ2a dx jBð0; 1Þj2

¼ K

Z 1

0

ðr þ 1Þ�2dþdard�1dr ¼ kbðd; d � 2aÞ,

but this expression for Euler’s beta function converges if and only if d40 and d � 2a40.
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