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Abstract−− Photocatalytic building materials con-

taining TiO2 were extensively studied for outdoor ap-

plications using solar radiation. Nowadays, the mar-

ket offers a wide variety of these materials with self-

cleaning and air purification functionalities. How-

ever, heterogeneous photocatalysis applied in indoor 

construction materials was less developed. The objec-

tive of this work is to investigate the photocatalytic 

performance of carbon doped TiO2 in replacement of 

the normal pigments in indoor wall paint formula-

tions. To achieve this goal, the photocatalytic oxida-

tion of acetaldehyde in gas phase was carried out. The 

air decontamination process was conducted using 

regular indoor light in a bench scale chamber photo-

reactor simulating a room. The main environmental 

conditions that affect the photocatalytic process were 

varied: air flow rate, irradiance, relative humidity 

and acetaldehyde concentration. The results were an-

alyzed through the response surface methodology and 

revealed the air purifying power of photocatalytic 

paints under indoor conditions. 

Keywords−− Photocatalysis; Paint; Indoor; Air; 

Depollution. 

I. INTRODUCTION 

Several chemical air pollutants are continually emitted to 

indoor environments affecting the wellness and health of 

people. These air contaminants can cause drowsiness, 

headache, sore throat, mental fatigue, allergies, asthma, 

eyes, nose and throat irritation, and dizziness, among oth-

ers health problems. One of the problematic Volatile Or-

ganic Compounds (VOCs) in indoor and outdoor envi-

ronments is the acetaldehyde. This pollutant is toxic, ir-

ritant and probable carcinogen, and it can be released by 

burning processes and building materials in homes. 

The heterogeneous photocatalysis has proven to be an 

efficient method for the chemical and biological purifica-

tion of water and air. The most studied photocatalyst is 

titanium dioxide (TiO2) that can be activated by UV ra-

diation (200-400 nm), which is scanty in indoor lighting 

and only about 4% of the total solar radiation. To extend 

the radiation absorption of TiO2 to wavelengths corre-

sponding to the visible spectrum (400-700 nm), several 

modification methods like dye sensitization and doping 

with transition metals or with nonmetals were developed 

(Banerjee et al., 2014; Wang et al., 2014). 

The use of TiO2 to develop photocatalytic materials 

that can be applied on building structures is becoming an 

alternative technology for the degradation of air pollu-

tants (Ballari and Brouwers, 2013; Faraldos et al., 2015; 

Tang et al., 2019).  

One of the most employed materials in construction 

is the wall paint or coating with aesthetic and protecting 

functions. Several studies were focused on the applica-

tion of photocatalytic TiO2 in different indoor and out-

door paint formulations. These works have analyzed: i) 

the air decontamination capability employing several 

model pollutants (Aguia et al., 2011; Gandolfo et al., 

2015; Monteiro et al., 2015); ii) colorant bleaching over 

the irradiated paint to assess self-cleaning properties 

(Hochmannova and Vytrasova, 2010); and iii) inactiva-

tion of bacteria and fungi (Zuccheri et al., 2013, Zacarías 

et al., 2018). However, in most of these studies, UV ra-

diation was tested as the energy source to activate the 

paints and lab scale photoreactors were employed to 

carry out the experiments. 

In the present work, the degradation of acetaldehyde 

in air was carried out employing photocatalytic wall 

paints and normal indoor illumination in a bench scale 

chamber photoreactor that simulates the ambient condi-

tions of a room.   

II. METHODS 

A. Photocatalytic paint formulation 

A carbon doped TiO2 powder KRONOClean 7000 was 

employed to formulate the photocatalytic paint in re-

placement of the normal paint pigments. The formulated 

photocatalytic paint is composed by water (30% w/w), 

styrene-acrylic resin (33% w/w), CaCO3 (18% w/w), 

TiO2 (18% w/w), and dispersing agent (1% w/w). 

The paint application was made with an aerograph on 

paper sheets with a total area of 5100 cm2 to cover the 

walls of the bench scale chamber photoreactor. Due to 

the difficulty of deposit the exact same quantity of paint 

in the walls reactor, the side walls were coated with 

(7.7±1.2) ×10-4 g cm-2 of dry paint and the front walls 

with (4.5±1.2) ×10-4 g cm-2. 

The prepared coatings were dried at 25ºC for 24 

hours. Previously to the decontamination tests, the pho-

tocatalytic samples were cured exposing them under vis-

ible light for a period of time between 5 and 8 hours. With 

this procedure, the paint organic compounds that sur-

round the photocatalytic particle were oxidized, allowing 

latter the interaction between the air contaminant and the 

TiO2 present in the paint.  

The photocatalytic coating was characterized by 

measurements of the optical properties and microscopic 

images. The paint was deposited with the methodology 

described above on both sides of acrylic plates and, after 

the samples were dried, the diffuse reflectance (Rp,a,p) and  
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Fig. 1: Indoor lamp spectral emission and fraction of absorbed 

radiation by the photocatalytic paint 

diffuse transmittance (Tp,a,p) were measured in a spectro-

radiometer Optronic OL Series 750 with integrating 

sphere. Performing a radiation flux balance in the three 

layers system (paint-acrylic-paint), the absorption radia-

tion fraction of the paint layer (Ap) can be calculated as 

follows (Ballari et al., 2016): 

p, p, p,1- -A = R T        (1) 
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where Ra and Ta are the experimental diffuse reflectance 

and transmittance, respectively, of the acrylic support.  

The spectral absorption radiation fraction per unit of 

weight of deposited paint and unit of superficial area is 

shown in Fig. 1. It can be seen that the paint presents a 

high absorption radiation fraction for values lower than 

350 nm (ultraviolet radiation), after which it decreases 

and remains almost constant for the visible range (>400 

nm). Also, the prepared samples were observed in a 

Scanning Electron Microscope (SEM) JEOL JSM-35C. 

The side view of the photocatalytic coating is shown in 

Fig. 2, presenting a homogeneous thickness of approxi-

mately 11 μm. 

B. Photocatalytic reactor and experimental proce-

dure 

The experimental setup to carry out the photocatalytic 

degradation of acetaldehyde in gas phase is shown in Fig. 

3. It consists of a bench scale chamber photoreactor with 

a fan inside to ensure good mixing conditions and whose 

walls were covered by paper coated with the photocata-

lytic paint. The photocatalytic reactor was irradiated with 

fluorescent visible light lamps on the top and fed by cer-

tificated PRAXAIR acetaldehyde gas stabilized in nitro-

gen (300 ppm), mixed with air to reach the chosen inlet 

pollutant concentration. The spectral emission of the 

lamps is shown in Fig. 1. The outlet and inlet contaminant 

concentrations from the reactors were analyzed employ-

ing gas chromatography with a flame ionization detector 

(FID), performing a direct injection of the gas sample.  

 
Fig. 2: SEM side view of the photocatalytic paint coating. 

 
Fig. 3: Experimental setup to carry out acetaldehyde photo-

catalytic degradation 

The radiation flux on the front and side reactor walls 

was measured with an ILT 1700 radiometer with a 

SED033/F/W visible light sensor (400 – 1064 nm) (Fig. 

4). Table 1 shows the main characteristics, dimensions 

and operating conditions of the experimental setup to 

carry out the acetaldehyde photocatalytic degradation ex-

periments. 

C. Experimental design and Response Surface Meth-

odology (RSM) 

To simulate a normal room environment, the operating 

conditions of the bench scale photoreactor were changed 

according to a D-optimal experimental design selecting 

three numerical factors (irradiation level, flow rate and 

relative humidity) varied in three levels, and one categor-

ical factor (inlet acetaldehyde concentration) varied in 

two levels. Regarding the variation of the flow rate, air 

change rates of 0, 2.85 and 5.7 times per hour were se-

lected to simulate different ventilation conditions of a 

room. In Fig. 5, the resulting 22 different air depolluting 

experiments are schematized. The analysis of the experi-

mental data was done with the Response Surface Meth-

odology (RSM) applying a reduced quadratic model with 

a logit transformation of the response, the acetaldehyde 

conversion XAcet [%] and the global conversion XGlobal [%] 

taking into account the formaldehyde formation as a re-

action intermediate: 

2 2 2

Acet,inln
100

X
a b H cQ d R eC f H g Q h R

X
= + + + + + + +

−

  (4) 

where H is the relative humidity, Q the air flow rate, R 

the radiation level, CAcet,in the inlet concentration of acet-

aldehyde, a to h are the coefficients of the model to be 

estimated, and X is the acetaldehyde or global conver-

sion, defined as: 
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Table 1: Bench scale chamber photoreactor characteristics and 

operating conditions. 

Reactor volume, VR 52500 cm3 

Residence time 
630 s (for the maximum flow 

rate) 

Visible light lamps  

5 × OSRAM EVERSUN 

L40/79K 40 W, on the top of 

the photoreactor 

Average paint specific 

load, Wp/AR 
(6.1±2.3)×10-4 g cm-2 

Total photocatalytic sur-

face area, AR 
5100 cm2 

Air flow rate, Q 0-5000 cm3 min-1 

Relative humidity, H 28-75% 

Incident radiation flux, qw 

/ Radiation level, R 

7.8 - 34.9 W m-2 

22.3 - 100% 

Inlet pollutant concentra-

tion, CAcet,in 
2.5 - 5 ppm 

 
Acet,in Acet,out Form,out

Global

Acet,in

100
C C C

X
C

− −
=   (6) 

where CAcet,out and CForm,out are the chamber outlet con-

centrations of acetaldehyde and formaldehyde, respec-

tively. These concentrations correspond to the steady 

state for continuous flow experiments, while for the batch 

mode Cout at 200 min after the photocatalytic reaction 

started was chosen. 

 The selected factors significance on the acetaldehyde 

and global conversions was analyzed through an Analy-

sis of Variance (ANOVA). 

D. Experiments outside the experimental design 

Three additional experiments were done to compare the 

reaction and efficiencies of the photocatalytic process 

with respect to the location of the reactor walls. All these 

experiments were carried out at CAcet,in=5ppm, H=50%, 

Q =2500 cm3 min-1 and R=100%. The first one was done 

with all the walls covered with photocatalytic paint 

(AR=5100 cm2), the second with only the side walls 

painted (AR=3000 cm2) and the last one in which the front 

walls were the only photocatalytically active surfaces 

(AR=2100 cm2).  

 To compare the photocatalytic performance of the 

three configurations, the photonic and quantum efficien-

cies were computed according to Eqs. (7) and (8), respec-

tively. These efficiencies relate the contaminant reaction 

rate with the incident radiation flux on the photocatalytic 

wall (photonic efficiency, p,Acet ) and with the radiation 

absorbed by the photocatalytic paint (quantum effi-

ciency, q,Acet ). 

 
Acet
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w,

r

q 

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
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Fig. 4: Measured radiation flux on a) front walls and b) side 

walls 

 
Fig. 5: D-Optimal experimental design.  CAcet,in=2.5 ppm, 

CAcet,in=5 ppm 

where rAcet is the acetaldehyde reaction rate, qw,λ the spec-

tral incident radiation flux, Ap,λ the spectral radiation ab-

sorption fraction by the paint, and 
s

a

,e 
 the Local Superfi-

cial Rate of Photons Absorption (LSRPA). 

 To account for the average acetaldehyde reaction rate, 

Eq. (9) was used: 
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Fig. 6: Typical experimental run (H=28%, Q=2500 cm3 min-1, 

R=100% and CAcet,in=2.5ppm) 
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where Q is the air flow rate and AR is the photocatalytic 

surface area.  

 Also, the decrease of acetaldehyde concentration by 

means of mechanical ventilation alone was compared 

with ventilation plus photocatalytic oxidation. To do this, 

once the pollutant concentration reached 5 ppm in the re-

actor, the acetaldehyde inlet was closed and the gas flow 

contained only unpolluted air at 2500 cm3 min-1. This was 

done with and without the presence of photocatalytic 

walls.  

III. RESULTS AND DISCUSSION 

E. Acetaldehyde photocatalytic degradation 

Figure 6 presents a typical experimental run of photocata-

lytic oxidation of acetaldehyde. When the lights are 

turned on, the acetaldehyde concentration diminishes 

while the formaldehyde, a reaction intermediate, is pro-

duced and then its concentration remains almost constant. 

This is in concordance with the photocatalytic oxidation 

mechanism of acetaldehyde, which is degraded first to 

formaldehyde, then to formic acid, to finally be converted 

in CO2 through the attack of hydroxyl radical formed dur-

ing the hole trapping of the photocatalyst (Salvadores et 

al., 2016). However, for the reaction conditions and ana-

lytical method employed in this work, no formic acid was 

detected and low formaldehyde concentration was pro-

duced. By varying the different operating conditions 

within the experimental design, acetaldehyde conver-

sions changed between 6 and 92% while the global con-

version varied between 3 and 71%.  

After several experiments totaling more than 140 

hours of reaction time with the same paint coating, no 

photocatalyst deactivation was observed. Apart from 

that, in previous tests, acetaldehyde was not photode-

graded on a non-photocatalytic paint formulated with ru-

tile instead of anatase TiO2. 

F. Influence of environmental conditions 

In Fig. 7, the acetaldehyde conversion is shown by vary-

ing the inlet acetaldehyde concentration, the relative hu-

midity and the irradiance level operating in batch mode 

(Fig. 7a) and continuous mode (Figs. 7b and c), according 

to the D-Optimal experimental design. 

An inverse relationship between relative humidity 

and air flow rate with the conversion was observed, i.e. 

the lower the humidity and the air flow rate, the higher 

the conversion. For lower air flow rate, the residence time 

of the acetaldehyde in the reactor is increased. On the 

other hand, the water vapor molecules are adsorbed onto 

the active sites of the photocatalyst. So, if the humidity is 

low, less water molecules compete with the acetaldehyde 

and the reaction rate is increased. As expected, for higher 

radiation level an increase of conversion was observed 

because of an increase in the photocatalyst activation 

rate. In addition, the acetaldehyde conversion was not in-

fluenced by the inlet pollutant concentration, indicating 

an almost pseudo first order reaction rate.  

The coefficients of the response surfaces for acetal-

dehyde and global conversions (Eq. 4) were fitted with 

the experimental data and are shown in Table 2. The co-

efficient of determination of the model is c.a. 0.93 for ac-

etaldehyde and global conversions, showing that the sur-

faces are in good agreement with the experimentally de-

termined conversions.  

The surface corresponding to acetaldehyde conver-

sion is shown in Fig. 7, while the surface for the global 

conversion presented a similar behavior (results not 

shown).  

An ANOVA was carried out to statistically verify the 

significance of the varied factors on the selected response 

(Table 2). When the p-value is less than 0.05, the effect 

is considered significant. So, the significant effects for 

the acetaldehyde and global conversions were the linear 

and quadratic terms of the irradiance level, relative hu-

midity and flow rate factors. Conversely, the p-values 

corresponding to the inlet acetaldehyde concentration are 

greater than 0.1, indicating that is a non-significant factor  

 

 
Fig.7: Surface response and experimental data for acetaldehyde conversion. a) Q=0 cm3 min-1, t=200 min. b) Q=2500 cm3 min-1, 

steady state. c) Q=5000 cm3 min-1, steady state.  CAcet,in=2.5 ppm,  CAcet,in=5 ppm 
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Table 2: ANOVA and surface response for acetaldehyde and global conversions 

  XAcet  XGlobal  

Model factor Coefficient Estimated value p- value Estimated value p- value 

Intercept a -2.5224  -3.7176  

H b 0.0868 < 0.0001 0.0871 < 0.0001 

Q c -1.2982 < 0.0001 -1.0002 < 0.0001 

R d 0.0890 < 0.0001 0.0827 < 0.0001 

CAcet,in e -0.0009 0.9921 0.0981 0.2322 

H2 f -0.0016 0.0234 -0.0015 0.0203 

Q2 g 0.1519 0.0009 0.1051 0.0076 

R2 h -0.0005 0.0096 -0.0004 0.0113 

Coefficient of determination  0.9297  0.9313  
 

Table 3: Parameters for analysis of reactor walls locations  

 Photoreactor walls 

 All Front Side 

AR × 101 [m2] 5.1 2.1 3.0 

XAcet [%] 44.6 12.3 33.7 

-2

w, Wmq 


  
 

15.3 14.1 16.5 

6 -2 -1

s ×10 Einstein m sa

,e 


  
 

9.7 6.5 12.9 

9 -2 -1

Acet ×10 molm sr   
 7.46 4.98 9.48 

ηp,Acet × 105 10.5 7.61 12.4 

ηq,Acet × 104 7.69 7.66 7.35 

for both conversions and confirming a pseudo-first order 

kinetics. 

G. Relative positions of the photocatalytic surfaces  

In Table 3 several results are shown for the experiments 

changing the photocatalytic surfaces location with re-

spect to the lamps positions (walls in front and back to 

the lamps, or walls on both sides of the lamps). First, the 

acetaldehyde conversion increases with the photocata-

lytic surface area (AR), but not in the same proportion. It 

can be also observed that the average incident radiation 

flux is slightly higher for the lateral walls parallel to the 

lamps (see also Fig. 4). In the side walls the radiation 

comes from the whole length of the lamp, while the front 

walls mainly receive radiation from the end of the lamp. 

Note that the LSRPA corresponding to side walls is al-

most twice than for the front walls. This is also due to 

deviations from the deposited paint load on the different 

reactor walls. On the other hand, the Acetr  is also almost 

twice for the side walls comparing to front walls due to 

the relative location of the surface regarding the lamps 

but also to the differences in photocatalytic coating 

amounts. So, to compare the different situations, the pho-

tonic and quantum efficiencies can be evaluated. The side 

walls present the highest photonic efficiency value be-

cause the superficial reaction rate increases more than the 

incident radiation flux in the denominator of Eq. (7) due 

to a higher deposited paint amount. In contrast, quantum 

efficiencies became similar for the three experiments in-

dependently of surface location. This is due to the fact 

that in all the walls the numerator and denominator of Eq. 

(8) are proportional because both vary with the incident  
 

 
Fig. 8: Comparison of acetaldehyde decontamination applying 

mechanical ventilation alone and with photocatalytic paint in 

the walls (H=50%, Q=2500 cm3 min-1, R=100%). 

radiation flux and catalyst amount. 

H. Comparison of two different air decontamination 

processes  

Figure 8 shows the comparison of the decrease in acetal-

dehyde concentration applying two different decontami-

nation processes: (i) mechanical ventilation alone and (ii) 

mechanical ventilation combined with photocatalysis. 

The time to achieve an acetaldehyde concentration reduc-

tion of 95% was around 90 min for the mechanical ven-

tilation alone, while it was 55 min for the combined pro-

cess (about 40% faster). This is also in concordance with 

the calculated initial acetaldehyde removal rate, being 

this for the photocatalytic system about 38% higher than 

that of the ventilation one. 

IV. CONCLUSIONS 

The scaling up of air depolluting experiments was carried 

out using a photocatalytic wall paint in a bench scale 

chamber photoreactor. A D-optimal experimental design 

was applied, and acetaldehyde and global conversions 

were satisfactorily fitted with the Surface Response 

Methodology (RSM) applying a reduced quadratic model 

with a logit transformation of the response. 

According to the ANOVA, the relative humidity, the 

radiation level and the air flow are significant factors for 

the applied model for the acetaldehyde and global con-

versions. In contrast, the acetaldehyde conversion was 

not influenced by the inlet pollutant concentration.  
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Also, other experiments were done outside the exper-

imental design. In the first set, the location of the photo-

catalytic surface regarding the lamps was evaluated. It 

was determined that for an optimal air purification in 

terms of the pollutant conversion, the photocatalytic sur-

faces should be parallel to the lamp axis. In another set of 

experiments, two methods for the pollutant reduction in 

the bench scale chamber photoreactor was compared, be-

ing the mechanical ventilation combined with photoca-

talysis almost 40% faster than the mechanical removal 

alone. 

The achieved results in the present work are useful for 

future implementation of photocatalytic paints in real in-

door environments. 
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