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Abstract

In this work, we address the output–feedback problem for nonlinear systems under
bounded disturbances using a moving horizon approach. The controller is posed as
an optimization-based problem that simultaneously estimates the state trajectory
and computes the future of control inputs. It minimizes a criterion that involves
finite forward and backward horizon with respect the unknown initial state, mea-
surement noises and control input variables and it is maximized with respect the
unknown disturbances. Under appropriate assumptions that encode stability and
detectability, we show that the states of the closed-loop system remain bounded. A
simulation example is included to show that the algorithm succeeds even in nonlin-
ear problems.
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1 Introduction

One of the most popular control technique in both academia and industry
is model predictive control (MPC ) due its ability to explicitly accommodate
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hard state and input constraints (Bemporad & Morari 1999, Camacho & Alba
2004, Rawlings & Mayne 2009, Mayne 2014, among others). Thereon, much
effort has been devoted to develop a stability theory for MPC (see i.e. Grüne
& Pannek 2011, Rawlings & Mayne 2009, Mayne 2016). An overview of recent
developments can be found in Mayne (2014). MPC involves the solution of
an open–loop optimal control problem at each sampling time with the current
state as initial condition. Each of these optimizations provides the sequences
of future control actions and states. The first element of the control action
sequence is applied to the system and, then the optimization problem is solved
again at the next sampling time after updating the initial condition with the
system state. MPC keeps constant the computational burden by optimizing
the system behaviour within a finite length window. The system behaviour
beyond the window is summarized in a term known as cost–to–go.

MPC is often formulated assuming that the system state can be measured.
However, in many practical cases the only information available are noisy mea-
surements of system output, so the use of independent algorithms for state
estimation (including observers, filters and estimators) becomes necessary (see
Rawlings & Bakshi 2006). Of all these methods, moving horizon estimation
(MHE ) is especially engaging for use with MPC because it can be formulated
as a similar on–line optimization problem. Solving the MHE problem produces
an estimated state that is compatible with a set of past measurements that
recedes as current time advances (Schweppe 1973, Rao et al. 2001, 2003). This
estimate is optimal in the sense that it maximizes a criterion that capture
the likelihood of the measurements. Along the same time that relevant results
on MPC were developed, research works on MHE begun. The works of Rao
et al. (2001) and Rao et al. (2003) provide overviews of linear and nonlin-
ear MHE. Recent results regarding MHE for nonlinear systems are given for
robust stability and estimate convergence properties (Alessandri et al. 2005,
2008, 2012, Garcia-Tirado et al. 2016, Sánchez et al. 2017). In recent years
several results have been obtained for different MHE formulations, advancing
from idealistic assumptions, like observability and vanishing disturbances, to
realistic situations like detectability and bounded disturbances (see Ji et al.
2015, Müller 2017, Deniz et al. 2019, Allan & Rawlings 2019).

When disturbances, model uncertainty and system constraints can be ne-
glected, state and control sequences can be independently computed (see Dun-
can & Varaiya 1971, Bensoussan 2004, Åström 2012, Georgiou & Lindquist
2013). However, in practical applications, these conditions are very difficult to
fulfil, i.e., process disturbances and measurement noise are usually present, as
well as model uncertainty. In this context, it becomes necessary approaches
that includes these information into the controller design.

State-feedback MPC is a mature field with results that considers model un-
certainty, input disturbances, and noises (Magni et al. 2003, Bemporad et al.
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2003, Raimondo et al. 2009, among others). However, these works did not con-
sider robustness with respect to errors in state estimation. Fewer results are
available for output-feedback MPC. An overview of nonlinear output-feedback
MPC is given by Findeisen et al. (2003) and the references therein. Many of
these approaches involve designing separate estimator and controller, using dif-
ferent estimation algorithm (Roset et al. 2006, Magni et al. 2009, Patwardhan
et al. 2012, Zhang & Liu 2013, Ellis et al. 2017). Results on robust output-
feedback MPC for constrained, linear, discrete-time systems with bounded
disturbances and measurement noise can be found in Mayne et al. (2006,
2009) and Voelker et al. (2010, 2013). These approaches first solve the estima-
tion problem and show convergence of the estimated state to a bounded set,
and then take the uncertainty of the estimation into account when solving the
MPC problem.

The approach of solving simultaneously MHE/MPC was originally introduced
by Copp & Hespanha (2014) and later developed in several papers (Copp &
Hespanha 2016a,b, 2017). In the first paper, Copp & Hespanha (2014) pro-
posed an output feedback controller that combines state estimation and con-
trol into a single min −max optimization problem that, under observability
and controllability assumptions (Copp & Hespanha 2016a), guarantees the
boundedness of state and tracking errors. Finally, in the last work reported
by Copp & Hespanha (2017), the authors established the conditions for guar-
anteeing the boundedness of error for trajectory tracking problems. They also
introduced a primal–dual interior point method that can be used to efficiently
solve the min−max optimization problem. The criterion used in these works
involves finite forward and backward horizons that is minimized with respect
to feedback control policies and maximized with respect to the unknown pa-
rameters in order to guaranty robustness in the worst-case scenario.

In the present work, we introduce an output–feedback controller for nonlin-
ear systems subject to bounded disturbances using simultaneous MHE/MPC
approach. The resulting optimization problem minimizes a criterion that in-
volves finite forward and backward horizons with respect the unknown ini-
tial state, measurement noise and control input variables while it is max-
imized with respect the unknown disturbance variables. We show that the
proposed controller results in closed–loop trajectories along which the state
remains bounded. These results rely on three assumptions: The first assump-
tion requires that the optimization criterion to include an adaptive arrival cost
(Sánchez et al. 2017). This assumption allows to ensure the boundedness of
the state estimate and to obtain a bound for the estimation error set if the
parameters of the estimation problem are properly chosen (Deniz et al. 2019).
The second assumption requires that the optimization criterion to include a
terminal cost that is a control ISS–Lyapunov function with respect to the dis-
turbance input. This type of assumption common in classical state–feedback
robust MPC. The third assumption requires that the backward (estimation)
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and forward (control) horizons are sufficiently large so that enough informa-
tion is obtained in order to find state estimates and control inputs compatible
with dynamics, noises and constraints. This assumption is satisfied if the sys-
tem is detectable, stabilizable and the parameters in the cost function (weights
and horizons) are chosen appropriately.

The rest of the paper is organized as follows: Section 2 introduces the notation,
definitions and properties that will be used through the paper. In Section 3
we formulate the estimation and control problem, and in Section 4 we analyze
its closed-loop stability. Finally, we use this method to simulate a nonlinear
example in Section 5 and discuss conclusions and future work in Section 6.

2 Preliminaries and setup

2.1 Notation

Let Z[a,b] denotes the set of integers in the interval [a, b] ⊆ R, and Z≥a de-
notes the set of integers greater or equal to a. Boldface symbols denote se-
quences of finite or infinite length, i.e., w := {wk1 , . . . , wk2} for some k1, k2 ∈
Z≥0 and k1 < k2, respectively. We denote xj|k the element at time j of the
sequence x given at time k ∈ Z≥0 and j ∈ [k1, k2] or j ∈ [k1,∞) for finite or
infinite sequences, respectively. By |x| we denote the Euclidean norm of a vec-
tor x ∈ Rn. Let ‖x‖ := supk∈Z≥0

|xk| denote the supreme norm of the sequence

x and ‖x‖[a,b] := supk∈Z[a,b]
|xk| . A function γ : R≥0 → R≥0 is of class K if γ

is continuous, strictly increasing and γ (0) = 0 . If γ is also unbounded, it is
of class K∞. A function ζ : R≥0 → R≥0 is of class L if ζ (k) is non increasing
and limk→∞ ζ (k) = 0. A function β : R≥0 × Z≥0 → R≥0 is of class K L if
β (·, k) is of class K for each fixed k ∈ Z≥0, and β (r, ·) of class L for each
fixed r ∈ R≥0. Let us consider two sets A and B, the Minkowski addition is
defined as A

⊕
B := {a+ b| a ∈ A, b ∈ B}. On the other hand, the Minkowski

difference 1 is defined as A	B := {d| d+ b ∈ A}.

2.2 Problem statement

Consider a system described by a discrete-time nonlinear system

xk+1 = f (xk, uk, wk) ∀ k ∈ Z≥0,

yk = h (xk) + vk,
(1)

1 Also known as the Pontryagin difference.
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in which x ∈ X ⊂ Rnx is the system state, u ∈ U ⊂ Rnu is the system’s
input and w ∈ W ⊂ Rnw is the unmeasured process disturbance posed as an
additive input. The output of the system is y ∈ Y ⊂ Rny and v ∈ V ⊂ Rnv is
the measurement noise. The estimation and control problem attempts to find
simultaneously the optimal past state trajectory which minimizes the process
and measurements noises as well as to minimize the effects of uncertainties in
the initial condition and computes the optimal sequence of control inputs that
steer the actual state to the desired region. This results in an infinite-horizon
optimization problem

min
x̂0|k,ŵj|k
uj|k

Ψ∞k :=
j=k−1∑
j=0

`e
(
ŵj|k, v̂j|k

)
+
∞∑
j=k

(
`c
(
x̂j|k, ûj|k

)
− `wc

(
ŵj|k

))

s.t.


x̂j+1|k = f

(
x̂j|k, ûj|k

)
+ ŵj|k, j ∈ Z≥0

yj = h
(
x̂j|k

)
+ v̂j|k, j ∈ Z[0,k−1]

x̂j|k ∈X , ûj|k ∈ U , ŵj|k ∈ W , v̂j|k ∈ V .

(2)

The functions `e(·, ·), `c(·, ·) and `wc(·) are all assumed to take non-negative
values. One can view `e and `wc as measures of likelihood of the specific values
of ŵj|k and v̂j|k. Then the negative sign in front of `wc penalizes the maximizer
for using large values of ŵj|k j ≥ k. Problem (2) is valuable from a theoretical
point of view since it guarantees the boundedness of cost function Ψ∞k ≤ γ
γ > 0,∀k ≥ 0 and therefore

j=k−1∑
j=0

`e
(
ŵj|k, v̂j|k

)
+
∞∑
j=k

`c
(
x̂j|k, ûj|k

)
≤ γ +

∞∑
j=k

`wc
(
ŵj|k

)
. (3)

If functions `e, `c and `wc are defined using a norm–`p, problem (2) would
guarantee that the state xk and uk are `p , provided that noises wk and vk are
also `p. This would mean that the closed-loop system has a finite `p-induced
gain.

The infinite-horizon problem (2) is intractable in practical situations, there-
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fore, it is reformulated into a receding finite-horizon problem

min
x̂k−Ne|k,ŵk

uk

ΨNe+Nc
k := ΓE

(
x̂k−Ne|k

)
+

j=k−1∑
j=k−Ne

`e
(
ŵj|k, v̂j|k

)
+

k+Nc−1∑
j=k

(
`c
(
x̂j|k, ûj|k

)
− `wc

(
ŵj|k

))
+ ΓC

(
x̂k+Nc|k

)

s.t.



x̂k−Ne|k = x̄k−Ne + ŵk−Ne−1|k

x̂j+1|k = f
(
x̂j|k, ûj|k

)
+ ŵj|k, j ∈ Z[k−Ne,k+Nc−1]

yj = h
(
x̂j|k

)
+ v̂j|k, j ∈ Z[k−Ne,k−1]

x̂j|k ∈X , ûj|k ∈ U , ŵj|k ∈ W , v̂j|k ∈ V .

(4)

For computation tractability, the infinite summations of Ψ∞k have been re-
placed by backward and forward windows of finite length, corresponding to
the estimation ΨE

k and control ΨC
k part of criterion ΨNe+Nc

k respectively. ΨE
k

includes Ne terms `e(ŵj|k, v̂j|k) backward in time from sample k and the ex-
tra term ΓE(x̂k−Ne|k), known as arrival-cost, that summarizes information be-
yond the estimation window by penalizing the uncertainty in the initial state
x̂k−Ne|k. On the other hand, ΨC

k includes Nc terms `c(x̂j|k, ûj|k) − `wc(ŵj|k)
forward in time from sample k and the extra term ΓC(x̂k+Nc|k), known as
cost-to-go, that summarizes the information beyond the control window by
penalizing the error of the final state x̂k−Nc|k.

The objective of problem (4) is to compute the initial state x̂k−Ne|k and distur-
bance ŵj|k j ≤ k that provides an estimate x̂k|k that allows to compute the
control inputs uj|k j ≥ k that drive the system states to the desired region.
Therefore, there is no point in penalizing the control cost `c along the estima-
tion window ΨE

k . The variables v̂j|k are not independent optimization variables
as they are uniquely determined by the remaining optimization variables and
the output equation

v̂j|k := yj − h(x̂j|k) ∀j ∈ [k −Ne, k −Ne + 1, . . . , k].

Since there is no measurement of future system output, vj|k will not be consid-
ered along the control window ΨC

k . However, the disturbance wj|k needs to be
considered along both windows ΨE

k and ΨC
k because they affect all the state

starting from j = k −Ne − 1.

Remark 1 The sequence of process disturbances ŵj|k is minimized when it is
part of the estimator, i.e., j ∈ [k −Ne − 1, k − 1], and it is maximized when
the sequence is part of the controller, j ∈ [k, k +Nc].
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2.3 Relationship with MPC and MHE

The criterion ΨNe+Nc
k can be rewritten as follows

ΨNe+Nc
k := θΨE

k + (1− θ)ΨC
k θ ∈ [0, 1], (5)

with ΨE
k and ΨC

k are given by

ΨE
k := ΓE

(
x̂k−Ne|k

)
+

j=k−1∑
j=k−Ne

`e
(
ŵj|k, v̂j|k

)
,

ΨC
k := ΓC

(
x̂k+Nc|k

)
+

k+Nc−1∑
j=k

(
`c
(
x̂j|k, ûj|k

)
− `wc

(
ŵj|k

))
.

(6)

ΨE
k corresponds to the criterion implemented by MHE estimator while ΨC

k

corresponds to the criterion implemented by a min-max MPC controller.

Equation (5) corresponds to a weighted sum multi-objective formulation of
criterion (4), where θ controls the relative importance of ΨE

k within ΨN
k . When

θ = 0, ΨNe+Nc
k := ΨC

k and problem (4) becomes a robust model predictive
control problem with terminal cost considered by Chen & Allgöwer (1998),
given that xk is measurable or it is provided by an estimator. On the other
case, when θ = 1, ΨNe+Nc

k := ΨE
k and problem (4) becomes a moving horizon

estimation problem considered by Ji et al. (2016), Garcia-Tirado et al. (2016),
Müller (2017), Deniz et al. (2019), given that the control input uj|k is computed
by a controller. In these cases, the optimization problem problem (4) has
only one objective and the separation principle needs to be applied since the
estimator and controller a implemented independently.

When 0 < θ < 1, ΨE
k and ΨC

k are simultaneously considered by ΨN
k and the

optimization problem (4) becomes multi-objective. The importance of ΨE
k ,

and therefore the one of ΨC
k , is defined by θ emphasizing or deemphasizing

the influence of estimation problem on the solution. In the case of θ = 0.5,
ΨE
k and ΨC

k have similar influence on the solution of (4) and it becomes the
problem proposed by Copp & Hespanha (2017).

Definition 1 A point zo ∈ Z , is Pareto optimal iff there does not exist an-
other point z ∈ Z such that Ψ(z) ≤ Ψ(zo) and Ψi(z) < Ψi(zo) for at least
one function (Miettinen 2012).

According to this concept, problem (4) looks for solutions that neither ΨE
k

nor ΨC
k can be improved without deteriorate of at least one of them. Any

optimal solution of problem (4) with 0 < θ < 1 is Pareto optimal (Miettinen
2012), therefore it has an optimal trade-off between ΨE

k and ΨC
k . On the other

cases, θ = 0 or θ = 1 the solutions of problem (4) are optimal in the sense of
the selected objective (ΨC

k or ΨE
k , respectively). In these cases, the solutions
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obtained are not Pareto optimal and, therefore the overall system performance
can be poorer than the one provided by solutions of multi-objective problem.

3 Robust stability of simultaneous state estimation and control
under bounded disturbances

In this section, we introduce the results regarding feasibility and robust stabil-
ity of the proposed algorithm. The properties of the estimator and controller
parts are analyzed. Besides, feasibility conditions for the existence of a so-
lution to (4), the minimum horizon lengths required to achieve the desired
estimation and control performances, are analyzed.

3.1 Backward window

The simultaneous state estimation and control problem rely on a backward
window of fixed length Ne to compute the optimal state estimate x̂k|k that
will be used by the controller in order to compute the optimal control inputs.
The controller takes the estimate x̂k|k as initial condition, which does not
necessarily is equal to xk. Previous results on robust output-feedback MPC
with bounded disturbances firstly solve the estimation problem and show the
convergence of estimated states to a bounded set, then take the uncertainty of
estimation into account when solving the MPC problem (Mayne et al. 2006,
2009). The key idea in these works is to consider the estimation error as an
additional, unknown but bounded uncertainty that must be accounted for
guaranteeing stability and feasibility of the resulting closed–loop system. This
idea is equivalent to assume that the set of all states belonging to the ball
centred at x̂k|k ∈ X E

Ne with radius ENe must be included within the robust
controllable set (X C

Nc) for all time. The set X E
Ne is the estimation set and ENe

is the estimation error set is given by

ENe :=
{
xk : |xk − x̂k|k| ≤ εe,∀ x̂k|k

}
, (7)
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where the error bound εe

εe ≤
|xk−Ne − x̄k−Ne|ζ

Nη
e

(
Cρ
P−1

(
cβ 18p + c1 3α1 λα1

min

(
P−1

0

)
+

c2 3α2 λα1
min

(
P−1

0

))
+ cβ 2p

)
+cβ 18p γ̄

p
a
w (‖w‖)

|P−1
0 |

+ γ1

(
3
(
‖w‖+ γ−1

w
(3γ̄w (‖w‖))

))
+

c2 3α2 γ̄α2
w (‖w‖)) +

cβ 18p γ̄
p
a
v (‖v‖)

|P−1
0 |

+

γ2

(
3
(
‖v‖+ γ−1

v
(3γ̄v (‖v‖))

))
+ c1 3α1 γ̄α1

v (‖v‖)
)
.

(8)

whit the matrix P−1
k related to the arrival-cost Γ

(
x̂k−Ne|k

)
|P−1

0 ||x̂k−Ne|k − x̄k−Ne|a ≤ ΓE
(
x̂k−Ne|k

)
≤ |P−1

∞ ||x̂k−Ne|k − x̄k−Ne|a, (9)

and CP−1 :=
λmax(P−1)
λmin(P−1)

, with λmin (P−1) and λmax (P−1) the minimum and

maximal eigenvalues of matrix P−1
k for k ∈ Z[0,∞), respectively. The constants

ζ, ρ, η, p, α1, α2, a, cβ and the functions γw, γ1, γ2 and γv are chosen properly
to satisfy certain assumptions and inequalities. Moreover, if the length of the
backwards horizon is chosen as

N ≥
(
δζrζ−1

maxC
ρ
P−1

(
cβ18p + λα1

min

(
P−1

0

)
(c13α1 + c23α2) + cβ2p

)) 1
η (10)

the bound εe behaves contractively due to the effects of initial conditions
vanishes. For a detailed explanation, the reader can visit Sánchez et al. (2017),
Müller (2017) and Deniz et al. (2019).

From the controller point of view, let us define the robust controllable set in
one step via the two-steps recursion (see Kerrigan & Maciejowski (2000) and
the references therein) as:

X∗k = {x| ∀w ∈ W : x+ w ∈ Xk}

Xk−1 = {x| ∃u : (x, u) ∈X ×U , f (x, u) ∈ X∗k} .
(11)

Note that computing (11) recursively, one can calculate the robust controllable
set in Nc steps, i.e., X C

Nc .

Assumption 1 In order to guaranty the feasibility of the simultaneous state
estimation and control algorithm, we assume that ENe

⊕
X E

Ne ⊆X C
Nc ∀k ≥ 0.

This assumption guarantees the feasibility of the optimization problem (4)
and it fulfillment depends on the parameters of ΨC and ΨE (see i.e. Kerrigan
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& Maciejowski 2000, Müller 2017, Deniz et al. 2019, among others), therefore
it can be verified a prior by design. The key idea is that every vector belonging
to X E

Ne

⊕
ENe can be steered in Nc steps to the set Xf of the final constraints

control problem. Note that if X E
Ne

⊕
ENe * X C

Nc , one can try to enlarge either
Ne or Nc. When Ne is enlarged, the volume of the set ENe is reduced due
to the fastest vanishing behaviour of the error due to uncertainties in the
initial condition, i.e., εe decreases. On the other hand, when Nc is enlarged,
the volume of X C

Nc can be expanded. However, it will depend on the dynamic
of the system and the constraints.

3.2 Forward window

The forward window corresponds to the model predictive control problem,
which from an estimate x̂k|k computes the future optimal control inputs. The
length of the control window is selected to guarantee the stability of the sys-
tem. A common approach is to select a large enough window length. However,
in order to keep computational burden low, we are interested in computing the
minimum horizon length which guarantees stability. The work of Tuna et al.
(2006) goes a step forward in this direction and develop a procedure which
allows computing the required value of Nc for the nominal case. Here we ex-
tend some of these ideas for the case where process disturbance are acting as
unmeasurable input of bounded amplitude on the system. Before to compute
the minimum forward window length that guarantee stability for the system,
let us state the following assumptions

Assumption 2 There exist a constant γ ∈ R≥0 such that the terminal cost
and the stage cost satisfy the following relation:

ΓC (f (x, u, w)) + ` (x, u) ≤ ΓC (x) (1 + γ) + `w (w) . (12)

Remark 2 A similar assumption was already used in Tuna et al. (2006),
where the constant γ is introduced in order to relax (γ > 0) the requirement
on the function ΓC (·) to be a control Lyapunov function for the nominal case.
Here we extend it to the more general case where noise and disturbances are
affecting the system.

Assumption 3 The stage cost `c (x, u) is lower bounded by a function σ (x) ∈
K∞, such that σ (x) ≤ `c (x, u) − `wc (w), ∀x ∈ X , ∀u ∈ U and ∀w ∈ W .
Moreover, there exists functions γ

x
(x), γ

u
(u), γx (x) and γu (u) ∈ K∞ such

that γ
x

(x) + γ
u

(u) ≤ `c (x, u) ≤ γx (x) + γu (u), and γ
w

(w), γw (w) ∈ K∞
such that γ

w
(w) ≤ `w (w) ≤ γw (w).

Assumption 4 The cost to go ΓC (x) is lower and upper bounded: αΓ (x) ≤
ΓC (x) ≤ βΓ (x), with αΓ (·) ∈ K∞, βΓ (·) ∈ K∞.
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Assumption 5 There exists a sequence {Li}, i ∈ Z≥0, such that Li ∈ R and
1 ≤ Li ≤ L, L0 = 1 with L ∈ R that verifies

ΨC
k (x̂, û, ŵ, i) ≤ Li σ (x̂) ,

where ΨC
k (x̂, û, ŵ, i) is the value function with decision variables x̂, û, ŵ and

horizon length i.

With all the elements stated former, we claim that under the fulfilment of
Assumptions 1 and 2, the cost function ΨNe+Nc

k of the optimization problem
(4) is a regional ISS-Lyapunov function for the closed loop system (1).

Proof. Let us assume that Assumptions 1 and 2 are fulfilled. Recalling Bell-
man’s principle of optimality (Bellman & Kalaba 1965), ΨNe+Nc

k and ΨNe+Nc
k+1

are compared using the same sequences of states, control actions and distur-
bances, since the optimal sequences at time k are feasible at time k + 1

ΨNe+Nc
k+1 −ΨNe+Nc

k = ΓE
(
x̂k−Ne+1|k+1

)
+

j=k∑
j=k−Ne+1

`e
(
ŵj|k+1, v̂j|k+1

)
+

k+Nc+1∑
j=k+1

(
`c
(
x̂j|k+1, ûj|k+1

)
− `wc

(
ŵj|k+1

))
+

ΓC
(
x̂k+Nc+1|k+1

)
− ΓE

(
x̂k−Ne|k

)
−

j=k−1∑
j=k−Ne

`e
(
ŵj|k, v̂j|k

)
−

k+Nc∑
j=k

(
`c
(
x̂j|k, ûj|k

)
−

`wc
(
ŵj|k

))
− ΓC

(
x̂k+Nc|k

)

(13)

Using Inequality (12) from Assumption 2, Equation (13) can be rewritten as
follows

ΨN
k+1 −ΨN

k ≤ −`c
(
x̂k|k, ûk|k

)
+ πE (ŵ, v̂) + `wc

(
ŵk|k

)
+

ΓC
(
x̂k+Nc|k

)
γ,

(14)

or

ΨN
k+1 −ΨN

k ≤ −`c
(
x̂k|k, ûk|k

)1− γ

ΓC
(
x̂k+Nc|k

)
`
(
x̂k|k, ûk|k

)+

1

γ

`wc
(
ŵk|k

)
`
(
x̂k|k, ûk|k

)
+ πE (ŵ, v̂) ,

(15)

where πE (ŵ, v̂) is given by

πE (ŵ, v̂) := ΓE
(
x̂k−Ne+1|k

)
− ΓE

(
x̂k+Ne|k

)
+ `e

(
ŵk|k, v̂k|k

)
−

`e
(
ŵk−Ne|k, v̂k−Ne|k

)
.

(16)

11



Note that when γ = 0, the function ΓC (·) become a ISS-Lyapunov function
in the sense defined in Sontag & Wang (1997) (see also Sontag (2008)) �.

From the first term in the right hand side of (15), one can see that if

γ

ΓC
(
x̂k+Nc|k

)
`
(
x̂k|k, ûk|k

) +
1

γ

`wc
(
ŵk|k

)
`
(
x̂k|k, ûk|k

)
 < 1, (17)

then, there exists a invariant space which its volume depends on both estima-
tion and control terms and parameters, and the objective function is effectively
a regional ISS-Lyapunov function. Assuming that the left hand side of (17)
belong to the interval [0, 1), then, the first term of the right hand side of (15)
will be always negative. When this term become dominating, the sequence of
cost will present a contractive behaviour until it reaches the value of πE (ŵ, v̂).

We are concerned with analysing inequality (17) as a function of Nc. If such
relation exists, we would like to compute the minimum value of Nc that satis-
fies Inequality (17). As the term πE (w, v) in Inequality (15) regard with the
estimation error, it does not affect Inequality (17). Before to continue, let us
define ai, bi and ci ∀j ∈ Z[0,Nc] as follows

ai :=
`c
(
x̂k+i|k, ûk+i|k

)
`c
(
x̂k|k, ûk|k

) , a0 = 1, aNc =
ΓC

(
x̂k+Nc|k

)
`c
(
x̂k|k, ûk|k

) ,
bi :=

`wc
(
ŵk+i|k

)
γ `c

(
x̂k|k, ûk|k

) , bNc = 0,

ci := ai − γ bi.

(18)

Then, the control cost at time k with a horizon length equal to Nc, i.e.,
ΨC
k (x̂, û, ŵ, Nc) can be written as follows

ΨC
k (x̂, û, ŵ, Nc) = `c

(
x̂k|k, ûk|k

) Nc∑
j=0

cj (19)

Note that

`c
(
x̂k|k, ûk|k

) Nc∑
j=i

cj = ΨC
k (x̂, û, ŵ, Nc)− `c

(
x̂k|k, ûk|k

) i−1∑
j=0

cj,

=: ΨC
k

(
x̂k+i|k, ûk+i|k, ŵk+i|k, Nc − i

)
.

(20)

By mean of Assumption 3 and 5, the cost function ΨC
k (x̂, û, ŵ, Nc − i) is

12



bounded by

ΨC
k

(
x̂k+i|k, ûk+i|k, ŵk+i|k, Nc − i

)
≤ LNc−i σ

(
x̂k+i|k

)
≤ LNc−i

(
`c
(
x̂k+i|k, ûk+i|k

)
− `w

(
ŵk+i|k

))
≤ LNc−i

(
`c
(
x̂k+i|k, ûk+i|k

)
+

1

γ
`w
(
ŵk+i|k

))
,

≤ LNc−i`c
(
x̂k|k, ûk|k

)
(ai + bi)

Nc∑
j=i

cj ≤ LNc−i (ai + bi)

(21)

Where the third Inequality in (21) holds since 1
γ
`w
(
ŵk+Nc−i|k

)
> −`w

(
ŵk+Nc−i|k

)
and the last follows from (20). Defining d̄j as follows

d̄j := aj+max {bj} = aj+
max

{
`w
(
ŵ[k|k, k+Nc|k]

)}
γ`c

(
x̂k|k, ûk|k

) = aj+
`w
(
‖ŵ‖[k|k, k+Nc|k]

)
γ`c

(
x̂k|k, ûk|k

) ,

(22)
therefore, aj + bj ≤ d̄j. Replacing ai + bi with d̄i in Inequality (21)

Nc∑
j=i

cj ≤
Nc∑
j=i

d̄j = (Nc − i+ 1)
`w
(
‖ŵ‖[k|k, k+Nc|k]

)
γ`c

(
x̂k|k, ûk|k

) +
Nc∑
j=i

aj ≤ LNc−i d̄i, (23)

or
Nc∑
j=i

d̄j ≤ LNc−i d̄i, (24)

with a suitable value of LNc−i. We assume a function Ω (Li, i) such that d̄Nc ≤
Ω (LNc , Nc). Moreover, assuming the existence of such function and given the
sequence Li, we are interested in the values of i ≥ Nc such that γΩ (LNc , Nc) ≤
1, since it will guarantee that Inequality (17) holds due to the fact that γd̄Nc
is greater than the value of the left hand side of Inequality (17). Defining
Ω (Li, i) with the same behaviour as in Tuna et al. (2006), i.e.,

Ω (Li, Nc) := d̄0

Nc∏
i=1

Li − 1

Li−1

. (25)

and taking Nc = 1 with i = 0, Inequality (24) is reduced to d̄0 + d̄1 ≤ L1d̄0,
i.e., d̄1 ≤ d̄0 (L1 − 1), and Equation (25) holds. For values of Nc > 1, Equation
(25) is verified too, a proof of this property can be found in Tuna et al. (2006).
Then, d̄Nc is upper bounded by

d̄Nc ≤ d̄0

Nc∏
i=1

Li − 1

Li−1

≤ d̄0

Nc∏
i=1

L− 1

L
≤ d̄0 (L− 1)

(
L− 1

L

)Nc−1

, (26)

13



where the last inequality holds since the sequence (Li − 1) /Li is strictly in-
creasing.

We have now all the necessary elements to state the following Theorem.

Theorem 1 Suppose Assumptions 2-5 hold, then, choosing the control hori-
zon length Nc as follows

Nc ≥
⌈
1 + L ln

(
γ d̄0 (L− 1)

)⌉
(27)

the value function of the controller in (15) is a regional ISS-Lyapunov function
such that

ΓC (f (x, u, w))− ΓC (x, u) ≤ −`c (x, u) (1− γ Ω (L,Nc)) + `wc (w) , (28)

Proof. Defining the control horizon N∗c as follows

N∗c := d1 + L ln
(
γd̄0 (L− 1)

)
e, (29)

then, from the definition (29)

N∗c ≥ 1 + L ln
(
γd̄0 (L− 1)

)
(N∗c − 1) ln

(
1 + (L− 1)−1

)
> ln

(
γd̄0 (L− 1)

)
0 > ln

(
γd̄0 (L− 1)

)
+ (N∗c − 1) ln

(
L−1
L

) (30)

where the second Inequality in (30) holds since

1

L
< ln

(
1 + (L− 1)−1

)
, (31)

Taking anti-log function on both side of last inequality of (30)

γd̄0 (L− 1)
(
L− 1

L

)N∗c−1

< 1 (32)

or

γ Ω (L,Nc) < γd̄0 (L− 1)
(
L− 1

L

)N∗c−1

< 1. (33)

Hence, from Inequality (32) it follows that 0 < 1−γ Ω (L,Nc), and γ Ω (L,Nc) <
1. Therefore, Ω (L,Nc) ∈ (0, 1) and equation (28) is a regional ISS-Lyapunov
function for the controller ∀Nc ≥ N∗c . �
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3.2.1 Computing the value of L

In order to compute the value of L, essential to calculate the length of the
horizon from Equation (29), let us note that

ΨC
k (x̂, û, ŵ, Nc + 1) =

k+Nc∑
j=k

{
`c
(
x̂j|k, ûj|k

)
− `wc

(
ŵj|k

)}
+ ΓC

(
x̂k+Nc+1|k

)
,

(12)

≤ ΨC
k ((x̂, û, ŵ), Nc) + γΓC

(
x̂k+Nc|k

)
,

when γ → 0 (see (Magni et al. 2006)), ΨNc
k (x̂, û, ŵ, Nc + 1) ≤ ΨNc

k (x̂, û, ŵ, , Nc).
Moreover

ΨC
k (x̂, û, ŵ, Nc + 1) ≤ ΨC

k (x̂, û, ŵ, Nc) ≤ . . . ≤ ΨC
k (x̂, û, ŵ, 1)

since ΨC
k (x̂, û, ŵ, 1) = ΓC (x) ≤ βΓ (x) from Assumption 4.

Recalling that σ (x) ≤ ΨC
k (x, u, w,Nc) ≤ Lσ (x), one can approximate L as

the quotient between the upper and lower bound functions as follows

L ≥
⌈
βΓ (x)

σ (x)

⌉
, (34)

or by mean of Assumption 3

L ≥
⌈

βΓ (x)

γ
x

(x) + γ
u

(u)− γ
w

(w)

⌉
. (35)

4 Examples

In this section, we demonstrate how the proposed framework improve the over-
all performance of a nonlinear system via simulations. The nonlinear model
was originally used by Rao et al. (2003), whose dynamic behavior is given by

x
(1)
k+1 = 0.99x

(1)
k + 0.2x

(2)
k + uk

x
(2)
k+1 = −0.1x

(1)
k +

0.5x(2)

1 + (x(2))
2 + wk

yk = x
(1)
k − 3x

(2)
k + vk.

The control inputs uk is constrained to the set |uk| ≤ 0.25 ∀k ∈ Z≥0 and the
additive process and measurement noises w and v are drawn from normal dis-
tributions with zero mean and covariances S2

w = 1 and S2
v = 0.5, respectively.
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Fig. 1. Comparison of system state xk between simultaneous (blue triangles) and
separate (red circles) MHE-MPC algorithms.

For the simultaneous MHE and MPC algorithm (MHE/MPC ) (4) the esti-
mation `e(·, ·), control `c(·, ·) and disturbance `wc(·) stage costs are chosen as
follows

`e (ŵ, v̂) = wTj|kQwwj|k +Rvv
2
j|k j ∈ [k −Ne, k − 1],

`c (x̂, û) = xTj|kQxxj|k +Ruu
2
j|k j ∈ [k, k +Nc],

`wc (ŵ) = wTj|kQwcwj|k,

(36)

with Qw = 50I2, Rv = 50, Qx = 50I2, Ru = 1 and Qwc = (1/Nc)I2, respec-
tively. The arrival-cost ΓE(x̂k−Ne|k) is computed using the adaptive algorithm
proposed by Sánchez et al. (2017) with σ = 0.1 and c = 1e6. The cost-to-
go ΓC(x̂k−Nc|k) is chosen as ΓC(x̂k−Nc|k) = x̂Tk−Nc|kPcx̂k−Nc|k with Pc = 100I2.

The remaining parameters of the cost function ΨN
k are chosen as Ne = 5 and

Nc = 5. The independent MHE and MPC algorithms (MHE+MPC ) use the
same parameters than the simultaneous algorithm. The parameters were cho-
sen in this way in order to evaluate the effect of simultaneously solve, or not,
the estimation and control problems. For both simulations we use a multiple
shooting strategy with sampling time of ∆ = 1 and we add the restriction
|x̂k−Nc|k| ≤ δ, where δ is equal to the double of the sum of process and mea-
surement noises bounds.

Figure 1 shows the time evolution of the system states xk controlled by the
simultaneous and independent MHE/MPC algorithms. Both states of the sys-
tem controlled by the simultaneous algorithm (blue triangles) converge to zero

and then regulate the effect of process disturbance. On the other hand, x
(2)
k

of the system controlled by the independent MHE and MPC algorithms (red
circles) converges to zero and then regulate the effect of process disturbance.

The other state x
(1)
k slowly drifts away until the system lost controllability due

to the saturation of the manipulated variable uk (see Figure 2). These phe-
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nomenon is due to problems in the estimator, who only aims to minimizes its
cost function ΨE

k without regarding the effects on the control problem. This
approach leads to the saturation of the control input and the lose of system
controllability.

Figure 2 shows the time evolution of the manipulated variable uk for both sys-
tems: the simultaneous and independent MHE/MPC algorithm. The inputs
computed by the independent MHE/MPC algorithms hit the input constraint
almost permanently throughout the simulation, forcing the lost of system con-
trollability. On the other hand, the inputs computed by the simultaneous
MHE/MPC algorithm hit the input constraint only several times throughout
the simulation.

Fig. 2. Comparison of control inputs uk between simultaneous (blue triangles) and
separate (red circles) MHE-MPC algorithms.

Fig. 3. Comparison of optimization costs between simultaneous ΨN
k (blue triangles)

and the sum of separate (red circles) MHE-MPC ΨE
k + ΨC

k algorithms.
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Figure 3 shows the time evolution of the optimization costs ΨN
k computed by

the simultaneous and independent MHE/MPC algorithms. The optimization
costs of the simultaneous algorithm ΨN

k show a decreasing behaviour through
the samples with occasional jumps throughout the simulation introduced by
large values of the process noise wk. On the other hand, the sum optimization
costs ΨE

k + ΨC
k of the independent algorithms show a continuous drift in its

mean value with superimpose jumps introduced by the process noise

5 Conclusions

In this work, we address the challenge to solve simultaneously the problem of
estimation and control for nonlinear systems subject to bounded disturbances.
We have investigated the necessary conditions to guaranty the feasibility of the
problem. Moreover, the minimum horizon length required for the estimator in
order to neglect the effects of uncertainty in the initial conditions is given.
The effects of the length of the control horizon are analyzed as well, and an
expression for the minimum length of the control horizon required to guaranty
stability is given.
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