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Abstract

Given a Hilbert space (H, 〈 , 〉) and a bounded selfadjoint operator B con-
sider the sesquilinear form over H induced by B,

〈x, y 〉B = 〈Bx, y 〉 , x, y ∈ H.

A bounded operator T is B-selfadjoint if it is selfadjoint respect to this sesquilin-
ear form. We study the set P(B,S) of B-selfadjoint projections with range S,
where S is a closed subspace of H. We state several conditions which character-
ize the existence of B-selfadjoint projections with a given range; among them
certain decompositions of H, R(|B|) and R(|B|1/2). We also show that every
B-selfadjoint projection can be factorized as the product of a B-contractive, a
B-expansive and a B-isometric projection. Finally two different formulas for
B-selfadjoint projections are given.
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1 Introduction

Consider a Hilbert space (H, 〈 , 〉) and L(H) the algebra of bounded linear operators
on H. Every selfadjoint operator B ∈ L(H) induces an indefinite sesquilinear form,
given by

〈x, y 〉B = 〈Bx, y 〉 , x, y ∈ H.

Given a selfadjoint operator B ∈ L(H) and a closed subspace S of H we study the
existence of projections Q ∈ L(H) with range S which are selfadjoint with respect to
the form 〈 , 〉B . It is easy to see that Q is B-selfadjoint if and only if BQ = Q∗B, so
that we are interested in studying in which cases the set

P(B,S) = {Q ∈ L(H) : Q2 = Q, R(Q) = S, BQ = Q∗B}

is not empty. If P(B,S) 6= ∅ we say that the pair (B,S) is compatible.
Observe that if B is positive and invertible then there exists a unique B-selfadjoint

projection onto S, because in this case 〈 , 〉B is an inner product equivalent to 〈 , 〉.
In [4], [5], [6], many conditions for the existence of these projections have been given
when B is (semidefinite) positive. For instance, it was proven that if S has finite
dimension then there always exists a B-selfadjoint projection onto S. However, these
facts do not hold in the general case, even if H has finite dimension (see Example
3.1).

Most differences between the positive and the selfadjoint case are related to the
indefinite metric space structure of (H, 〈 , 〉B). When B is a symmetry, i.e. B =
B∗ = B−1, (H, 〈 , 〉B) is a Krein space. An exposition of the properties of these
spaces can be found in the books by T. Ya. Azizov and I. S. Iokhvidov [2], J. Bognár
[3] and in the lecture notes by T. Ando [1], where, in particular, the problem of the
existence of projections is studied in detail; see also [10], [11], [15], [16], [17], [19] and
[20].

It is well known that a projection Q in a Hilbert space (H, 〈 , 〉) is orthogonal if
and only if it is a contraction. This fact can be generalized to B-selfadjoint projections
when B is (semidefinite) positive, in this case, a projection Q is B-selfadjoint if and
only if Q is a B-contraction, see [4]. However, this is no longer true when B is
selfadjoint. S. Hassi and K. Nordström [14] proved that, given a selfadjoint operator
B, then a projection Q is a B-contraction if and only if Q is B-selfadjoint and the
nullspace of Q is B-nonnegative. They also proved that, if B is also invertible, a B-
selfadjoint projection can be factorized in terms of a B-contraction and a B-expansion.

Although some of the results stated in this paper for selfadjoint operators are
similar to the corresponding results for (semidefinite) positive operators (see [4], [5],
[6]) the techniques to prove them are quite different and are related to some of the
ideas that usually appear in Krein spaces problems.

The contents of the paper are as follows: in section 2 the basic notation is intro-
duced together with some known results which are used later, mainly in three different
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topics: (bounded) operator factorization, Krein spaces, and, angles between (closed)
subspaces in a Hilbert space.

Section 3 is devoted to state the background needed to study the main problem
of this paper: the existence of B-selfadjoint projections with a prescribed range S
for a selfadjoint operator B ∈ L(H). The differences between the selfadjoint and
the positive case naturally arise here. We also introduce the notion of the B-Gram
operator associated to a closed subspace S, which is closely related to compatibility
of (B,S).

We begin section 4 by giving necessary conditions involving the positive part (or
modulus) of the polar decomposition of B. Then, we show that compatibility is
equivalent to certain decompositions of operator ranges. For example we show that
(B,S) is compatible if and only if

R(|B|1/2) = M∩R(|B|1/2) uM[⊥] ∩R(|B|1/2),

where M = |B|1/2(S), M[⊥] = J−1(M⊥) and J is the unitary part in the polar
decomposition of B. We also give equivalent conditions to compatibility in terms of
angles between subspaces and we study in detail the particular case in which B has
closed range.

In section 5, following the ideas of S. Hassi and K. Nordström, we study possible
decompositions of a B-selfadjoint projection Q. First of all, we write Q as a sum
of a B-positive, a B-negative and a B-neutral projection, which is unique under a
few additional conditions. Then, we extend Hassi-Nordström’s factorization for an
arbitrary selfadjoint operator B: every B-selfadjoint projection Q admits a factoriza-
tion Q = Q0Q1Q2, where Q0, Q1 and Q2 are commuting projections such that Q0 is
B-isometric, Q1 is B-contractive and Q2 is B-expansive.

Section 6 is devoted to present two different formulas for B-selfadjoint projections
which resemble (and generalize) those obtained in [5].

2 Preliminaries

In what follows H denotes a Hilbert space with inner product 〈 , 〉 and L(H) is
the algebra of bounded linear operators on H. Let L(H)s be the (real) subspace of
selfadjoint operators in L(H) and L(H)+ the cone of (semidefinite) positive operators
in L(H); GL(H) is the group of invertible operators in L(H), GL(H)s = GL(H) ∩
L(H)s and GL(H)+ = GL(H) ∩ L(H)+. Q denotes the set of oblique projections in
L(H), i.e., Q = {Q ∈ L(H) : Q2 = Q}. Given T ∈ L(H), R(T ) denotes the range of
T and N(T ) its nullspace.

Given two subspaces S and T of H, denote by S u T the direct sum of S and T ,
S ⊕ T the orthogonal sum of them and S 	 T = S ∩ (S ∩ T )⊥. If H = S u T , the
oblique projection onto S along T , PS//T , is the projection with R(PS//T ) = S and
N(PS//T ) = T . In particular, PS = PS//S⊥ is the orthogonal projection onto S.
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Given T ∈ L(H) and a fixed closed subspace S of H, the operator T can be
represented as a 2 × 2 matrix according to the decomposition H = S ⊕ S⊥. More
precisely, if P = PS , T can be represented as

T =
(

a b
c d

)
where a = PTP |S , b = PT (I−P )|S⊥ , c = (I−P )TP |S and d = (I−P )T (I−P )|S⊥ .

In particular, P =
(

I 0
0 0

)
. Observe that every oblique projector Q onto S has

the form Q =
(

I x
0 0

)
.

The following result due to R. G. Douglas [9], characterizes operator range inclu-
sions. It is frequently used along the paper.

Theorem 2.1. Given Hilbert spaces H, K1, K2 and operators A ∈ L(K1,H) and
B ∈ L(K2,H), the following conditions are equivalent:

1. the equation AX = B has a solution in L(K2,K1);

2. R(B) ⊆ R(A);

3. there exists λ > 0 such that BB∗ ≤ λAA∗.

In this case, there exists a unique D ∈ L(K2,K1) such that AD = B and R(D) ⊆
R(A∗); moreover, N(D) = N(B) and ‖D‖ = inf{λ > 0 : BB∗ ≤ λAA∗}. The
operator D is called the reduced solution of AX = B.

In what follows we give some basic results on Krein spaces, see the book by T.
Ya. Azizov and I. S. Iokhvidov [2] for the proofs of the results below.

A Krein space (or a J-space) is a triple (H, 〈 ., . 〉 , J) such that (H, 〈 ., . 〉 ) is a
Hilbert space and J ∈ L(H) is a symmetry which defines an indefinite metric (a
J-metric) on H by

[x, y ] := 〈 Jx, y 〉 , x, y ∈ H.

A vector x ∈ H is J-positive, J-negative or J-neutral according to the sign of [x, x ],
that is, if [x, x ] > 0, [x, x ] < 0 or [x, x ] = 0 respectively. A subspace S of H is
J-nonnegative if S ⊆ {x ∈ H : [ x, x ] ≥ 0}. J-positive, J-neutral, J-nonpositive and
J-negative subspaces are defined analogously. S is indefinite if S contains J-positive
and J-negative vectors.

Consider x, y ∈ H, then x, y are J-orthogonal vectors, x[⊥] y, if [ x, y ] = 0. Given
S ⊂ H, the set

S [⊥] = {x ∈ H : [x, y ] = 0 for every y ∈ S}
is the J-orthogonal complement of S.

Let S be a subspace of H. The isotropic part of S is the subspace S0 = S ∩ S [⊥].
If S0 = {0}, S is J-non-degenerated.
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Proposition 2.2. If a subspace S of H admits a direct sum decomposition S =
S+ uS−, where S+ is a J-positive subspace and S− is a J-negative subspace, then S
is J-non degenerated.

Proposition 2.3. Let S be a subspace of a Krein space (H, 〈 , 〉 , J). Then S [⊥] is
closed and

S [⊥] = J(S⊥), S⊥ = J(S [⊥]).

Furthermore, S [⊥] = S [⊥]
and S [⊥][⊥] = S. In particular, if S is a closed subspace,

S0 = (S [⊥])0.

If (H, 〈 , 〉 , J) is a Krein space and S is a closed subspace of H the subspace
S + S [⊥] is not necessarily H, in fact:

H = (S + S [⊥]) ⊕ J(S0).

Therefore, H = (S + S [⊥]) if and only if S is J-non-degenerated.

Definition. A subspace S of a Krein space (H, 〈 , 〉 , J) is projectively complete if
H = S + S [⊥].

It is well known that if S is a projectively complete subspace of (H, 〈 , 〉 , J) then
S is closed and J-non degenerated. Then, there exists a unique projection Q with
range S and nullspace S [⊥]. This projection is J-ortogonal, i.e. JQ = Q∗J . Observe
that if dimS < ∞ and S is J-non-degenerated then S is projectively complete.

The bounded operator GS = PSJ |S : S → S is the Gram operator of S. The
existence of a J-orthogonal projection onto S is characterized in the next theorem:

Theorem 2.4. Let (H, 〈 , 〉 , J) be a Krein space and S be a closed subspace of H.
The following conditions are equivalent:

1. S is projectively complete.

2. GS is invertible.

3. S is a Krein space (with the induced metric).

To end this section recall the following definitions of angle between subspaces.
Given two closed subspaces S and T of H, the cosine of the Friedrichs angle between
them is defined by

c(S, T ) = sup {| 〈x, y 〉 | : x ∈ S 	 T , ‖x‖ ≤ 1, y ∈ T 	 S, ‖y‖ ≤ 1} .

The following conditions are equivalent (see [8], [18]):
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1. c(S, T ) < 1,

2. S + T is closed,

3. c(S⊥, T ⊥) < 1,

4. PS⊥(T ) is closed.

The minimal angle between S and T is the angle whose cosine is defined by

c0(S, T ) = sup {| 〈x, y 〉 | : x ∈ S, ‖x‖ ≤ 1, y ∈ T , ‖y‖ ≤ 1} .

Observe that c(S, T ) ≤ c0(S, T ) and c(S, T ) = c0(S, T ) when S ∩ T = {0}.

3 Definitions and Basic Properties

Every B ∈ L(H)s induces a sesquilinear form in H×H given by

〈x, y 〉B = 〈Bx, y 〉 , x, y ∈ H.

If S is a closed subspace of H and B ∈ L(H)s, the B-orthogonal complement of S is
given by

S⊥B := {x ∈ H : 〈Bx, s 〉 = 0 for every s ∈ S}.

It holds that S⊥B = B−1(S⊥) = B(S)⊥.
A vector x ∈ H is B-positive if 〈x, x 〉B > 0. A subspace S of H is B-positive if

every non-trivial x ∈ S is a B-positive vector. B-nonnegative, B-neutral, B-negative
and B-nonpositive vectors (and subspaces) are defined analogously.

An operator T ∈ L(H) is B-selfadjoint if 〈Tx, y 〉B = 〈x, Ty 〉B for x, y ∈ H. It
is easy to see that this condition is equivalent to the equality BT = T ∗B. T ∈ L(H)
is B-positive if 〈Tx, x 〉B ≥ 0 for every x ∈ H, i.e. BT is a (semidefinite) positive
operator. B-neutral and B-negative operators are defined in a similar way.

Definition. Let B ∈ L(H)s and S be a closed subspace of H. The pair (B,S) is
compatible if there exists a B-selfadjoint projection with range S, i.e. if the set

P(B,S) = {Q ∈ Q : R(Q) = S, BQ = Q∗B}

is not empty.

In [14, p. 404] (see also [4, Lemma 3.2]) it was stated that a projection Q is B-
selfadjoint if and only if its nullspace satisfies the inclusion N(Q) ⊆ R(Q)⊥B . Then
it follows that (B,S) is compatible if and only if

H = S + B−1(S⊥).

6



If A ∈ GL(H)+ then (A,S) is compatible for every closed subspace S of H. Also,
if A ∈ L(H)+ and S is finite-dimensional then P(A,S) 6= ∅, see [4]. However, the
following example shows that there exist pairs (B,S) with B ∈ GL(H)s such that
P(B,S) = ∅, even for finite-dimensional H.

Example 3.1. Let H = C2, consider the subspace S = {(x, y) ∈ C2 : y = −x} and

J =
(

1 0
0 −1

)
∈ GL(C2)s.

Then (J,S) is not compatible: It is easy to see that J−1(S⊥) = S so that S +
J−1(S⊥) = S 6= C2. Moreover, the subspace S is J-degenerated, in fact S0 = S. (In
Section 4, given a symmetry J ∈ L(H), we construct a J-non-degenerated subspace
T of (H, 〈 , 〉 , J) such that (J, T ) is not compatible.)

Given a compatible pair (B,S), define N = S ∩B(S)⊥. Since H = S u (B(S)⊥	
N ), consider the oblique projection

PB,S := PS//B(S)⊥	N .

Observe that PB,S ∈ P(B,S) because R(PB,S) = S and N(PB,S) ⊆ B(S)⊥. In fact,
the set P(B,S) is an affine manifold that can be parametrized as

P(B,S) = PB,S + L(S⊥,N ),

where L(S⊥,N ) is viewed as a subspace of L(H); and P(B,S) is a singleton if and
only if N = {0}. See [4] for a proof of these facts.

It is easy to prove that, if A ∈ L(H)+ and S is a closed subspace of H, then
N = S ∩N(A). In general, this equality does not hold for a selfadjoint operator, for
instance the pair (J,S) of Example 3.1 satisfies N = S and S∩N(J) = {0}. However,

Proposition 3.2. Consider B ∈ L(H)s and S a closed subspace of H such that (B,S)
is compatible. Then N = S ∩N(B).

Proof. The inclusion S ∩N(B) ⊆ N always holds. Suppose that (B,S) is compatible
and consider Q ∈ P(B,S). If x ∈ N and y ∈ H then,

〈Bx, y 〉 = 〈BQx, y 〉 = 〈Q∗Bx, y 〉 = 〈Bx, Qy 〉 = 0

because Bx ∈ S⊥. Thus, Bx = 0 i.e. x ∈ S ∩N(B).

Remark 3.3. Let B ∈ L(H)s and S be a closed subspace of H.

1. If (B,S) is compatible then (B,S 	 N ) is compatible: if (B,S) is compatible
then H = S + B(S)⊥ = S 	N + B(S)⊥ ⊆ S 	N + B(S 	N )⊥, so (B,S 	N )
is compatible.
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2. If A ∈ L(H)+ then N = S ∩ N(A) and S + A(S)⊥ = S 	 N + A(S 	 N )⊥.
Therefore, (A,S) is compatible if and only if (A,S 	N ) is compatible. But, if
B ∈ L(H)s, the compatibility of (B,S 	N ) does not imply the compatibility of
(B,S) as the following example shows: let {e1, e2, e3, e4} be the canonical basis
of R4,

B =


1 0 0 1
0 1 0 0
0 0 0 1
1 0 1 1

 ∈ GL(R4)s

and S = 〈e1, e2, e3〉, the subspace generated by e1, e2 and e3. Then, N = 〈e3〉
and S 	 N = 〈e1, e2〉, the pair (B,S 	 N ) is compatible but (B,S) is not
compatible.

3.1 The B-Gram operator of a subspace

Definition. Given B ∈ L(H)s and a closed subspace S of H, the B-Gram operator
of S induced by B is

GB,S = PBP,

where P is the orthogonal projection onto S. It is easy to see that N(GB,S) = S⊥+N
and R(GB,S) = S	N . In [4, Proposition 3.3] it was proven that, (B,S) is compatible
if and only if R(PB) ⊆ R(PBP ), or equivalently, equation

GB,SX = PB (3.1)

admits a bounded solution.

Remark 3.4. Let (B,S) be a compatible pair and let T = S 	N . Then,

1. GB,S = GB,T .

In fact, from Proposition 3.2 N ⊆ N(B) so that B(S) = B(T ), or BP = BPT .
Therefore, GB,S = PBP = PT BPT = GB,T .

2. T ∩ B(T )⊥ = {0} and the restriction of the B-Gram operator GB,T to the
subspace T , G = PT B|T : T → T is injective.

Indeed, since B(T ) = B(S), T ∩ B(T )⊥ = T ∩ B(S)⊥ = S ∩ N⊥ ∩ B(S)⊥ =
N ∩N⊥ = {0}. Furthermore, given x ∈ T , x ∈ N(G) if and only if Bx ∈ T ⊥,
or equivalently, x ∈ T ∩B−1(T ⊥) = {0}. Therefore, G is injective.

If S is a J-definite subspace of a Krein space (H, 〈 , 〉 , J) then it is well known that
there exists a J-selfadjoint projection onto S if and only if S is uniformly J-definite
i.e. there exists α > 0 such that [x, x ] ≥ α‖x‖2 for every x ∈ S, see [2, Corollary
7.17].
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If B ∈ GL(H)s and S is a B-definite subspace ofH then it is easy to see that (B,S)
is compatible if and only if S is uniformly B-definite, i.e. there exists α > 0 such that
GB,S ≥ αPS (see Proposition 3.7). However, only one of the implications remains
true for an arbitrary B ∈ L(H)s. The following results are stated for B-positive
subspaces, the reader can deduce the analogue for B-negative subspaces.

Proposition 3.5. If S is uniformly B-positive then (B,S) is compatible.

Proof. Suppose that S is uniformly B-positive. Then R(GB,S) is closed. Furthermore,
N = {0}. In fact, if x ∈ N then 0 = 〈Bx, x 〉 = 〈GB,Sx, x 〉 ≥ α‖x‖2. Thus,
R(GB,S) = S and, by Douglas’ theorem, equation (3.1) has a bounded solution, i.e.
(B,S) is compatible.

Remark 3.6. Given a closed B-positive subspace S of H, the compatibility of (B,S)
does not imply that S is uniformly B-positive. Indeed, given A ∈ L(H)+ injective
with R(A) 6= H, consider the Hilbert space K = H⊕H, S = H⊕{0} and B ∈ L(K)+

represented by

B =
(

A 0
0 I

)
in the decomposition induced by S. Then, B(S)⊥ = (R(A) ⊕ {0})⊥ = {0} ⊕ H so
S + B(S)⊥ = K, i.e. (B,S) is compatible. On the other hand, its clear that S is not
uniformly B-positive because R(A) is not closed.

Proposition 3.7. Suppose that B ∈ L(H)s has closed range and S is a B-positive
subspace. If (B,S) is compatible then S is uniformly B-positive.

Proof. If S is B-positive then GB,S ∈ L(H)+ and N = {0}. Also, B(S) is closed:
if B(sn) → y then y ∈ R(B) because R(B) is closed. So that y = Bx for x ∈ H
and Bsn = BQsn = Q∗Bsn → Q∗Bx = BQx. Therefore, y = BQx ∈ B(S).
Furthermore, from H = S+B(S)⊥ it follows that S⊥+B(S) is closed, or equivalently
R(GB,S) = PS(B(S)) is closed (see the preliminaries on angles between subspaces).
Then, there exists α > 0 such that GB,S ≥ αPS i.e. S is uniformly B-positive.

4 Necessary and Sufficient Conditions for Compat-
ibility

It is well known that every T ∈ L(H) has a (unique) polar decomposition T = UA,
where A = (T ∗T )1/2 ∈ L(H)+ and U is a partial isometry from N(T )⊥ onto R(T )
with nullspace N(T ). If B ∈ L(H)s and B = UA, it is easy to see that U = U∗ so
that A and U commute. In this case we can replace the partial isometry U by an
unitary operator J , satisfying B = JA and Jx = x for every x ∈ N(T ). Observe
that J is a symmetry i.e. J = J∗ = J−1, and AJ = JA. Therefore, R(B) = R(A),
N(B) = N(A) and both subspaces are invariant under J .
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Let B ∈ L(H)s with the polar decomposition B = JA, where A ∈ L(H)+ and
J = J∗ = J−1. Observe that (B,S) is compatible if and only if H = S + A−1(S [⊥]).
In particular, if S is invariant by J then, (B,S) is compatible if and only if (A,S) is
compatible.

The next proposition shows some conditions, involving the positive part of B,
which are necessary for compatibility.

Proposition 4.1. Consider B ∈ L(H)s with the polar decomposition B = JA, where
A ∈ L(H)+ and J = J−1 = J∗. Consider the following conditions:

1. The pair (B,S) is compatible,

2. A(S) is closed in R(A) i.e. A(S) ∩R(A) = A(S),

3. A1/2(S) is closed in R(A1/2),

4. S + N(A) is closed.

5. P
R(B)

(S) is closed.

Then, 1. ⇒ 2. ⇒ 3. ⇒ 4. ⇔ 5.

Proof. 1. ⇒ 2. : Assume that (B,S) is compatible and let Q ∈ P(B,S). Then,
with an argument similar to the one used in Proposition 3.7 it follows that B(S) is
closed in R(B). But B(S) is closed in R(B) if and only if A(S) is closed in R(A): if
B(S) is closed in R(B) then B(S) = B(S)∩R(B), or J(A(S)) = JA(S)∩J(R(A)) =
J(A(S)∩R(A)). Then A(S) = A(S)∩R(A) i.e. A(S) is closed in R(A). The converse
is similar.
2. ⇒ 3. ⇒ 4. ⇔ 5. follow from Proposition 3.4 of [6].

Proposition 4.2. Let B ∈ L(H)s and consider a closed subspace S of H. Then,
(B,S) is compatible if and only if P

R(B)
(S) is closed and

(
B,P

R(B)
(S)

)
is compatible.

Proof. The proof is similar to that of Corollary 3.5 of [6].

Remark 4.3. Let B ∈ L(H)s and consider BR = B|
R(B)

∈ L(R(B)). Then, (B,S)
is compatible if and only if P

R(B)
(S) is closed and (BR, P

R(B)
(S)) is compatible.

In fact, applying Proposition 4.2 we can assume that S ⊆ R(B). Then, the proof is
straightforward, observing that B−1(S⊥) = B−1

R (R(B)	S)+N(B) and that R(B)	S
is the orthogonal complement of S in R(B).

10



4.1 Compatibility and Decomposition of Ranges

The next proposition relates the compatibility of the pair (B,S) to certain decompo-
sitions of R(A) and R(A1/2).

Proposition 4.4. Given B ∈ L(H)s consider its polar decomposition B = JA, with
A ∈ L(H)+ and J = J∗ = J−1. The following conditions are equivalent:

1. The pair (B,S) is compatible;

2. R(A) = A(S) u S [⊥] ∩R(A);

3. R(A1/2) = A1/2(S) u A1/2(S)[⊥] ∩R(A1/2).

Proof. 1. ⇔ 2.: If (B,S) is compatible then H = S + B−1(S⊥). Applying A to both
sides of this equality it follows that R(A) = A(S) + S [⊥] ∩ R(A). But it is a direct
sum because A(S) ∩ S[⊥] = J(B(S) ∩ S⊥) ⊆ J(B(S) ∩ S⊥) = J(H⊥) = {0}. The
converse is similar.
1. ⇔ 3.: If (B,S) is compatible then, applying A1/2 as in 1. ⇔ 2., R(A1/2) =
A1/2(S) + A1/2(S)[⊥] ∩R(A1/2). Furthermore,

A1/2(S) ∩A1/2(S)[⊥] = A−1/2(A(S) ∩ S [⊥]) ∩R(A1/2) = N(A1/2) ∩R(A1/2) = {0}.

The converse is similar.

Corollary 4.5. Let B ∈ L(H)s and define M = A1/2(S). Then, (B,S) is compatible
if and only if A1/2(S) is closed in R(A1/2) and

R(A1/2) = M∩R(A1/2) uM[⊥] ∩R(A1/2).

Proof. It is immediate from Propositions 4.1 and 4.4.

Corollary 4.6. If (B,S) is compatible then M = A1/2(S) is a J-non degenerated
subspace of (H, 〈 , 〉 , J).

Proof. By the above corollary,

H = R(A1/2)⊕N(A1/2) ⊆M+M[⊥] + N(A1/2) = M+M[⊥],

because N(A1/2) ⊆M[⊥]. Then, M is J-non degenerated.

4.2 Compatibility and angles between subspaces

Compatibility can also be given in terms of angle conditions between certain sub-
spaces. Look at the Preliminaries for the definitions and properties of the minimal
angle.

11



Theorem 4.7. Let B ∈ L(H)s and S be a closed subspace of H. Then, (B,S) is
compatible if and only if c0(S⊥, B(S)) < 1.

Proof. The proof given in [5, Theorem 2.15] remains valid for B ∈ L(H)s.

Proposition 4.8. Let B ∈ L(H)s be injective and S be a closed subspace of H. Then,
(B,S) is compatible if and only if c0(S, B(S)⊥) < 1.

Proof. If (B,S) is compatible then S + B(S)⊥ = H, therefore S + B(S)⊥ is closed,
or equivalently c(S, B(S)⊥) < 1. Furthermore, by Proposition 3.2, S ∩ B(S)⊥ =
S ∩N(B) = {0}. Thus c0(S, B(S)⊥) = c(S, B(S)⊥) < 1.

Conversely, if c0(S, B(S)⊥) < 1 then S+B(S)⊥ is closed and S∩B−1(S⊥) = {0}.
Since B is injective, B(S∩B−1(S⊥)) = B(S)∩B(B−1(S⊥)) = B(S)∩(S⊥∩R(B)) =
B(S) ∩ S⊥. Therefore B(S) ∩ S⊥ = {0} and H = (S⊥ ∩ B(S))⊥ = S + B(S)⊥ =
S + B(S)⊥.

Corollary 4.9. Let B ∈ L(H)s and consider a closed subspace S of H. Then, (B,S)
is compatible if and only if P

R(B)
(S) is closed and c0(PR(B)

(S), B(S)⊥) < 1.

Proof. By Remark 4.3, (B,S) is compatible if and only if S ′ = P
R(B)

(S) is closed and

the pair (BR,S ′) is compatible in R(B). Since BR ∈ L(R(B))s is injective, applying
Proposition 4.8 we have that

c0(S ′, B(S ′)⊥R) = sup
{
| 〈x, y 〉 | : x ∈ S ′, ‖x‖ ≤ 1, y ∈ B(S ′)⊥R , ‖y‖ ≤ 1

}
< 1,

where the Hilbert space considered in the angle condition is R(B) with the usual
norm and, if M is a subspace of R(B), M⊥R = R(B)	M.

Since B = BP
R(B)

we have that B(S ′) = B(S) ⊂ R(B) therefore B(S)⊥ =
B(S)⊥R ⊕N(B). Then, c0(S ′, B(S)⊥) ≤ c0(S ′, B(S ′)⊥R) < 1.

The following example is based on one appeared on Halmos’ book [13, pages 28-29].
It proves that, given a symmetry J , a J-non-degenerated subspace is not necessarily
compatible.

Example 4.10. Let H be a separable infinite-dimensional Hilbert space and S be
a closed subspace of H such that dimS = dimS⊥. Consider the symmetry J =
2PS − I ∈ L(H).

Given orthonormal bases {an}n∈N of S and {bn}n∈N of S⊥, consider the orthonor-
mal families {fn}n∈N and {hn}n∈N, where fn = 1√

2
(an + bn) and hn = 1√

2
(an − bn).

Finally, define gn = (cos 1
n )fn + (sin 1

n )hn and consider T = 〈{gn}n∈N〉, the
closed subspace generated by {gn}n∈N. Then, (J, T ) is not compatible: in fact,
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Jgn = (cos 1
n )hn + (sin 1

n )fn is an orthonormal basis of J(T ) and {un}n∈N, with
un = (sin 1

n )hn − (cos 1
n )fn, is an orthonormal basis of J(T )⊥. Observe that

〈 gn, un 〉 =
〈
(cos 1

n )fn + (sin 1
n )hn, (sin 1

n )hn − (cos 1
n )fn

〉
=

=
〈
cos 1

n )fn,−(cos 1
n )fn

〉
+

〈
(sin 1

n )hn, (sin 1
n )hn

〉
=

= − cos 2
n ,

and c0(T , J(T )⊥) ≥ | 〈 gn, un 〉 | = cos 2
n −−−−−→n→+∞

1, i.e. c0(T , J(T )⊥) = 1. Then, by

Proposition 4.8, (J, T ) is not compatible.

To complete the example it remains to prove that T is J-non degenerated. Sup-
pose that v ∈ T ∩ J(T )⊥, v =

∑∞
n=1 αngn =

∑∞
n=1 βnun, with

∑∞
n=1 |αn|2 < ∞,∑∞

n=1 |βn|2 < ∞. Then,
∞∑

n=1

αn(cos 1
n )fn +

∞∑
n=1

αn(sin 1
n )hn = v =

∞∑
n=1

βn(sin 1
n )hn −

∞∑
n=1

βn(cos 1
n )fn,

which implies that αn = βn = 0 for every n ∈ N, i.e. v = 0. Therefore, T is
J-non-degenerated.

4.3 B-selfadjoint projections: the closed range case

Throughout this subsection B ∈ L(H)s has closed range, B = JA is its polar decom-
position with A ∈ L(H)+ and J = J∗ = J−1, S is a closed subspace of H, P = PS is
the orthogonal projection onto S and M = A1/2(S). Observe that M is closed if and
only if S+N(B) is closed. Furthermore, Theorem 6.2 of [4] states that, if A ∈ L(H)+

has closed range, then (A,S) is compatible if and only if A1/2(S) is closed. The next
proposition generalizes this result.

Proposition 4.11. Under the above conditions, (B,S) is compatible if and only if
M is closed and (J,M) is compatible.

Proof. The compatibility of (B,S) implies that M is closed in R(A1/2). Then M is
closed because R(A1/2) = R(B) is closed. By Proposition 4.4 R(A1/2) = M+M[⊥]∩
R(A1/2) so H = R(A1/2)+N(A1/2) = M+M[⊥], because M[⊥] = M[⊥]∩R(A1/2)u
N(A1/2). The converse is similar.

The following example shows that there exists a non compatible pair (B,S) such
that the associated pair (J,M) is compatible, where M = A1/2(S).

Example 4.12. Let S and T be two closed subspaces of an infinite-dimensional
Hilbert space H with c(S, T ) = 1. Consider the Hilbert space H2 = H ⊕H and the
operators A, J ∈ L(H2) defined by

A =
(

PT ⊥ 0
0 0

)
, J =

(
I 0
0 −I

)
,
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in the matrix representation induced by H. Observe that A ∈ L(H2)+, R(A) = T ⊥
is closed and J = J∗ = J−1. Furthermore, J and A commute so B = JA ∈ L(H2)s.

Let M = A1/2(S) = PT ⊥(S). Since M ⊆ H⊕ {0} is invariant under J , M[⊥] =
M⊥ ⊕H and therefore (J,M) is compatible.

On the other hand, A1/2(S) = PT ⊥(S) is not closed (because c(S, T ) = 1, see the
Preliminaries) and therefore (B,S) is not compatible.

Corollary 4.13. Let B ∈ GL(H)s. Then, (B,S) is compatible if and only if (J,M)
is compatible.

If A ∈ L(H)+ has closed range, then (B,S) is compatible if and only if R(GA,S)
is closed (see [4, Theorem 6.2]). In the selfadjoint case we have the following:

Proposition 4.14. Under the above conditions, (B,S) is compatible if and only if
N = S ∩N(B) and GB,S has closed range.

Proof. Recall that, by Remark 3.4, if (B,S) is compatible and T = S	N then (B, T )
is compatible, GB,S = GB,T and the restriction of the B-Gram operator GB,T to the
subspace T , G = PT B|T : T → T is injective.

By Proposition 4.1 B(T ) is closed and from H = T + B(T )⊥ it follows that
T ⊥+B(T ) is closed, or equivalently R(G) = PT (B(T )) is closed (see the Preliminaries
on angles between subspaces).

Conversely, if R(GB,S) is closed then R(GB,S) = S 	 N and GB,S
† ∈ L(H).

Consider the operator Q = PSGB,S
†PSB ∈ L(H). Then Q is an oblique projection

such that BQ = Q∗B and R(Q) = S 	 N . Indeed, R(Q) ⊆ S but, if x ∈ N then
Qx = 0. On the other hand, if x ∈ S	N , Qx = PSPR(GB,S)x = PSx = x. Therefore,
R(Q) = S 	N . Observe that Q′ = Q + PN is an oblique projection with R(Q′) = S
and BQ′ = (Q′)∗B (because PNB = BPN = 0). Thus, Q′ ∈ P(B,S) i.e. (B,S) is
compatible.

The next theorem gives a complete characterization of the compatibility of a pair
(B,S) in terms of the subspace M, when B ∈ L(H)s is a closed range operator.

Theorem 4.15. Let B ∈ L(H)s be a closed range operator. The following conditions
are equivalent:

1. (B,S) is compatible.

2. PM//M[⊥] ∈ L(H).

3. M is closed and c0(M,M[⊥]) < 1.

4. R(GM) = M.

5. M is a Krein space (with the induced metric given by J).
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Proof. 1. ↔ 2.: By Proposition 4.11, (B,S) is compatible if and only if M is closed
and H = M + J−1(M⊥) = M +M[⊥]. Since J is invertible, M∩M[⊥] = {0} and
therefore PM//M[⊥] ∈ L(H).
2. ↔ 3.: If PM//M[⊥] ∈ L(H) thenM is closed, M∩M[⊥] = {0} and H = M+M[⊥].
Therefore c0(M,M[⊥]) = c(M,M[⊥]) < 1. The converse is similar.
2. ↔ 4.: Recall that N(GM) = M⊥ uM∩M[⊥]. If (B,S) is compatible then, by
Proposition 4.14,M∩M[⊥] = {0} and R(GM) is closed. Then R(GM) = N(GM)⊥ =
M. Conversely, if R(GM) = M then N(GM) = M⊥ i.e. M∩M[⊥] = {0}. Again,
by Proposition 4.14, (J,M) is compatible i.e. PM//M[⊥] ∈ L(H).
4. → 5. and 5. → 2.: See T. Ya. Azizov’s book [2, Theorem 7.16].

5 Decompositions of B-selfadjoint projections

In [5, Proposition 3.5] it was shown that, if (B,S) is compatible and Q ∈ P(B,S)
then

Q = PB,S	N + PNQ = PB,S	N + PN//(S	N+N(Q)).

Observe that PN//(S	N+N(Q)) is B-neutral because N ⊆ N(B) (see Proposition
3.2). The following theorem proves that PB,S	N is the sum of a B-positive and a
B-negative projection.

Theorem 5.1. Let B ∈ L(H)s and S be a closed subspace of H such that (B,S)
is compatible. Then, every Q ∈ P(B,S) admits a factorization Q = Q0 + Q1 + Q2,
where Q0 is B-neutral, Q1 is B-positive and Q2 is B-negative.

Proof. Let Q ∈ P(B,S) and consider the subspaces T = S 	N and T0 = N . Recall
that (B, T ) is compatible, GB,T = GB,S and G = GB,T |T is injective (see Remark
3.4). So, if G = U |G| is the polar decomposition of G then U is a symmetry on T .
Extend U by U = 0 on T ⊥. Then there exist closed subspaces T1 and T2 such that
T = T1⊕T2 and U = PT1 −PT2 . Since Ti ⊆ T = S ∩T ⊥0 it is clear that for i = 0, 1, 2,

QPTi = PTi and PTiPTj = 0 if i 6= j. (5.1)

Consider Qi = PTiQ, i = 0, 1, 2. Then, from Eq. (5.1) it follows easily that Qi ∈ Q
for i, j = 0, 1, 2 and QiQj = 0 if i 6= j.

Let us prove that Qi is B-selfadjoint: first of all, observe that BQ0 = 0 = Q∗0B
because T0 ⊂ N(B), and therefore Q0 is B-neutral. If i = 1, 2,

BQi = BPTi
Q = BQPTi

Q = Q∗BPTi
Q = Q∗(PT0 + PT )BPTi

Q =
= Q∗PT BPTi

Q = Q∗GB,T PTi
Q = Q∗PTi

GB,T Q = Q∗PTi
BQ =

= Q∗PTi
Q∗B = Q∗PTi

B = Q∗i B

because GB,T PTi
= PTi

GB,T . Furthermore, Q1 is B-positive: given x ∈ H,

〈BQ1x, x 〉 = 〈BQ1x,Q1x 〉 = 〈GB,T Q1x,Q1x 〉 = 〈 |G|Q1x, Q1x 〉 > 0.
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Analogously, Q2 is B-negative and Q0 + Q1 + Q2 = (PT0 + PT1 + PT2)Q = (PN +
PS	N )Q = Q.

It follows from the proof of Theorem 5.1 that the constructed projections Qi also
satisfy:

(i) QiQj = 0 if i 6= j,

(ii) R(Qi)⊥R(Qj) for i 6= j, and

(iii) 〈Bx, x 〉 > 0 for every x ∈ R(Q1) and 〈Bx, x 〉 < 0 for every x ∈ R(Q2).

Proposition 5.2 shows that, under conditions (i)− (iii), the above decomposition
is unique. Recall that T1 and T2 are the eigenspaces of U corresponding to λ = 1 and
λ = −1 respectively.

Proposition 5.2. Let Q ∈ P(B,S) and suppose that there exist projections Q0,
Q1 and Q2, such that Q0 is B-neutral, Q1 is B-positive, Q2 is B-negative, Q =
Q0 + Q1 + Q2 and they satisfy conditions (i)− (iii). Then,

Q0 = PN//N(Q)uS	N and Qi = PB,Ti for i = 1, 2.

Proof. If Vi = R(Qi) then S = V0⊕V1⊕V2: the sum is direct because, by (ii), Vi⊥Vj

if i 6= j and S ⊆ V0⊕V1⊕V2. Conversely, if x ∈ V0⊕V1⊕V2 then x = v0+v1+v2 with
vi ∈ Vi, but, applying (i), Qi(vj) = 0 if i 6= j and Q(vi) = vi, so that x = Qx ∈ S.

Also, V1⊕V2 = S 	N : since BQ0 = 0 it follows that V0 ⊆ S ∩N(B) = T0. Then,
taking orthogonal complement in S, T1⊕T2 ⊆ V1⊕V2 so that V1⊕V2 = T1⊕T2⊕U
and U ⊆ T0. But U = {0} because, if u ∈ U , u 6= 0 then u = v1 + v2 with vi ∈ Vi,
v1 6= 0 (or v2 6= 0) and Bu = 0. Therefore, Bv1 = −Bv2 and, by condition (iii),
0 < 〈Bv1, v1 〉 = −〈Bv2, v1 〉 = −〈 v2, Bv1 〉 = 〈Bv2, v2 〉 < 0, which is absurd. Then,
V1 ⊕ V2 = T1 ⊕ T2 = S 	N and V0 = T0 = N .

For i = 0, 1, 2, Qi is B-selfadjoint and QiPVi
= PVi

. Then, PVi
BPVj

= PVj
BPVi

=
0 for i 6= j. In fact,

PVi
BPVj

= PVi
BQjPVj

= PVi
Q∗jBPVj

= (QjPVi
)∗BPVj

= 0

since QjPVi = (QjQi)PVi = 0 for i 6= j. Therefore, GB,V0 = 0 and GB,S = GB,T1 +
GB,T2 . By condition (iii), GB,V1 |V1 ∈ L(V1)+ and −GB,V2 |V2 ∈ L(V2)+ are injective.
Furthermore, since PVi

PVj
= PVj

PVi
= 0,

GB,S = GB,V1 + GB,V2 = (GB,V1 −GB,V2)(PV0 + PV1 − PV2),

A = GB,V1 − GB,V2 ∈ L(H)+ (note that A|V1⊕V2 ∈ L(V1 ⊕ V2)+ is injective) and, if
U = PV0 +PV1 −PV2 , then U = U∗ and U2 = PS . If A0 = A|S then GB,S |S = A0U |S
where A0 ∈ L(S)+ and U |S ∈ L(S) is a symmetry. By uniqueness of the polar
decomposition, U is the unitary part of GB,S = GB,S	N , V1 = T1 and V2 = T2.
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Hence, if i = 1, 2, Qi ∈ P(B, Ti) and, since Ti ∩N(B) = {0}, Qi = PB,Ti
. Therefore,

Q0 = Q− PB,T1 − PB,T2 ; multiplying both sides of the last equality by PN it follows
that Q0 = PNQ = PN//N(Q)uS	N .

Given a (bounded) projection Q on (H, 〈 , 〉), it is well known that Q is orthogonal
if and only if Q is a contraction, i.e. ‖Q‖ ≤ 1. More generally, given B ∈ L(H)s con-
sider the indefinite metric space (H, 〈 , 〉B). An operator C ∈ L(H) is a B-contraction
if 〈Cx,Cx 〉B ≤ 〈x, x 〉B . It is easy to see that C is a B-contraction if and only if
C∗BC ≤ B. In [4, Lemma 3.2] it was shown that, if A ∈ L(H)+ and Q ∈ Q, then Q
is A-selfadjoint if and only if Q is an A-contraction.

For a selfadjoint operator B, S. Hassi and K. Nordström proved the following
result, which characterizes those B-selfadjoint projections which are B-contractive
(see [14, Proposition 5]).

Proposition 5.3. Let B ∈ L(H)s. If Q ∈ Q then Q is a B-contraction if and only
if Q is B-selfadjoint and N(Q) is B-nonnegative.

Remark 5.4. Consider B ∈ L(H)s and Q ∈ Q. Then,

1. Q is B-contractive if and only if I−Q is B-positive. Indeed, if Q is B-contractive
then Q is B-selfadjoint i.e. BQ = Q∗B. So, B(I − Q) = B − BQ = B −
Q∗BQ ≥ 0. Conversely, if I−Q is B-positive then I−Q and Q are B-selfadjoint
projections. But B ≥ BQ = Q∗BQ i.e. Q is B-contractive.

2. An operator C ∈ L(H) is a B-expansion if 〈Cx,Cx 〉B ≥ 〈x, x 〉B (i.e. C∗BC ≥
C) and C is a B-isometry if 〈Cx,Cx 〉B = 〈x, x 〉B (i.e. C∗BC = C). It is easy
to see that Q ∈ Q is B-expansive (respectively B-isometric) if and only if I −Q
is B-negative (respectively B-neutral).

Hassi and Nordström [14, Theorem 2] also proved that, if B ∈ GL(H)s, every
B-selfadjoint projection Q can be represented as the product of two commuting
B-selfadjoint projections Q1 and Q2 such that Q1 is B-contractive and Q2 is B-
expansive. The following corollary shows that their result also holds for not necessarily
invertible selfadjoint operators.

Corollary 5.5. Every B-selfadjoint projection Q admits a factorization Q = Q0Q1Q2,
where Q0, Q1 and Q2 are commuting projections such that Q0 is B-isometric, Q1 is
B-contractive and Q2 is B-expansive.

Proof. If Q is B-selfadjoint then I −Q ∈ P(B,N(Q)) and, by Theorem 5.1,

I −Q = E0 + E1 + E2,

where E0 is B-neutral, E1 is B-positive, E2 is B-negative and they satisfy EiEj = 0
if i 6= j. If Qi = I − Ei then QiQj = QjQi and

Q = I − (E0 + E1 + E2) = (I − E0)(I − E1)(I − E2) = Q0Q1Q2.
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Furthermore, Q0 is B-isometric, Q1 is B-contractive and Q2 is B-expansive (see
Remark 5.4).

Observe that Proposition 5.2 also states the uniqueness of the above factorization
if E0, E1 and E2 satisfy conditions (i)− (iii).

We end this section with a description of the so called canonical decompositions
of a Krein space. Given a Krein space (H, 〈 , 〉 , J) (or (H, [ , ])), a canonical decom-
position of H is a decomposition of H as a direct sum

H = S u S [⊥],

where S is a closed subspaces of H such that S is J-positive and S [⊥] is J-negative.
Observe that H = S u S [⊥] is a canonical decomposition if and only if PS//S[⊥] is
B-expansive and I−PS//S[⊥] is B-contractive. Each canonical decomposition defines
a reflection KS (i.e. a bounded invertible operator which coincides with its inverse),
by means of KS = 2PS//S[⊥] − I (see [2]).

Lemma 5.6. Let B ∈ L(H)s and Q ∈ Q such that R(Q) is B-nonnegative and N(Q)
is B-nonpositive. Then, Q is B-selfadjoint if and only if the reflection 2Q − I is
B-positive.

Proof. If Q is a B-selfadjoint projection then BQ = Q∗BQ, so that if K = 2Q− I

〈Kx, x 〉B = 〈Qx,Qx 〉B − 〈 (I −Q)x, (I −Q)x 〉B ≥ 0

because R(Q) is B-nonnegative and N(Q) is B-nonpositive. Thus K is B-positive.
Conversely, if K is B-positive then K is B-selfadjoint. Therefore Q = I+K

2 is B-
selfadjoint.

Consider the set of reflections K = {K ∈ GL(H) : K−1 = K} and the set of
symmetries J = {J ∈ GL(H)s : J−1 = J} ⊂ K. If K ∈ K and K = JK |K| is the
polar decomposition of K then JK ∈ J (see [7, Proposition 3.1]). Then, the map

π : K → J , π(K) = JK ,

is well defined and continuous. Furthermore, the set of canonical decompositions of
(H, 〈 , 〉 , J) can be parametrized by the reflections in the fibre π−1({J}). Observe
that in [7], Propositions 3.1 and 3.2, the formulation is quite different but the contents
are equivalent to those of our Proposition 5.7.

Proposition 5.7. Let (H, 〈 , 〉 , J) be a Krein space. Then H = SuS [⊥] is a canonical
decomposition of H if and only if KS ∈ π−1({J}).
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Proof. Suppose that H = S u S [⊥], or equivalently, PS//S[⊥] is J-selfadjoint, S is
J-positive and S [⊥] is J-negative. By Lemma 5.6 KS is a J-positive operator i.e.
A := JK ∈ L(H)+. Then, K = JA and A∗A = K∗J2K = K∗K i.e. A = |K| and J
is the unitary part in the polar decomposition of K. Therefore, KS ∈ π−1({J}).

Conversely, if K ∈ π−1({J}) then K is J-positive. By Lemma 5.6 the projection
Q = I+K

2 is J-selfadjoint and its is easy to see that S := R(Q) is J-positive and
S [⊥] = N(Q) is J-negative. Therefore, H = S u S [⊥] is a canonical decomposition of
H.

6 Formulas for PB,S

Let B ∈ GL(H)s and consider its polar decomposition B = JA. Then,

〈x, y 〉B = 〈Bx, y 〉 = 〈AJx, y 〉 = 〈 Jx, y 〉A , x, y ∈ H.

Since A ∈ GL(H)+, it follows that 〈 , 〉A is an inner product equivalent to 〈 , 〉
and therefore (H, 〈 , 〉A , J) is a Krein space. Observe that Corollary 4.13 says that
the compatibility of (B,S) is equivalent to the existence of a (unique) J-orthogonal
projection in the Krein space (H, 〈 , 〉A , J) with range M = A1/2(S).

Proposition 6.1. Let B ∈ GL(H)s and let S be a closed subspace of H. If (B,S) is
compatible, then PB,S = A−1/2PM//M[⊥]A1/2.

Proof. If (B,S) is compatible then, by Theorem 4.15, PM//M[⊥] ∈ L(H) and P(B,S)
is a singleton. Consider

Q = A−1/2PM//M[⊥]A1/2.

Q is a projection such that R(Q) = S and BQ = Q∗B. Then, Q = PB,S .

The first part of this section is devoted to generalize the above formula PB,S =
A−1/2PM//M[⊥]A1/2 (obtained for B ∈ GL(H)s) to an arbitrary selfadjoint operator.

Given an operator B ∈ L(H)s, consider its polar decomposition B = JA, with
A ∈ L(H)+, J = J∗ = J−1. If S is a closed subspace of H let P = PS be the
orthogonal projection onto S and define the closed subspace M = A1/2(S).

Recall that if (B,S) is compatible then M is a J-non degenerated subspace of
(H, 〈 , 〉 , J). Therefore, the projection PM//M[⊥] has dense domain (MuM[⊥]) but
it can be an unbounded operator. However, R(A1/2) ⊆ M uM[⊥] and the product
PM//M[⊥]A1/2 remains bounded as shown in the following Proposition.

Proposition 6.2. Let (B,S) be compatible and consider T = PM//M[⊥]A1/2. Then,
T is well defined and bounded.
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Proof. If (B,S) is compatible then, by Corollary 4.5,

R(A1/2) = M∩R(A1/2) uM[⊥] ∩R(A1/2) ⊆M+M[⊥].

Therefore, T is well defined because Dom(PM//M[⊥]) = M+M[⊥]. Let Q ∈ P(B,S).
For every x ∈ H,

Tx = TQx + T (I −Q)x.

Since Qx ∈ S, TQx = PM//M[⊥]A1/2Qx = A1/2Qx and T (I − Q)x = 0 because
A1/2(I −Q)x ∈ A1/2B−1(S⊥) = A1/2(S)[⊥] ∩R(A1/2) ⊆M[⊥]. Therefore,

PM//M[⊥]A1/2 = T = A1/2Q ∈ L(H). (6.1)

Corollary 6.3. (B,S) is compatible if and only if R(A1/2) ⊆MuM[⊥] and

R(PM//M[⊥]A1/2) ⊆ R(A1/2P ).

Proof. If (B,S) is compatible then, by Corollary 4.5, R(A1/2) ⊆ MuM[⊥] and, by
Eq. (6.1), PM//M[⊥]A1/2 = A1/2Q with Q ∈ P(B,S). Therefore R(PM//M[⊥]A1/2) ⊆
R(A1/2Q) = R(A1/2P ).

Conversely, suppose that R(A1/2) ⊆MuM[⊥] and R(PM//M[⊥]A1/2) ⊆ R(A1/2P ).
Let y ∈ R(A1/2) and consider the vectors y1 = PM//M[⊥]y and y2 = (I−PM//M[⊥])y.
Note that y1 ∈ R(PM//M[⊥]A1/2) ⊆ R(A1/2P ) = A1/2(S). Then, it is clear that y2 =
y − y1 ∈ R(A1/2) and, y2 ∈ N(PM//M[⊥]) = M[⊥]. Thus, y2 ∈ A1/2(S)[⊥] ∩R(A1/2)
and the decomposition R(A1/2) = A1/2(S) u A1/2(S)[⊥] ∩ R(A1/2) is proved. By
Proposition 4.4, (B,S) is compatible.

Corollary 6.4. Let B = JA be the polar decomposition of B ∈ L(H)s with A ∈
L(H)+ and J = J∗ = J−1. Given a closed subspace S of H, consider the subspace
M = A1/2(S). Then, (B,S) is compatible if and only if the following conditions
holds:

1. PM//M[⊥]A1/2 ∈ L(H),

2. A1/2(S) is closed in R(A1/2),

3. R(PM//M[⊥]A1/2) ⊆ R(A1/2).

Proof. Suppose that (B,S) is compatible. Then, condition 1. is a consequence of
Proposition 6.2. Furthermore, by Corollary 4.5, A1/2(S) is closed in R(A1/2) and

R(A1/2) = A1/2(S) +M[⊥] ∩R(A1/2).

Therefore, R(PM//M[⊥]A1/2) = A1/2(S) ⊆ R(A1/2).
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Conversely, suppose that conditions 1., 2. and 3. are fulfilled. If PM//M[⊥]A1/2 ∈
L(H) then (I − PM//M[⊥])A1/2 is also bounded and, for every x ∈ H,

A1/2x = PM//M[⊥]A1/2x + (I − PM//M[⊥])A1/2x.

Observe that PM//M[⊥]A1/2x ∈ R(PM//M[⊥]A1/2) ⊆M∩R(A1/2), so

(I − PM//M[⊥])A1/2x ∈M[⊥] ∩R(A1/2).

Then, R(A1/2) = M∩ R(A1/2) + M[⊥] ∩ R(A1/2) and, by Corollary 4.5, (B,S) is
compatible.

Observe that the above corollaries are generalizations of the result stated for pos-
itive operators in Proposition 2.14 of [5]: If A ∈ L(H)+, then (A,S) is compatible if
and only if R(PMA1/2) ⊆ R(A1/2P ).

Recall that D is the reduced solution of (A1/2P )X = PM//M[⊥]A1/2 if and only
if R(D) ⊆ R((A1/2P )∗) ⊆ R(P ) = S. Then,

A1/2D = PM//M[⊥]A1/2.

Furthermore, if A1/2 is injective, then A−1/2 : R(A1/2) → H is densely defined.
Therefore,

Proposition 6.5. Let B ∈ L(H)s be injective and suppose that (B,S) is compatible.
Then,

PB,S = A−1/2PM//M[⊥]A1/2.

Proof. If (B,S) is compatible then P(B,S) = {PB,S} because B is injective, see
Proposition 3.2. Denote by Q = A−1/2PM//M[⊥]A1/2. It is well defined since
PM//M[⊥]A1/2 is well defined and bounded (see Proposition 6.2) and, by Corollary
6.3,

R(PM//M[⊥]A1/2) ⊆ R(A1/2).

Recall that, by Eq. (6.1), PM//M[⊥]A1/2 = A1/2PB,S . Then,

Q = A−1/2A1/2PB,S = PB,S .

We generalize this formula for a not necessarily injective B ∈ L(H)s. Given the
matrix decomposition induced by R(B),

B =
(

BR 0
0 0

)

21



with BR = B|
R(B)

∈ L(R(B))s injective, we define

B] =
(

B−1
R 0
0 0

)
where B−1

R : R(B) → R(B) is densely defined. Observe that B] is a linear, densely
defined operator. If R(B) is closed then B† = B]PR(B), where B† stands for the
Moore-Penrose pseudoinverse of B.

Proposition 6.6. Consider B ∈ L(H)s such that (B,S) is compatible.

1. If S ⊆ R(B) then
PB,S = (A1/2)]PM//M[⊥]A1/2. (6.2)

2. If N = {0} then

PB,S = (P
R(B)

P )†PB,P
R(B)(S) = (P

R(B)
P )†(A1/2)]PM//M[⊥]A1/2. (6.3)

Proof. It is similar to the proof of Proposition 3.4 of [5].

As it was stated in Section 3, (B,S) is compatible if and only if equation

GB,SX = PB (6.4)

admits a bounded solution. Furthermore, since the reduced solution D of equation
(6.4) satisfies R(D) ⊆ R(GB,S) = R(GB,S	N ) = S 	 N , it is not hard to prove that
D = PB,S	N and

PB,S = PB,S	N + PN . (6.5)

Proposition 6.7. If the pair (B,S) is compatible, then the reduced solution Q of the
equation

(PBP )X = PB (6.6)

coincides with the reduced solution of

(A1/2P )X = PM//M[⊥]A1/2. (6.7)

Proof. By Proposition 6.2, PM//M[⊥]A1/2 is a well defined bounded operator. Then,
Eq. (6.7) is well defined and has a bounded solution (see Corollary 6.3).

By the discussion following Eq. (6.4), the projection Q = PB,S	N is the reduced
solution of Eq. (6.6), but it is also the reduced solution of Eq. (6.7): If z ∈ S 	 N
then (A1/2P )Qz = A1/2z = PM//M[⊥]A1/2z. On the other hand, if z ∈ B(S	N )⊥ =
B(S)⊥ then A1/2z ∈ M[⊥]. So PM//M[⊥]A1/2z = 0 = (A1/2P )Qz. Therefore Q is a
solution of (6.7). Moreover, Q is the reduced solution since

R(Q) = S 	N = (S⊥ +N )⊥ = (S⊥ + S ∩N(B))⊥ = N(A1/2P )⊥ = R((A1/2P )∗),

and the proof is complete.
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Suppose that B ∈ L(H)s is a closed range operator. If (B,S) is compatible and
N = {0} then the proof of Proposition 4.14 suggests the following formula for PB,S :

PB,S = P GB,S
† PB = P (PBP )†PB. (6.8)

Furthermore, if N 6= {0} we have that P = PS	N + PN . Then, by Eq. (6.8) and
Remark 3.4 we get

PB,S = PN + P (PBP )†PB (6.9)

In what follows we are going to show that, in the above formulas, we can replace the
orthogonal projection P for an arbitrary bounded operator C ∈ L(H) with R(C) = S,
for an arbitrary selfadjoint operator B.

Proposition 6.8. Let B ∈ L(H)s and consider S a closed subspace of H. Then,
(B,S) is compatible if and only if R(C∗BC) = R(C∗B) for every C ∈ L(H) with
R(C) = S.

Proof. The sufficiency follows from Equation (6.4) taking C = PS , the orthogonal
projection onto S.

Conversely, fix C ∈ L(H) with R(C) = S and observe that C = PC. Since
R(PBP ) = R(PB),

R(C∗BC) = C∗(PB(S)) = C∗(R(PBP )) = C∗(R(PB)) = R(C∗B).

Proposition 6.9. Let B ∈ L(H)s and S be a closed subspace of H such that (B,S)
is compatible and consider C ∈ L(H) with R(C) = S. Then PB,S	N = CD, where D
is the reduced solution of the equation

(C∗BC)X = C∗B. (6.10)

Proof. First of all note that we can suppose that N = S ∩ B(S)⊥ = {0}. Indeed,
since (B,S) is compatible, N = S ∩N(B) and, for a fixed C ∈ L(H) with R(C) = S,
BC = BPSC = B(PS	N + PN )C = BPS	NC. Then, if C1 = PS	NC we have that
R(C1) = S 	N , BC1 = BC and

C∗1BC1 = C∗1BC = (BC1)∗C = (BC)∗C = C∗BC.

So, the equation (C∗BC)X = C∗B can be rewritten as (C∗1BC1)X = C∗1B, where
R(C1) = S 	N and N1 = (S 	N ) ∩B(S 	N )⊥ = (S 	N ) ∩B(S)⊥ = {0}.

Therefore, fix C ∈ L(H) with R(C) = S and suppose that N = {0}. If D ∈ L(H)
is the reduced solution of Eq. (6.10), then R(D) ⊆ R(C∗BC) and N(D) = N(C∗B) =
B(S)⊥. Furthermore,

(C∗BC)DCD = C∗BCD = C∗B
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and R(DCD) ⊆ R(D) ⊆ R(C∗BC). Therefore, by uniqueness of the reduced solution,
DCD = D. Then, CD ∈ Q and N(CD) = N(D) = B(S)⊥.

It is clear that R(CD) ⊆ R(C) = S but, since H = S u B(S)⊥ and N(CD) =
B(S)⊥, we have that R(CD) = S.

Suppose that (B,S) is compatible. If D is the reduced solution of Eq. (6.10) then
D = P

R(C∗BC)
D = (C∗BC)]C∗B because R(D) ⊆ R(C∗BC). Therefore,

PB,S	N = CD = C(C∗BC)]C∗B

and, by Equation (6.5),

PB,S = PN + C(C∗BC)]C∗B. (6.11)

This formula for PB,S generalizes the one given in Proposition 3.6 of [5] when B
is a positive operator with closed range.
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