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Abstract

Let A be a C∗-algebra. Given a representation A ⊂ B(L) in a Hilbert space L, the set
G+ ⊂ A of positive invertible elements can be thought as the set of inner products in L,
related to A, which are equivalent to the original inner product. The set G+ has a rich
geometry, it is a homogeneous space of the invertible group G of A, with an invariant Finsler
metric. In the present paper we study the tangent bundle TG+ of G+, as a homogenous
Finsler space of a natural group of invertible matrices in M2(A), identifying TG+ with the
Poincaré halfspace H of A,

H = {h ∈ A : Im(h) ≥ 0, Im(h) invertible}.

We show that H ≃ TG+ has properties similar to those of a space of non-positive constant
curvature.

2010 MSC: 46L05, 58B20, 22E65, 46L08
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1 Introduction

Let A be a unital C∗-algebra, G the group of invertible elements in A, G+ the subset of G of
positive elements.

Observe that G+, as an open subset of As := {x ∈ A : x∗ = x}, is an open submanifold of As
and its tangent space at any point is identified with As. If Gs = G ∩ As, then it can be proven
that G+ is the component of the identity in Gs. Also, there is a left action of G on Gs given
by g · a = (g−1)∗ag−1, and G+ is the orbit of 1 under this action. With this dual nature, G+

carries a natural structure of homogeneous space of G, with a linear connection, and a Finsler
metric. These facts, and many others concerning the differential geometry of G+, have been
studied in [6], [8], [9]. The goal of the present paper is the study of the tangent bundle TG+, in
particular its presentation as a homogeneous space of the unitary group of a natural quadratic
form in A2 = A×A.

There are several motivations for this study.
We consider G+ as the configuration space of a quantum mechanical system whose elements

represent a family of equivalent metrics over a Hilbert space. The tangent bundle TG+ is the
phase space of the configuration space G+ of the quantum system. Note also that TG+ identifies
in a natural way with the bundle of observables associated with the different metrics. We shall
explain this with more detail below.
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Note the correspondence
(a,X)←→ X + ia,

where a ∈ G+ and X ∈ (TG+)a; here X is a selfadjoint element of A, because G+ is open in
the space of selfadjoint elements of A. This correspondence establishes a clear identification
between TG+ and H, the Poincaré half-space of A,

H = {h ∈ A : Im(h) ∈ G+}.
Following ideas from C.L. Siegel [19], [20] and [21], we claim that there is a natural form θH in
A ×A = A2, determined by H, whose unitary group U(θH) acts transitively in H. Namely, if

we put projective coordinates

(

x1
x2

)

∈ A2, elements h = x2x
−1
1 ∈ H are characterized by the

condition

Im(h) =
1

2i
{x2x−1

1 − (x∗1)
−1x∗2} =

1

2i
(x∗1)

−1{x∗1x2 − x∗2x1}x−1
1 ∈ G+,

or equivalently 1
2i{x∗1x2 − x∗2x1} ∈ G+. Thus, if we put

θH(

(

x1
x2

)

,

(

y1
y2

)

) =
1

i
{x∗1y2 − x∗2y1},

the condition Im(h) ∈ G+ is θH(

(

x1
x2

)

,

(

x1
x2

)

) ∈ G+.

The unitary group U(θH) of θH , i.e., the group of invertible matrices in M2(A) which pre-
serve θH , acts transitively on H, and makes H a homogeneous space. Therefore, TG+ can
be considered as the phase space of the mentioned quantum system, with the group U(θH) of
symmetries.

The homogenous space H identifies in turn, also in a natural fashion, with the space QρH of
selfadjoint projections in A2 which decompose the quadratic form θH (where ρH is the reflection
in A2 induced by θH). This identification is equivariant with the respective actions of the
symmetry group U(θH).

The space Qρ, for arbitrary symmetries ρ, was studied thoroughly in [7]; we can deduce the
geometric and metric properties of TG+ from the properties established for QρH .

In a forthcoming second part of this paper, we shall study additional geometric structures
related to a pre-quantization of TG+, in the framework of a Hilbert-C∗-module structure.

We also establish a natural bijection between TG+ and the space D of strict contractions of
A,

D = {a ∈ A : ‖a‖ < 1}.
Besides the form θH and the group UU (θH) of invertible elements in M2(A) which leave θH

invariant, an important role will be played by the unit sphere KH ,

KH = {
(

x1
x2

)

∈ A2 : θH(

(

x1
x2

)

,

(

x1
x2

)

) = 1}.

The sphere KH will serve the role of a coordinate space for H, and these data will be related by
the commutative diagram of U(θH)-homogeneous spaces

KH
ϕ

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ ϕ̄

""❊
❊❊

❊❊
❊❊

❊

H ΦH
// QρH
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where ϕ and ϕ̃ are submersions and ΦH is a diffeomorphism.
There is an analogous commutative triangle for the open unit disk model, by means of the

form θD,

θD(

(

x1
x2

)

,

(

y1
y2

)

) = x∗1y1 − x∗2y2.

Both forms (and therefore both sets of data) are covariantly related by the unitary matrix in
M2(A)

U =
1√
2

(

1 1
i −i

)

.

For instance, the bijection between H and D is a Moebius transformation.
Let us summarize the contents of the paper. In Section 2 we define the space H, the form

θH , the unitary group U(θH) and the sphere KH of this form. In Section 3 we introduce an
alternative model for H, namely the open unit disk D, along with the form θD and the unitary
group U(θD) and sphere KD of this form. The spaces, forms, groups and unit spheres of both
models are intertwined by the unitary matrix U ∈ M2(A). The reason to have two models
for the same space, is that some computations are easier or more natural with one or the
other. For instance, in Section 4 we study the local (Banach-Lie group) structure of U(θH).
An important role is played by the subgroup B ⊂ U(θH), which we call the Borel subgroup of
U(θH), and which has a natural meaning in this setting. In Section 5, we introduce the action
of U(θD) on the unit sphere KD, which implies that also U(θH) acts on KH (this is another
example, where a fact is easier to establish in model than the other). These actions enable us
to introduce the actions of U(θH) and U(θD) on H and D, respectively. It is shown that these
actions are transitive, and the isotropy subgroups are computed. In Section 7, we recall from
[7] the space Qρ of signed decompositions of a form induced by a symmetry ρ, and prove that
there are natural diffeomorphisms between Qρ, H and D, which are equivariant with respect to
the corresponding group actions. This is a key fact, which allows us to import from Qρ to H
and D the main geometric features of that space: a linear connection, a Finsler metric and its
properties. Among these, that H behaves as a non-positively curved metric length space [12].
In Section 9 we compute the specific form of the linear connection induced in H. In Section 10
we compute special cases of geodesics in H. Finally, in Section 11, as an Appendix, we outline
an intrinsic, coordinate free, version for the Poncaré half-space, in terms of a Hilbertizable space
endowed with a coherent family of inner products.

2 Poincaré halfspace

We define the following forms in A2:

Definition 2.1. The A-valued inner product:

<

(

a1
a2

)

,

(

b1
b2

)

>= a∗1b1 + a∗2b2

and the A-valued simplectic form

ω(

(

a1
a2

)

,

(

b1
b2

)

) = a∗2b1 − a∗1b2.

3



Let us denote

J =

(

0 1
−1 0

)

∈M2(A).

Then, it is apparent that

ω(

(

a1
a2

)

,

(

b1
b2

)

) =< J

(

a1
a2

)

,

(

b1
b2

)

> .

We shall denote by ã, b̃, c̃, etc. the elements of M2(A). Let us denote by Gl2(A) the group
of invertible elements and by U2(A) the group of unitary elements in M2(A).

We shall use the selfadjoint reflection ρH (i.e., ρ2H = 1, ρ∗H = ρH , ),

ρH = −iJ =

(

0 −i
i 0

)

.

and the form θH

θH(

(

x1
x2

)

,

(

y1
y2

)

) =< ρH

(

x1
x2

)

,

(

y1
y2

)

>=
1

i
(x∗1y2 − x∗2y1),

i.e., θH = iω.
The following group, which is the group of invertible matrices in M2(A) which preserve the

form θH (equivalently, the form ω), will play an important role in this study:

U(θH) = {ã ∈ Gl2(A) : θH(ã
(

b1
b2

)

, ã

(

c1
c2

)

) = θH(

(

b1
b2

)

,

(

c1
c2

)

),

for all

(

b1
b2

)

,

(

c1
c2

)

∈ A2}. (1)

Clearly,
ã ∈ U(θH) if and only if ρH ã

∗ρH = ã−1.

Definition 2.2. Let KH ⊂ A2 be the set

KH = {
(

a1
a2

)

∈ A2 : θH(

(

a1
a2

)

,

(

a1
a2

)

) = 1, with a1 ∈ G},

i.e.,

(

a1
a2

)

∈ KH if 1
i (a

∗
1a2 − a∗2a1) = 2Im(a∗1a2) = 1. Notice that a2 ∈ G, automatically.

We shall use this hyperboloid KH to understand the geometry of H; it shall be a coordinate
space for H.

There is a natural fibration of KH over H:

ϕH : KH →H, ϕH(
(

x1
x2

)

) = x2x
−1
1 .
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3 The open unit disk model for TG+

We shall study an alternative model for H (i.e., for TG+). The main reason to give this
alternative version is that many computations will be clearer (and easier) in this model.

Let D be the open unit ball of A:

D = {z ∈ A : z∗z < 1} = {z ∈ A : ‖z‖ < 1}.

Consider the selfadjoint reflection ρD:

ρD =

(

1 0
0 −1

)

.

The induced A-valued indefinite inner product on A2

θD(

(

x1
x2

)

,

(

y1
y2

)

) =< ρD

(

x1
x2

)

,

(

y1
y2

)

>= x∗1y1 − x∗2y2.

The group U(θD) of elements in Gl2(A) which preserve the form θD:

U(θD) = {ã ∈ Gl2(A) : θD(ã
(

x1
x2

)

, ã

(

y1
y2

)

) = θD(

(

x1
x2

)

,

(

y1
y2

)

)}.

Equivalently, ã ∈ U(θD) if ρDã∗ρD = ã−1.
Before proceeding any further, note that ρD and ρH are conjugate via the unitary element

U =
1√
2

(

1 1
i −i

)

, (2)

i.e.,
UρDU

∗ = ρH . (3)

Therefore, the groups U(θH) and U(θD) are conjugate, and the properties and features of
U(θH) are translated to U(θD).

The sphere KD

KD := {
(

x1
x2

)

∈ A2 : θD(

(

x1
x2

)

,

(

x1
x2

)

) = 1, x1 ∈ G}

= {
(

x1
x2

)

∈ A2 : x∗1x1 − x∗2x2 = 1, x1 ∈ G}.

There is an analogous fibration of KD over D:

ϕD : KD → D, ϕD(

(

x1
x2

)

) = x2x
−1
1 .

In fact, if

(

x1
x2

)

∈ KD, then
x∗1x1 = 1 + x∗2x2,
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and it follows that

1 = (x−1
1 )∗(1 + x∗2x2)x

−1
1 = (x1x

∗
1)

−1 + (x2x
−1
1 )∗x2x

−1
1 ;

thus
(x2x

−1
1 )∗x2x

−1
1 < 1,

i.e., x2x
−1
1 ∈ D

Lemma 3.1.

(

x1
x2

)

∈ KD if and only if U

(

x1
x2

)

∈ KH .

Proof. The fact that UρDU
∗ = ρH implies that the equation θD(

(

x1
x2

)

,

(

x1
x2

)

) = 1 is

equivalent to θH(U

(

x1
x2

)

, U

(

x1
x2

)

) = 1.

Let us check the invertibility conditions. If

(

x1
x2

)

∈ KD, then x1 ∈ G. We must verify that

the first coordinate of U

(

x1
x2

)

is invertible. Equivalently, that 1+x2x
−1
1 = (x1+x2)x

−1
1 ∈ G.

Since

(

x1
x2

)

∈ KD, it follows that x2x
−1
1 ∈ D, and thus ‖x2x−1

1 ‖ < 1. Then 1 + x2x
−1
1 is

invertible.

Conversely, suppose that

(

z1
z2

)

= U

(

x1
x2

)

∈ KH . Then z1, z2 are invertible, and we must

check that z1 − iz2 is also invertible. The fact that

(

z1
z2

)

∈ KH implies that Im(z2z
−1
1 ) > 0.

Therefore a straightforward computation shows that −i /∈ σ(z2z−1
1 ). Then z2z

−1
1 + i = i(z1 −

iz2)z
−1
1 ∈ G, i.e., z1 − iz2 ∈ G

4 The groups U(θH) and U(θD)
We shall describe in the next subsections the basic properties shared by U(θH) and U(θD). Some
computations are easier or more natural in one of the two presentations of these isomorphic
groups.

4.1 The unitary group U(θH) of the form θH

In order to study U(θH), we consider the following subgroups

Definition 4.1. Let B be the group of elements b̃ ∈ U(θH) which are of the form

b̃ =

(

b11 0
b21 b22

)

and T consisting of c̃,

c̃ =

(

1 τ
0 1

)

,

with τ∗ = τ .

6



It is apparent that B, which we will call the Borel subgroup of U(θH), is indeed a group. Also
it is clear that T is a group. Note that

Jc̃∗J−1 =

(

0 1
−1 0

)(

1 0
τ 1

)(

0 −1
1 0

)

=

(

1 −τ
0 1

)

= c̃−1,

i.e., c̃ ∈ U(θH).
We shall see that these groups are complemented Banach-Lie subgroups of Gl2(A).
An elementary computation shows that U(θH) is closed under the involution of M2(A):

if ã ∈ U(θH) then ã∗ ∈ U(θH). It follows that the factors of the polar decomposition of
ã = ũ|ã| remains inside U(θH): ũ, |ã| ∈ U(θH). It suffices to show that |ã| ∈ U(θH). Clearly
|ã|2 = ã∗ã ∈ U(θH). Note that both J |ã|J−1 and |ã|−1 are positive elements with the same
square:

(J |ã|J−1)2 = J |ã|2J−1 = Jã∗ãJ−1 = (ã∗ã)−1 = |ã|−2.

Then J |ã|J−1 = |ã|−1.
The same is true for the other polar decomposition ã = |ã∗|w̃.
Note also the elementary fact that a unitary element ũ belongs to U(θH) if and only if it

commutes with J . Similarly, a positive element b̃ ∈ U(θH) if and only if Jb̃J−1 = b̃−1.
We shall denote by UU (θH) the (subgroup of) unitary elements of U(θH), and by U(θH)+

the set of positive elements in U(θH).

Proposition 4.2. The group U(θH) is a C∞ Banach-Lie group, and a complemented subman-
ifold of M2(A).

Proof. Let us exhibit a local chart for 1 ∈ U(θH). Denote by M2(A)s and M2(A)as the spaces
of selfadjoint and anti-selfadjoint elements of M2(A). Consider the space

X = Xas ⊕ Xs = {β̃ ∈M2(A)as : β̃J = Jβ̃} ⊕ {γ̃ ∈M2(A)s : γ̃J = −Jγ̃}. (4)

Elements X ∈ X are of the form X = β̃ + γ̃,

X =

(

β11 β12
−β12 −β11

)

+

(

γ11 γ12
γ12 −γ11

)

with β∗11 = −β11, and all other entries selfadjoint. Consider the map

E : X → U(θH), E(β̃ + γ̃) = eβ̃eγ̃ .

Note that eβ̃ is a unitary element which commutes with J , i.e., eβ̃ ∈ UU (θH). The element eγ̃

is a positive invertible element of M2(A); the fact that the exponent γ̃ anticommutes with J
means that eγ̃J = Je−γ̃ , i.e., eγ̃ ∈ U(θH)+, and thus E is well defined. If one restricts E to

V = {β̃ ∈ Xas : ‖β̃‖ < π} ⊕ Xs,

then E|V is a homeomorphism onto

W = {ã ∈ U(θH) : ‖ũ− 1‖ < 2, where ũ = ã|ã|−1}.

Clearly, V andW are open sets of X and U(θH), respectively. If ã ∈ W, the fact that ‖ũ−1‖ < 2

implies that ũ = eδ̃ for a unique δ̃ ∈ M2(A)as with ‖δ̃‖ < π (and thus δ̃ is a series in powers

7



of u). Since ũ is unitary and belongs to U(θH), it commutes with J . Then, its logarithm δ̃
commutes with J , i.e., δ̃ ∈ X1. On the other hand, since |ã| is positive and invertible, it has a
unique selfadjoint logarithm log(|ã|) = ǫ̃. The fact that J |ã|J−1 = |ã|−1 implies that

Jǫ̃J−1 = J log(|ã|)J−1 = log(J |ã|J−1) = log(|ã|−1) = − log(|ã|) = −ǫ̃,

i.e., ǫ̃ ∈ X2, and thus ã = E(δ, ǫ). The inverse of E is

E−1 :W → V, E−1(ã) = log(ã|ã|−1) + log(|ã|) ∈ X1 ⊕ X2.

It is apparent that both E and E−1 are C∞ maps. The Banach space X on which the neighbour-
hoodW of 1 in U(θH) is modelled, is complemented in M2(A). Indeed, X can be also presented
as

X = {X ∈M2(A) : X =

(

x11 x12
x21 −x∗11

)

, with x12, x21 ∈ As}.

A supplement for X is, for instance:

{
(

a b
c a∗

)

: b∗ = −b, c∗ = −c}.

Charts around other elements of U(θH) are obtained by translation, using the left action of
U(θH) on itself.

Remark 4.3. The differential at the origin of the map E is the identity. It follows that the
Banach-Lie algebra µ(θH) of U(θH) coincides with X : X ∈ µ(θH) if

X =

(

x11 x12
x21 −x∗11

)

,

where x12 and x21 are selfadjoint.

Proposition 4.4. B and T are Banach-Lie subgroups of U(θH), and complemented submanifolds
of M2(A). They generate an open and closed subgroup of U(θH), which contains the connected
component of the identity.

Proof. First note that the diagonal entries of elements in B must be invertible elements in A.
Elementary matrix computations show that b̃ ∈ B if and only if it is of the form

b̃ =

(

b 0
x (b∗)−1

)

,

with b∗xb−1 = x∗, or, equivalently, b∗x selfadjoint. Thus, B can be parametrized by

B = {(b, x) : b invertible in A and b∗x ∈ As}.

This set B is globally diffeomorphic to the set

G×As = {(a, y) : a invertible in A, y = y∗}.

8



which is a complemented submanifold of A2. The diffeomorphism and its inverse are given by
(b, x) 7→ (b, b∗x) and (a, y) 7→ (a, (a∗)−1y). Thus, B is globally diffeomorphic to a submanifold
of A2. Moreover, this diffeomorphism extends to an open subset of M2(A):

M2(A) = {
(

a c
y + z d

)

: (a, y) ∈ G×As, z, c, d ∈ A, z∗ = −z} →M2(A),

(

a c
y + z d

)

7→
(

a c
(a∗)−1y + z (a∗)−1 + d

)

which maps G×As onto B.
The Banach-Lie algebra aB of B can be computed using this parametrization. If b(t) ∈ GA

and x(t) ∈ A are smooth curves such that b∗(t)x(t) is selfadjoint, b(0) = 1, ḃ(0) = y11, x(0) = 0
and ẋ(0) = y21, then

b̃(t) =

(

b(t) 0
x(t) (b∗(t))−1

)

is a smooth curve in B with b̃(0) = 1 and
˙̃
b(0) = Y ,

Y =

(

y11 0
y21 −y∗11

)

,

where d
dt{b∗(t)x(t)} = ḃ∗(t)x(t) + b∗(t)ẋ(t) ∈ As; in particular, at t = 0, this implies that y21 is

selfadjoint. Thus, the Banach-Lie algebra aB of B is

aB = {Y =

(

y11 0
y21 −y∗11

)

: y∗21 = y21}.

The subgroup T is parametrized by As, and can be proved to be a submanifold of M2(A)
in a similar (simpler) fashion. Also, it is apparent that its Banach-Lie algebra aT of T is

aT = {Z =

(

0 z12
0 0

)

: z∗12 = z12}.

We claim that the subgroups B and T generate a closed and open subgroup of U(θH). To
this effect, note that the Banach-Lie algebras of these groups are in direct sum, and its sum is
the Banach-Lie algebra µ(θH) of UU(θH):

µ(θH) = aB ⊕ aT .

It follows that there is a neighbourhood W of 1 in U(θH) where any element is the product of
elements in B and T . Let ã0 ∈ U(θH) which is a product of elements in B and T . Then

U0 = {ã : ã−1
0 ã ∈ U}

is an open neighbourhood of ã0 in U(θH). It follows that the set of these products is an open
subgroup. The relation

ã ∼ b̃ if and only if ã−1b̃ ∈ BT
is an equivalence relation. It follows that this subgroup is a union of connected components of
U(θH), containing the connected component of the identity.

9



Remark 4.5. If A is a von Neumann algebra, then U(θH) is connected. Since U(θH)+ is clearly
connected (in fact, contractible), one needs to show that U2(A) ∩ {J}′ is connected. Since J is
anti-selfadjoint, it follows that {J}′ ⊂M2(A) is a von Neumann algebra, and therefore

U2(A) ∩ {J}′

is the unitary group of a von Neumann algebra, thus connected.

Theorem 4.6. The unitary part
U2(A) ∩ {J}′

of U(θH) is isomorphic to UA × UA. The group Π0(U(θH)) of connected components of U(θH),
is isomorphic to Π0(UA)×Π0(UA).

Proof. Consider the map

{J}′ → A,
(

a b
−b a

)

7→ a+ ib.

This map is an injective C∗-homomorphism; thus, its restriction to U2(A) ∩ {J}′

Γ : UU (θH)→ UA

is a group homomorphism. It is a retraction: the map u 7→
(

u 0
0 u

)

is a cross section for Γ and

a group homomorphism. By straightforward computations, the kernel of Γ consist of matrices

(

a i(a− 1)
−i(a− 1) a

)

with a∗a = aa∗ = 1
2 (a + a∗). Then a is a normal element, which is a zero of the continuous

function f(z) = |z|2 − Re(z). Therefore, the spectrum of a is contained in the zero set of f ,
namely {z ∈ C : |z− 1

2 | = 1
2}. The map z 7→ 2z− 1 sends this circle to the unit circle, and since

it is a polynomial map, it sends elements a as above onto normal elements with spectrum in the
unit circle, i.e., unitary elements of A. Conversely, if u ∈ UA, elementary computations show
that a = 1

2(u+ 1) satisfies a∗a = aa∗ = 1
2 (a+ a∗). Moreover, it is easy to verify that the map

ker Γ→ UA,
(

a i(a− 1)
−i(a− 1) a

)

7→ 2a− 1

is a group homomorphism, thus a bicontinuous isomorphism.
Therefore, since Γ splits, one has that (by means of an explicit isomorphism)

UU (θH) ≃→ UA × A.

The polar decomposition induces the isomorphism between Π0(U(θH)) and Π0(UU (θH)), because
the positive part U+(θH) is contractible.

Corollary 4.7. B and T generate U(θH) if and only if UA is connected.

10



5 The unitary group U(θD) of the form θD

As remarked above, U(θD) and U(θH) are conjugate via the unitary operator U given in (2).
Therefore the same properties proved for U(θH) also hold for U(θD). Thus, UU (θD) is a Banach-
Lie subgroup of Gl2(A) and it is closed under the polar decomposition: if ã ∈ U(θD) and ã = ũ|ã|
is its polar decomposition, then ũ, |ã| ∈ U(θD). The fact that the unitary part ũ belongs to U(θD)
means that U(θD) commutes with ρD. It is elementary that this implies that the matrix of ũ is
of the form

ũ =

(

u1 0
0 u2

)

,

with u1, u2 in UA. Denote by λ̃ = log |ã| the unique selfadjoint logarithm of the (positive
invertible) element |ã|. The fact that ρ|ã| = |ã|−1ρD, means that

ρDλ̃ = −λ̃ρD.

On the other hand, positive elements r̃ ∈ U(θD) satisfy that ρD r̃ρD r̃ = 1. In particular, if

r̃ =

(

r11 r12
r∗12 r22

)

,

then r11 ≥ 1, because r11 ≥ 0 and r211 − r12r∗12 = 1.
The main issue in introducing this description of U(θD) is the following result:

Theorem 5.1. U(θD) acts on KD by left multiplication: if ã ∈ U(θD) and
(

x1
x2

)

∈ KD, then

ã

(

x1
x2

)

∈ KD.

Proof. Recall that

(

x1
x2

)

= (x1, x2) ∈ KD means that θD(

(

x1
x2

)

,

(

x1
x2

)

) = 1 and that

x1 ∈ G. Since ã preserves θD, it is clear that θD(ã

(

x1
x2

)

, ã

(

x1
x2

)

) = 1. We must show

that the first coordinate of ã

(

x1
x2

)

is invertible in A. Clearly, it suffices to prove this fact

separately for the unitary part ũ and the absolute value |ã|. The first assertion is clear:

ũ

(

x1
x2

)

=

(

u1 0
0 u2

)(

x1
x2

)

=

(

u1x1
u2x2

)

,

and u1x1 is invertible.
For the second assertion, we claim that if r̃ is a positive element in U(θD),

r̃ =

(

r11 r12
r∗12 r22

)

which satisfies that ‖r12‖ < 1, then the first coordinate of r̃

(

x1
x2

)

is invertible for any

(

x1
x2

)

∈
KD. Indeed, the first coordinate of this product is r11x1+ r12x2. Since x1 is invertible, this sum

11



is invertible if and only if r11+r12x2x
−1
1 is invertible. Since ‖x2x−1

1 ‖ < 1 and ‖r12‖ < 1, it follows
that ‖r12x2x−1

1 ‖ < 1. Recall from above that r11 ≥ 1. These facts imply that r11 + r12x2x
−1
1 is

invertible.
Note that for any n ≥ 1, |ã|1/n = e

1

n
λ ∈ U(θD), because 1

nλ anti-commutes with ρD. Note also

that |ã|1/n → 1 as n→∞. Thus, there exists n ≥ 0 such that r = |ã|1/n satisfies that ‖r12‖ < 1.

It follows from the above observation, that for any

(

x1
x2

)

∈ KD, |ã|1/n
(

x1
x2

)

∈ KD. Then,

inductively,

|ã|
(

x1
x2

)

= |ã|1/n(. . . (|ã|1/n
(

x1
x2

)

) ∈ KD.

Therefore:

Corollary 5.2. U(θH) acts on KH by left multiplication.

6 The actions of U(θD) and U(θH) on D and H
In this section we prove that U(θH) acts in TG+ (in fact, we prove this fact for the disk model
D of TG+). First let us note that there is the natural inmersion G+ →֒ TG+, a 7→ 0 + ia. G+

is a homogeneous space of G, with the left action g · a = (g∗)−1ag−1. This action is the main
feature in studying the geometry of G+. We shall see that it can be regarded as a restriction of
the action of UU (θH) on TG+ (see [6], [8], [9]). Note that G is a subgroup of UU(θH), via the
injective group homomorphism

G →֒ UU (θH) , g 7→
(

g 0
0 (g∗)−1

)

.

In order to introduce the actions of U(θD) and U(θH) on D and H, respectively, we need the
maps:

ϕD : KD → D , ϕ(x1, x2) = x2x
−1
1 ,

and
ϕH : KH →H , ϕ(x1, x2) = x2x

−1
1 .

Definition 6.1.

• Given z ∈ D, consider (1, z) and compute θD((1, z), (1.z)) = 1 − z∗z. Since ‖z‖ < 1,
this element is positive and invertible. Then (1 − z∗z)−1/2, z(1 − z∗z)−1/2) ∈ KD. If

ã =

(

a11 a12
a21 a22

)

∈ U(θD), put

ã · z := ϕD(ã

(

(1− z∗z)−1/2

z(1− z∗z)−1/2)

)

) = (a21 + a22z)(a11 + a12z)
−1.

• Analogously, given h ∈ H, θH((1, h), (1, h)) = 2 Im(h).

Then ( 1√
2
Im(h)−1/2, 1√

2
hIm(h)−1/2) ∈ KH . For ã =

(

a11 a12
a21 a22

)

∈ U(θH), put

ã · h := ϕH(ã

(

1√
2
Im(h)−1/2

1√
2
hIm(h)−1/2

)

) = (a21 + a22h)(a11 + a12h)
−1.

12



Remark 6.2. Both actions are well defined, and they are, indeed, left actions.

Let us prove that these left actions are transitive. More specifically:

Proposition 6.3. The action of the subgroup B on H is transitive.

Proof. Let h ∈ H and b̃ ∈ B,
b̃ =

(

b 0
x (b∗)−1

)

,

with b∗x selfadjoint. Then:

b̃ · h = xb−1 + (b∗)−1hb−1 = (b∗)−1(b∗x+ h)b−1.

The map x 7→ (b∗)−1xb−1 is a linear isomorphism in A which preserves positivity (and, thus,
selfadjointness). Thus,

Im(b̃ · h) = (b∗)−1Im(h)b−1.

Fix h ∈ H and let h′ be another element in H. Put z = Im(h) and z′ = Im(h′); both are in
G+. The action of G on G+ is transitive, thus there exists g ∈ G such that

z′ = (g∗)−1zg−1.

Put y = h′g − (g∗)−1z. Note that g∗y = g∗h′g − z is selfadjoint:

Im(g∗y) = g∗Im(h′)g − z = g∗z′g − z = 0.

A direct computation shows that if

g̃ =

(

g 0
y (g∗)−1

)

,

then
g̃ · h = h′.

Remark 6.4. As remarked, the unitary matrix U maps KD onto KH , and intertwines the groups
UU (θD) and UU (θH): ã ∈ UU (θH) if and only if U∗ãU ∈ UU (θD). We shall see later (Remark
7.4), that the Moebius transformation Γ : H → D induced by these transformations, maps i ∈ H
to 0 ∈ D. Let us denote by I

H
i the isotropy group (of the action of UU (θH)) of i ∈ H:

I
H
i = {c̃ ∈ UU (θH) : c̃ · i = i}.

Accordingly, the isotropy group (of the action of UU (θD)) of 0 ∈ D is

I
D
0 = {d̃ ∈ UU(θD) : d̃ · 0 = 0}.

The above facts imply that U∗
I
H
i U = I

D
0 .

On the other hand, note that d̃ · 0 = 0 if and only if d21 = 0, since d̃ ∈ UU (θD), this implies
that also d12 = 0 and d11, d22 ∈ UA, i.e.,

I
D
0 = {

(

u 0
0 u

)

: u ∈ UA},

and, therefore, IHi = UI
D
0 U

∗ = I
D
0 .
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Theorem 6.5.

1. The subgroup B acts freely and transitively on KH . In particular, U(θH) acts transitively
on KH .

2. KH is an C∞ submanifold of A2.

3. The restriction of ϕ to KH ,
ϕ|KH

: KH → H
is an C∞ epimorphism, with a global C∞ cross section.

4. The group U(θH) acts covariantly with respect to ϕ (on the left): if ã ∈ U(θH) and
(

b1
b2

)

∈ KH ,

ϕ(ã

(

b1
b2

)

) = ã · ϕ(
(

a1
a2

)

).

Proof. The first assertion: consider the element (1, i) ∈ KH , and pick b̃ ∈ B,

b̃ =

(

b 0
x (b∗)−1

)

with b∗x selfadjoint. Then
b̃ · (1, i) = (b, x+ i(b∗)−1).

These pairs parametrize KH . Pick
(

x1
x2

)

= (x1, x2) ∈ KH . Then b = x1 and x = x2 − i(x∗1)−1

determine a matrix b̃ in B: x1 is invertible and a straightforward computation shows that the

fact that

(

x1
x2

)

∈ KH implies that b∗x is selfadjoint. Clearly b̃ · (1, i) =

(

x1
x2

)

, and b̃ is

determined by this condition.
The second assertion: the action of B provides a homeomorphism

σ : B → KH , σ(b̃) = b̃ · (1, i),

with inverse

σ−1 : KH → B, σ−1(

(

x1
x2

)

) =

(

x1 0
x2 − i(x∗1)−1 (x∗1)

−1

)

.

The map σ−1 extends to H̃ := {
(

a1
a2

)

∈ A2 : Im(a∗1a2), a1 ∈ G}, which is open in A2, and the

map σ extends to M2(A). Therefore σ provides a global C∞ adapted chart for KH (modelled
in the manifold B).

The third assertion: consider the map

ψ : H → KH , ψ(h) =

(

1√
2
Im(h)−1/2

1√
2
h Im(h)−1/2

)

=
1√
2

(

1
h

)

Im(h)−1/2.
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By this description, it is apparent that ψ takes values in H̃, and moreover, after elementary
computations (involving right multiplication by elements of of GA),

iω(ψ(h)) = Im((Im(h)−1/2)∗h Im(h)−1/2) = Im(h)−1/2Im(h)Im(h)−1/2 = 1.

Finally, we get

ϕ(ψ(h)) = ϕ(
1√
2
Im(h)−1/2,

1√
2
hIm(h)−1/2) = h.

The fourth assertion:

ã · ϕ(
(

b1
b2

)

) = ϕ(ã

(

1

b2b
−1
1

)

),

using the invariance of ϕ under the right action of GA, this equals

ϕ(ã

(

b1
b2

)

b−1
1 )) = ϕ(ã

(

b1
b2

)

).

Corollary 6.6. KD is a C∞-submanifold of A2

Proof. In Theorem 6.5 it is shown that KH is a C∞-submanifold of H̃, which is an open subset
of A2. Thus, KD = U∗KH is also a submanifold of A2.

Let us finish this section, by proving the claim made at the beginning of it, that the action
of G in G+ is the restriction of the action of UU (θH) on TG+ (using the model H).

Remark 6.7. The injective group homomorphism G →֒ UU (θH), described at the beginning of

this section, allows one to regard g ∈ G as an element in UU (θH), namely

(

g 0
0 (g∗)−1

)

. An

element a ∈ G+ lies in H as 0 + ia. Then

(

g 0
0 (g∗)−1

)

· (0 + ia) = (g∗)−1iag−1 = ig · a,

which is the guise under which g · a ∈ G+ appears in TG+.

7 The space D as decompositions of an indefinite form.

The fact that ρD is selfadjoint in M2(A) and satisfies ρ2D = 1 implies that the form θD induces
a non degenerate A-valued indefinite quadratic form in A2. We shall consider the following set,
which was studied in [7] (Sections 3,4,6):

QρD = {ǫ ∈M2(A) : ǫ2 = 1 and ρDǫ ∈ G+}.

In particular, ρDǫ is selfadjoint, which implies that

θD(ǫ

(

a1
a2

)

,

(

b1
b2

)

) = θD(

(

a1
a2

)

, ǫ

(

b1
b2

)

) for all

(

a1
a2

)

,

(

b1
b2

)

∈ A2,
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i.e., ǫ is symmetric for the form θD. The fact that ǫ2 = 1 implies that A2 is decomposed in two
eigenspaces:

A2
+ = {

(

x1
x2

)

∈ A2 : ǫ

(

x1
x2

)

=

(

x1
x2

)

} , A2
− = {

(

y1
y2

)

∈ A2 : ǫ

(

y1
y2

)

= −
(

y1
y2

)

}.

The fact that ρDǫ ∈ G+ means that the quadratic form induced by θD is positive definite in A2
+

and negative definite in A2
−, and that the eigenspaces are θD-orthogonal. Conversely, any such

decomposition of A2 induces a non selfadjoint reflection in QρD . Therefore, it is appropriate to
think of QρD as the set of positive-negative decompositions of the quadratic form (given by) θD.

The set QρD is a submanifold of M2(A). It has yet another important characterization in
Section 3 of [7]: in the polar decomposition of ǫ, the unitary part is precisely ρD:

ǫ = |ǫ∗|ρD.

Also, any nonselfadjoint reflection with this latter property belongs to QρD . Therefore, QρD
is parametrized by a subset of Gl2(A)+, the set positive invertible elements in M2(A). In
particular, this endows QρD with an C∞ submanifold structure, with a rich metric geometry of
non-positive type.

The group U(θD) acts transitively in QρD ,

g̃ · ǫ = gǫg−1.

We shall see below that that QρD is naturally diffeomorphic to D. In order to lighten the

notation, when the elements

(

x1
x2

)

,

(

y1
y2

)

, etc., appear as subindices, let us denote them by

x,y, etc.

Definition 7.1. Any element

(

x1
x2

)

∈ KD defines a (modular) rank one (non selfadjoint)

projection in M2(A):

px =

(

x1
x2

)(

x1
x2

)∗
ρD =

(

x1
x2

)

(

x∗1 x∗2
)

(

1 0
0 −1

)

=

(

x1x
∗
1 −x1x∗2

x2x
∗
1 −x2x∗2

)

.

Or, equivalently,

px(

(

a1
a2

)

) =

(

x1
x2

)

θD(

(

a1
a2

)

,

(

x1
x2

)

) =

(

x1
x2

)

< ρD

(

a1
a2

)

,

(

x1
x2

)

> .

With this description, since θD(

(

x1
x2

)

,

(

x1
x2

)

) = 1, it it clear that px is a projection, which

is θD-symmetric.
Consider the following maps:

ΦD : D → QρD , ΦD(h) = 2px − 1, (5)

where

(

x1
x2

)

∈ KD satisfies that ϕ(

(

x1
x2

)

) = h, and

ϕ̃ : KD → QρD , ϕ̃(

(

x1
x2

)

) = 2px − 1. (6)
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Lemma 7.2. The map ΦD is well defined, C∞ and equivariant with respect to the actions of
U(θD).

Proof. Suppose

(

x1
x2

)

,

(

y1
y2

)

∈ KD such that x2x
−1
1 = y2y

−1
1 , i.e.,

(

y1
y2

)

=

(

x1
x2

)

· g, for

g = x−1
1 y1 ∈ G. Note that

1 = y∗1y1 − y∗2y2 = (x1g)
∗x1g − (x2g)

∗x2g = g∗(x∗1x1 − x∗2x2)g = g∗g,

i.e., g ∈ UA. Then

py =

(

y1
y2

)(

y1
y2

)∗
ρD =

(

x1
x2

)

gg∗
(

x1
x2

)∗
ρD =

(

x1
x2

)(

x1
x2

)∗
ρD

= px.

Let us prove that the reflection 2px−1 belongs to QρD . It is symmetric for the form θD. Clearly,
ρD(2px − 1) is invertible, and it is non negative if and only if

(2px − 1))ρD = ρD(ρD(2px − 1))ρD ≥ 0.

Explicitly,

(2px − 1)ρD =

(

x1x
∗
1 − 1 x1x

∗
2

x2x
∗
1 x2x

∗
2 + 1

)

.

Put γ = x1x
∗
2. Since

(

x1
x2

)

∈ KD, one has that x∗1x1 = 1 + x∗2x2. Then

γ∗γ = x2x
∗
1x1x

∗
2 = x2(1 + x∗2x2)x

∗
2 = x2x

∗
2 + (x2x

∗
2)

2,

thus γ∗γ+1 = (x2x
∗
2+1)2, i.e., x∗2x2+1 = (γ∗γ+1)1/2. Similarly, we get x1x

∗
1−1 = (γγ∗+1)1/2

(using now that x1x1 > 1, because x∗1x1 > 1 and x1 is invertible) . Then

(2px − 1)ρD =

(

(γγ∗ + 1)1/2 γ

γ∗ (γ∗γ + 1)1/2

)

.

In order to prove that this matrix is invertible, denote

m =

(

0 γ
γ∗ 0

)

.

Clearly m is selfadjoint and

(2px − 1)ρD = (1 +m2)1/2 +m ≥ 0,

because the real function f(t) = (1 + t2)1/2 + t ≥ 0 for all t ∈ R.
The fact that ΦD is C∞ follows from a standard argument in fibrations: clearly, the formula

that defines ΦD in terms of coordinates in KD is C∞, therefore, using C∞ local cross sections
for the fibration ϕ̂ : KD → D, one obtains that ΦD is C∞.

Finally, if g̃ ∈ U(θD) (i.e., g̃∗ρD = ρDg̃
−1),

pg̃·x = g̃

(

x1
x2

)

< ρD · , g̃
(

x1
x2

)

>= g̃

(

x1
x2

)

< g̃∗ρD · ,
(

x1
x2

)

>
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= g̃

(

x1
x2

)

< ρDg̃
−1 · ,

(

x1
x2

)

>= g̃pxg̃
−1,

which means that ΦD is U(θD)-equivariant: ΦD(g̃
(

x1
x2

)

) = g̃ΦD(

(

x1
x2

)

)g̃−1.

In the next theorem we summarize several results about the maps considered in the following
diagram of homogeneous spaces of the group U(θD):

KD
ϕ̂

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ ϕ̃

""
❊❊

❊❊
❊❊

❊❊

D ΦD
// QρD

(7)

Theorem 7.3. The diagram (7) commutes. The maps ϕ̂ : KD → D and ϕ̃ : KD → QρD are
C∞ submersions. The map ΦD : D → QρD is a C∞-diffeomorphism. All maps are equivariant
under the action of U(θD).

Proof. Clearly,

ΦD ◦ ϕ̂(
(

x1
x2

)

) = px = ϕ̃(

(

x1
x2

)

),

thus the diagram commutes. Let us prove that every reflection ǫ inM2(A) which is θD symmetric
and such that ρDǫ (equivalently, ǫρD is positive) must be of the form ǫ = 2px − 1 for x ∈ KD.
That is, given ǫ of the form

ǫ =

(

ǫ11 ǫ12
−ǫ∗12 ǫ22

)

with ǫ∗ii = ǫii such that

0 ≤ ǫρD =

(

ǫ11 −ǫ12
−ǫ∗12 −ǫ22

)

,

there exists

(

x1
x2

)

∈ KD such that

(

ǫ11 ǫ12
−ǫ∗12 ǫ22

)

=

(

x1x
∗
1 − 1 −x1x∗2

x2x
∗
1 −x2x∗2 − 1

)

.

We shall look for

(

x1
x2

)

with x1 > 0. Note that for any

(

x1
x2

)

∈ KD there exists

(

x′1
x′2

)

with x′2(x
′
1)

−1 = x2x
−1
1 and x′1 > 0. Indeed, since x1 is invertible, put x1 = |x∗1|u the polar

decomposition of x∗1, and take x′1 = |x∗1|. It is not hard to see that such x′1 is unique.
The fact that ǫ2 = 1 means that







ǫ211 − ǫ12ǫ∗12 = 1
ǫ11ǫ12 + ǫ12ǫ22 = 0
−ǫ∗12ǫ12 + ǫ222 = 1

.

Thus, x1 = (1+ ǫ11)
1/2 and x2 = −ǫ∗12(1+ ǫ11)−1/2. We must check that x2x

∗
1 = −ǫ∗12, which

is apparent, and that −x2x∗2 − 1 = ǫ22. Indeed, by the above relation on eij ,

−x2x∗2 − 1 = ǫ∗12(1 + ǫ11)
−1ǫ12 − 1 = ǫ∗12(1 + (ǫ12ǫ

∗
12 + 1)1/2)−1ǫ12 − 1.
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Since ǫ∗12(ǫ12ǫ
∗
12)

n = (ǫ∗12ǫ12)
nǫ∗12, then for any continuous function f : [0,+∞)→ C,

ǫ∗12f(ǫ12ǫ
∗
12) = f(ǫ∗12ǫ12)ǫ

∗
12.

Thus, again using the relations on ǫij ,

−x2x∗2 − 1 = (1 + (ǫ∗12ǫ12 + 1)1/2)−1ǫ∗12ǫ12 − 1 = (1 + ǫ22)
−1(ǫ222 − 1)− 1 = ǫ22.

Next, we must check that

(

x1
x2

)

∈ KD. Clearly x1 = (1 + ǫ11)
1/2 is invertible (and positive).

x1x
∗
1 − x2x∗2 = 1 + ǫ11 − (1 + ǫ11)

−1ǫ12ǫ
∗
−12(1 + ǫ11)

−1/2.

Since −ǫ12ǫ∗12 = (1 + ǫ11)
2, this equals

1 + ǫ11 − (−1 + ǫ11) = 2.

The formula

(

x1
x2

)

=

(

(1 + ǫ11)
1/2

−ǫ∗12(1 + ǫ11)
−1/2

)

, regarded as a map QρD → KD, provides a global

C∞ cross section for ϕ̃, proving that it is retraction, thus a submersion.

Let us exhibit the inverse of ΦD: since ǫ = 2px − 1 for a unique

(

x1
x2

)

∈ KD with x1 > 0

(as computed above,

Φ−1
D : QρD → D , Φ−1

D (ǫ) = x2x
−1
1 = −ǫ∗12(1 + ǫ11)

−1.

Clearly, it is a C∞ map.

The map ΦD was computed using coordinates in KD. It can be also computed in terms of
z ∈ D. Analogously as ϕ̃, ϕ̂ has also a global cross section given by the unique element in each
fiber with positive first coordinate. Namely,

δ : D → KD , δ(z) =

(

1
z

)

(1− z∗z)−1/2.

Then

ΦD(z) = 2pδ(z) − 1 = 2

(

1
z

)

(1− z∗z)−1
(

1 z∗
)

ρD − 1

=

(

2(1 − z∗z)−1 − 1 −2(1− z∗z)−1z∗

2z(1 − z∗z)−1 −2z(1− z∗z)−1z∗ − 1

)

.

Remark 7.4. There is an analogous diagram as (7) for the space H:
KH

ϕ

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ ϕ̄

""
❊❊

❊❊
❊❊

❊❊

H ΦH
// QρH

(8)

Recall the unitary operator U which intertwines ρD and ρH : UρDU
∗ = ρH . We saw (Lemma

3.1) that U maps KD onto KH . Also, it is clear that
ǫ ∈ QρH if and only if U∗ǫU ∈ QρD .

Also it is clear, by construction, that

ΦH(h) = UΦD(γ(h))U
∗. (9)
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Let us state another consequence obtained from the equivalence of diagrams (7) and (8

Theorem 7.5. The map Γ : H → D,

Γ(h) = (1 + ih)(1 − ih)−1

is a (well defined) diffeomorphism with inverse Γ−1 : D → H

Γ−1(z) = i(1 − z)(1 + z)−1.

Proof. One passes from H to D with the cross section

h 7→ 1√
2

(

1
h

)

Im(h)−1/2 ∈ KH

composed with left multiplication by U∗, followed by ϕ̂, namely,

h 7→ 1√
2

(

1
h

)

Im(h)−1/2 7→ 1

2

(

1 −i
1 i

)(

1
h

)

Im(h)−1/2 7→ (1 + ih)(1 − ih)−1.

Which means that Γ : H → D is well defined and smooth. Its inverse is computed analogously:

z 7→
(

1
z

)

(1− z∗z)−1/2 7→ U

(

1
z

)

(1− z∗z)−1/2 ϕ̂→ (i− iz)(1 + z)−1.

A straightforward computation shows that these maps are each other inverses.

Let us finish this section by recalling the action of the group U(θH). If

(

x1
x2

)

∈ H̃, then,

since px(

(

y1
y2

)

) =

(

x1
x2

)

θH(

(

x1
x2

)

,

(

y1
y2

)

), one has that for any ã ∈ U(θH),

pã·x = ã.

(

x1
x2

)

θH(ã.

(

x1
x2

)

, ·) = ã.

(

x1
x2

)

θH(

(

x1
x2

)

, ã−1·) = ãpxã
−1.

Then 2pã·x − 1 = ã(2px − 1)ã−1. Therefore:

Proposition 7.6. If h ∈ H and g̃ ∈ UU (θH),

ΦH(g̃ · h) = g̃ΦH(h)g̃
−1,

i.e., ΦH is equivariant for the action of U(θH). Therefore

Γ(g̃ · h) = (U∗g̃U) · Γ(h) (10)
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8 The hyperbolic geometry of Qρ

In previous papers [6], [8], [9] the geometry of the set of positive invertible elements of a C∗-
algebra was studied. As is the case with the classical example of positive definite complex
matrices (see for instance [16]), this space, with the appropriate Finsler metric, behaves as a
non-positively curved manifold. In [17] it is proven that the set Qρ embedds in the space of
positive invertible elements, in a way that the main geometric features remain invariant. Let us
briefly describe below these constructions and results. We shall use these results (and therefore
also state them) for the case of the C∗-algebra M2(A); the space of positive and invertible
matrices shall be denoted by Gl2(A)+.

Remark 8.1. (see [6])
Gl2(A)+ is an open subset ofM2(A)s, so it has a natural differentiable structure. We consider

in Gl2(A)+ the following left action of Gl2(A):

g̃ · ã = (g̃∗)−1ãg̃−1, g̃ ∈ Gl2(A), ã ∈ Gl2(A)+.

This action is transitive. The isotropy subgrup of an element ã ∈ Gl2(A)+ is the group of
ã-unitary operators. Thus, the Banach-Lie isotropy algebra of ã is the space of ã-anti-Hermitian
elements of M2(A): x̃∗ã + ãx̃ = 0. A natural complement for this space is the space of ã-
Hermitian elements: ỹ∗ã − ãỹ = 0. This decomposition is equivariant under the action of
Gl2(A), and induces a linear connection in Gl2(A)+. The covariant derivative of this connection
is given by

DY

dt
=
dY

dt
− 1

2
{γ̇γ−1Y + Y γ−1γ̇},

where Y (t) is a tangent field along the curve γ(t) in Gl2(A)+; due to the trivial local structure
of Gl2(A)+ ⊂M2(A)s, this simply means that Y (t) is a curve of selfadjoint elements in M2(A).
A geodesic is a curve γ such that Dγ̇

dt = 0. The geodesic γ with γ(0) = ã and γ̇(0) = X is given
by

γ(t) = e
t
2
Xã−1

ãe
t
2
Xã−1

.

The exponential map expã :M2(A)s → Gl2(A)+,

expã(X) = e
1

2
Xã−1

ãe
1

2
Xã−1

,

is everywhere a diffeomorphism. Any pair ã, b̃ ∈ Gl2(A)+ is joined by a unique geodesic, which
is

γã,b̃(t) = ã1/2(ã−1/2b̃ã−1/2)tã1/2.

The space Gl2(A)+ carries a Finsler metric. By this we mean a continuous distribution
Gl2(A)+ ∋ ã 7→ ‖ ‖ã of norms defined in the corresponding tangent spaces T (Gl2(A)+)ã =
M2(A)s. Notice that we do not require that this distribution be smooth, as in the finite di-
mensional setting (see for instance [1], [2], [6], [7], for other examples of Finsler metrics in the
context of operator theory). If ã ∈ Gl2(A)+ and X ∈M2(A)s, put

‖X‖ã = ‖ã−
1

2Xã−
1

2 ‖. (11)
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Theorem 8.2. ([6], Section 6) With the metric defined in (11), the geodesics of the connection
are globally minimal: for any ã, b̃ ∈ Gl2(A)+, the unique geodesic γã,b̃ of the connection has

minimal length among all smooth curves in Gl2(A)+ joining ã and b̃.
The (geodesic) distance between ã and b̃ can be computed:

dg(ã, b̃) = ‖ log(ã−
1

2 b̃ã−
1

2 )‖,

where log denotes the unique selfadjoint logarithm of a positive invertible element.

Moreover, the metric has the following property, which in Riemannian geometry is equivalent
to non positive curvature, and is used as a definition of non positive curvature for metric length
spaces (i.e., metric spaces with given short curves, see [4], [5], [12]).

Theorem 8.3. ([9])
If γ(t), δ(t) are two geodesics in G+, then f(t) = dg(γ(t), δ(t)) is a convex function.
In particular, if the geodesics start at the same point, i.e., γ(0) = δ(0), then

dg(γ(t), δ(t)) ≤ t dg(γ(1), δ(1)).

There is a natural embedding of Qρ in Gl+2 (A):

Theorem 8.4. ([17])
The embedding of Qρ in Gl2(A)+ is given by [17]

Qρ →֒ Gl+2 (A), ǫ→ ρǫ.

This embedding has the following properties

1. Let ǫ1, ǫ2 ∈ Qρ. Then the unique geodesic of Gl2(A)+ joining ρǫ1 and ρǫ2 lies in (the
image of) Qρ (under the above embedding).

2. Qρ is an homogeneous space under the action of U(θρ), Gl+2 (A) is an homogeneous space
under the action of Gl2(A). The embedding is equivariant for these actions.

Thus, if we endow Qρ with the geometry induced by this embedding, it becomes a non
positively curved metric length space.

We use these facts to translate to H and D the metric structure of Qρ, by means of the
equivariant diffeomorphisms ΦH and ΦD, respectively.

Definition 8.5. For any h1, h2 ∈ H and z1, z2 ∈ D,

dH(h1, h2) = dg(ρHΦH(h1), ρHΦH(h2))

and
dD(z1, z2) = dg(ρDΦD(z1), ρDΦD(z2)).

Therefore one has:
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Corollary 8.6. Both (H, dH) and (D, dD) are non positively curved metric length spaces. In
other words, if δ1, δ2 are two geodesics in H (resp. D), the function

f(t) = dH(δ1(t), δ2(t))

(resp. f(t) = dD(δ1(t), δ2(t))) are convex.
If, additionally, δ1(0) = δ2(0) then, for t ∈ [0, 1]

dH(δ1(t), δ2(t)) ≤ t dH(δ1(1), δ2(1)) ( resp. dD(δ1(t), δ2(t)) ≤ t dD(δ1(1), δ2(1)) ). (12)

The diffeomorphism
Γ : H → D

is an isometry.

Proof. Recall formula (3.1) in Remark (7.4): ΦH(h) = UΦD(γ(h))U
∗. A straightforward com-

putation shows that this implies that if h1, h2 ∈ H, then

dD(Γ(h),Γ(h2)) = dH(h1, h2).

In [15], treating other kind of problems, a similar homeomorphism was established, between
D and the set of elements in A with positive and invertible real part (i.e. −iH)

Recall that the group U(θH) acts transitively on H. This group is, in turn, isomorphic to
U(θD), which acts transitively on D. Also recall (Proposition (7.6)), that these actions are
equivariant for ΦH and ΦD, respectively. Then one has:

Corollary 8.7. The actions of U(θH) and U(θD) on H and D, respectively, are isometric.

Proof. The diffeomorphism ΦH , followed by the embedding of QρH , is a composition of maps
which are equivariant for the action of U(θH) ⊂ Gl2(A). On the other hand, the action of this
latter group on Gl+2 (A) is isometric ([7], p.66).

Example 8.8. Let us compute the dD distance between 0 and z in D:

dD(0, z) = ‖ log(ΦD(z)ρD)‖ = ‖ log
(

2(1− z∗z)−1 2(1 − z∗z)−1z∗

2z(1− z∗z)−1 2z(1 − z∗z)−1z∗ + 1

)

‖.

Straightforward computations show that this matrix above can be factorized
(

2(1− z∗z)−1 2(1 − z∗z)−1z∗

2z(1 − z∗z)−1 2z(1− z∗z)−1z∗ + 1

)

= ∆1∆2,

where

∆1 =

(

(1− z∗z)−1 0
0 (1− zz∗)−1

)

and ∆2 =

(

1 + z∗z 2z∗

2z 1 + zz∗

)

.

(A key fact in this computation is that z(1−z∗z)−1 = (1−zz∗)−1z). Denote by Ω =

(

0 z∗

z 0

)

.

Note that Ω∗ = Ω and ‖Ω‖ < 1. Then

∆1 = (1− Ω2)−1 and ∆2 = (1 + Ω)2.
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Therefore log(∆1∆2) = log(1 + Ω)− log(1− Ω). Using the power series

log(1 + t)− log(1− t) = 2
∞
∑

k=0

t2k+1

2k + 1

we get that

log(1 + Ω)− log(1−Ω) = 2

(

0 z∗
∑∞

k=0
1

2k+1(zz
∗)k

z
∑∞

k=0
1

2k+1(z
∗z)k 0

)

The norm of this matrix equals

‖ log(1 + Ω)− log(1− Ω)‖ = ‖(log(1 + Ω)− log(1− Ω))2‖1/2.

Note that (log(1 + Ω)− log(1− Ω))2 equals

4

(

(z∗
∑∞

k=0
1

2k+1(zz
∗)k)(z

∑∞
k=0

1
2k+1(z

∗z)k) 0

0 (z
∑∞

k=0
1

2k+1(z
∗z)k)(z∗

∑∞
k=0

1
2k+1(zz

∗)k)

)

= 4

(

z∗z(
∑∞

k=0
1

2k+1(z
∗z)k)2 0

0 zz∗(
∑∞

k=0
1

2k+1(zz
∗)k)2

)

=

(

log(1 + |z|)− log(1− |z|) 0
0 log(1 + |z∗|)− log(1− |z∗|)

)2

.

The square root of the norm of this matrix is

max{‖ log(1 + |z|)− log(1− |z|)‖, ‖ log(1 + |z∗|)− log(1− |z∗|)‖}.

The function f(t) = log(1 + t) − log(1 − t) is strictly increasing in [0, 1), with f(0) = 0. Thus
(using that ‖|z|‖ = ‖z‖),

‖log(1 + |z|)− log(1− |z|)‖ = max{|f(t)| : t ∈ σ(|z|)} = f(‖z‖).

Analogously, ‖log(1 + |z∗|)− log(1− |z∗|)‖ = f(‖z‖). Then

dD(0, z) = log(
1 + ‖z‖
1− ‖z‖).

In the scalar case A = C, this norm equals

dD(0, z) = log

(

1 + |z|
1− |z|

)

,

which is the Poincaré distance in the open unit disk D.
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9 The covariant derivative in H
In this section we compute explicitly the covariant derivative induced by the reductive structure.
Recall the decomposition (4) of the Banach-Lie algebra of U(θH)),

X = Xas ⊕ Xs = {β̃ ∈M2(A)as : β̃J = Jβ̃} ⊕ {γ̃ ∈M2(A)s : γ̃J = −Jγ̃}.

Elements X ∈ X are of the form X = X0 +Xh,

X =

(

x11 x12
−x12 −x11

)

+

(

α β
β −α

)

with x∗11 = −x11, and all other entries selfadjoint. The left hand subspace Xas is the Banach-Lie
algebra of the isotropy group of the action at the element i ∈ H. The right hand subspace Xs is
the horizontal space at this point.

The computation of the covariant derivative will be done in several steps.
Step 1. First we compute the differential of the map πi : U(θH) → H, πi(g̃) = g̃ · i, at the

identity 1 ∈ U(θH). Recall that πi(g̃) = (g22i+ g21(g12i+ g11)
−1. Then, differentiating at 1, we

get
d(πi)1(γ̃) = γ21 + γ12 + i(γ22 − γ11).

If γ̃ is horizontal, d(πi)1(γ̃) = 2γ12 − 2iγ11. Then:

Theorem 9.1. The 1-form of the reductive connection at i ∈ H is

κi(ζ) =
1

2

(

−Υ χ
χ Υ

)

, if ζ = χ+ iΥ.

Step 2. For any given h = x + iy, one can find an element b̃ ∈ B ⊂ U(θH) (the Borel

subgroup of U(θH)) such that b̃ · i = h. For instance,

b̃ =

(

y−1/2 0

xy−1/2 y1/2

)

with inverse b̃−1 =

(

y1/2 0

−y−1/2x y−1/2

)

.

Straightforward computations show that b̃ · i = h (and b̃−1 · h = i).
Step 3 Let us compute now the differential of the action of g̃ ∈ U(θH) on tangent vectors

of H. If d
dth = ζ,

d

dt
(g̃ · h) = (g22 − wg12)ζ(g12h = g11)

−1,

where w = g̃ · h = (g22h+ g21)(g12z+ g11)
−1. Using the transformation in Step 2, we can carry

a tangent vector ζ at h to the tangent vector y−1/2ζy−1/2 at i. If ζ + χ+ iΥ,

κi(y
−1/2ζy−1/2) +

1

2
y−1/2

(

−Υ χ
χ Υ

)

y−1/2.

Step 4 To obtain κh(ζ), we use the inner automorphism Adb̃:

(

y−1/2 0

xy−1/2 y−1/2

)

{1
2
y−1/2

(

−Υ χ
χ Υ

)

y−1/2}
(

y1/2 0

−y−1/2x y−1/2

)
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=
1

2

(

−y−1χy−1x y−1χy−1

χ− xy−1χy−1x xy−1χy−1

)

+
1

2

(

−y−1Υ 0
−xy−1Υ−Υy−1x Υy−1

)

.

Step 5 Next, we compute the covariant derivative of the reductive connection in H, at the
point i ∈ H. Consider the curve h(t) = x(t) + iy(t) in H, with z(0) = i, and the vector field
ζ = χ+ iΥ defined on a neighbourhood of i. Denote by Dζ

dt |t=0 the covariant derivative at i ∈ H.
According to [14], one has that

κi(
Dζ

dt
|t=0) =

d

dt
κh(t)Z(h(t))|t=0 + [κi(Z(i)), κi(

d

dt
h(t)|t=0].

To lighten the notation, we shall denote by κ(ζ)′, h′ the usual derivatives at t = 0. So the
formula above reads

κi(
Dζ

dt
|t=0) = κ(ζ)′ + [κi(Z(i)), κi(h

′)].

Then

κ(ζ)′ =
1

2

(

−Υ′ χ′

χ′ Υ′

)

+
1

2

(

y′Υ− χx′ −y′χ− χy′
−x′χ−Υx′ x′χ−Υy′

)

Let us write the sum of right hand matrix above with the bracket [κi(Z(i)), κi(h
′)]. After

strenuous but elementary computations one gets

1

4

(

Υy′ − χx′ −Υx′ − χy′
−χy′ −Υx′ χx′ −Υy′

)

+
1

4

(

y′Υ− x′χ −y′χ− x′Υ
−x′Υ− y′χ x′χ− y′Υ

)

.

Now we must apply κ−1
i , or else realize that the above term is the value of κi at

−Re(x′Υ+ y′χ) + iRe(x′χ− y′Υ).

Therefore,
dζ

dt
|t=0 = χ′ + iΥ′ + {−Re(x′Υ+ y′χ) + iRe(x′χ− y′Υ)}.

Step 6 Let h0 = x0 + iy0 ∈ H, and h(t) = x(t) + iy(t) be a smooth curve in H with h(0) = h0.
Let ζ = χ + iΥ be a smooth vector field defined on a neighbourhood of H0. Let us compute
Dζ
dt |t=0. To do this, we shall use the invariance of the connection under the action of the group
U(θH), and the fact that we know this formula in the case h0 = i. As seen in Step 2, the
(explicit) element b̃ defined there, performs b̃−1 · h0 = i. Thus we can carry the data to the
point i, perform the covariant derivative, and translate it back to h0 with the action (note for

instance, that y
1/2
0 Re(u)y

1/2
0 = Re(y

1/2
0 uy

1/2
0 , and so forth). We get:

Dζ

dt
= ζ ′ −Re(x′y−1

0 Υ+ y′y−1
0 χ) + iRe(x′y−1

0 χ− y′y−1
0 Υ). (13)

We devote the next section to describe examples of geodesics in the halfspace model H:

10 Examples of geodesics in H
In terms of the decomposition (4) of the Banach-Lie algebra of U(θH),

X = Xas ⊕ Xs = {β̃ ∈M2(A)as : β̃J = Jβ̃} ⊕ {γ̃ ∈M2(A)s : γ̃J = −Jγ̃}.
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geodesics of H starting at i for t = 0 have the form

δ(t) = etXh · i,

where Xh is a horizontal element, i.e., an antihermitian element in M2(A) of the form

Xh =

(

α β
β −α

)

,

with α∗ = −α, β∗ = −β. We shall compute these geodesics in two particular cases:

Example 10.1. Suppose that the entries α and β in Xh commute. Put γ = (α2 + β2)1/2.
The element γ may not be invertible; however, if we make the assumption that A is weakly
closed (i.e., a von Neumann algebra), then there exist unique selfadjoint elements x and y in
A such that xγ = γx = α and yγ = γy = β. Moreover, there exists a selfadjoint element

χ ∈ A such that x = cos(χ) and y = sin(χ). Accordingly, Xh/γ =

(

cos(χ) sin(χ)
sin(χ) − cos(χ)

)

. Put

12 =

(

1 0
0 1

)

. Straightforward computations show that for n ≥ 0

(tXh)
2n = (tγ)2n12 and (tXh)

2n+1 = (tγ)2n+1Xh/γ.

Then

etXh = cosh(tγ)12+sinh(tγ)Xh/γ =

(

cosh(tγ) + cos(χ) sinh(tγ) sin(χ) sinh(tγ)
sin(χ) sinh(tγ) cosh(tγ)− cos(χ) sinh(tγ)

)

.

Therefore δ(t) = etXh · i equals

(sin(χ) sinh(tγ) + i(cosh(tγ)− cos(χ)) (cosh(tγ) + cos(χ) sinh(tγ) + i sin(χ) sinh(tγ))−1 .

After straightforward calculations, involving well known identities concerning cosh and sinh, we
arrive at

δ(t) = (sin(χ) sinh(2tγ) + i) (cosh(2tγ) + cos(χ) sinh(2tγ))−1 . (14)

Since all elements involved commute and ξ, γ are selfadjoint, it follows that

Re(δ(t)) = sin(χ) sinh(2tγ) (cosh(2tγ) + cos(χ) sinh(2tγ))−1

and
Im(δ(t)) = (cosh(2tγ) + cos(χ) sinh(2tγ))−1 .

Therefore, if one regards δ as a geodesic in TG+, i.e. δ = (Re(δ), Im(δ)), it is given by

δ(t) =
(

sin(χ) sinh(2tγ) (cosh(2tγ) + cos(χ) sinh(2tγ))−1 , (cosh(2tγ) + cos(χ) sinh(2tγ))−1
)

.

Additionally, if there exists µ ∈ A, µ = µ∗, such that µβ = −α (for instance, if β is
invertible), then

(Re(δ(t) − µ)2 + (Im(δ(t))2 = µ2 + 1,

that is, geodesics δ of the Poincaré halfspace (with commuting α, β) satisfy the equation of an
A-valued circle, centered in the real axis (at µ∗ = µ) with radius (1 + µ2)1/2.

27



Another special case which can be explicitly computed occurs when α and β anti-commute:
αβ = −βα

Example 10.2. Suppose now that the entries α, β in Xh anti-commute. Then

(

α 0
0 −α

)

and

(

0 β
β 0

)

commute. Thus

etXh = e
t





α 0
0 −α





e
t





0 β
β 0





=

(

etα 0
0 e−tα

)(

cosh(tβ) sinh(tβ)
sinh(tβ) cosh(tβ)

)

.

Therefore

δ(t) = etXh · i = e−tα(sinh(tβ) + i cosh(tβ))(cosh(tβ) + i sinh(tβ))−1e−tα.

By straightforward computations,

(sinh(tβ) + i cosh(tβ))(cosh(tβ) + i sinh(tβ))−1 = (sinh(2tβ) + i) cosh−1(2tβ).

Since cosh is even, cosh(2tβ) commutes with etα, analogously, since sinh is odd, e−tα sinh(2tβ) =
sinh(2tβ)etα. Then

δ(t) = sinh(2tβ) cosh−1(2tβ) + i cosh−1(2tβ)e−2tα.

Clearly, this is the real/imaginary part decomposition of δ. Note that the real part of δ does
not depend on α. Thus, as a curve in TG+, this geodesic is given by

δ(t) =
(

sinh(2tβ) cosh−1(2tβ), cosh−1(2tβ)e−2tα
)

.

Suppose that α, β have a polar decompositions in A, α = µ|α| = |α|µ, β = ν|β| = |β|ν.
Then after elementary calculations, one has that the imaginary and real parts of δ satisfy the
equation

(Re(δ − iµ)2 + (νIm(δ))2 = 0.

11 Appendix: The Poincaré half-space of a Hilbertizable space.

A complex locally convex topological vector space V is Hilbertizable if there exists an inner
product β which makes V a Hilbert space. In this section we fix such a space V. We shall denote
by S(V) the space of all sesquilinear forms σ on V, which are continuous in both variables. We
consider in S(V) the topology whose basis of neighbourhoods of the origin are the sets

W (V, ǫ) = {σ ∈ S(V) : |σ(ξ, η)| < ǫ, ξ, η ∈ V },

where V is a neighbourhoog of 0 in V and ǫ > 0. Let us denote by I(V) the set of all β ∈ S(V)
which are positive definite and which reproduce the topology of V.

There is a natural involution in S(V), which we shall call the conjugation in S(V), which is
givan by

σc(ξ, η) = σ(η, ξ).
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Then S(V) decomposes as
S(V) = S0(V)⊕ S1(V),

the Hermitian (σc0 = σ0) and anti-Hermitian (σc1 = −σ1) forms, respectively. The set I(V) is an
open subset of S0(V).

Denote by L(V) the algebra of continuous linear operators acting in V. L(V) is a topological
algebra, with the topology given by

W (V, V ′) = {a ∈ L(V) : a(ξ) ∈ V ′ for ξ ∈ V }

as a system of neighbourhoods of 0 ∈ L(V), for V, V ′ neighbourhoods of 0 ∈ V.
Given β ∈ I(V), V becomes a Hilbert space, we shall denote it by Vβ. Likewise, L(V)

becomes a C∗-algebra, which will be denoted by Lβ(V).

11.1 Charts in S(V)
Given β ∈ I(V), put

Φβ : Lβ → S(V) , Φβ(a)(ξ, η) = β(aξ, η).

By Riesz’ Theorem, it is clear that Φβ is a bijection. We shall call Φβ the chart for S(V) centered
at β. Denote by G(V) the group of bijective elements of L(V). The group G(V) acts on S(V)
as changes of variables, that is, if g ∈ G(V) and σ ∈ S(V),

Lgσ(ξ, η) = σ(g−1ξ, g−1η).

It is apparent that this action restricts to an action of G(V) on I(V), and that it is transitive
on I(V).

Let us describe a change of charts by means on an element g ∈ G(V). Let β and β̃ = Lgβ.
Then the following diagram commutes

Lβ(V)
Lg−→ Lβ(V)

↓ Adg ↓ Φβ
Lβ̃(V)

Φ
β̃−→ S(V)

. (15)

Here

• Lg : Lβ(V) → Lβ(V) is the action given by Lga = ĝag−1, where ĝ = (g−1)∗, with ∗ the
involution of Lβ(V). This map Lg is a ∗-preserving linear isomorphism. It is also an
isomorphism of the set L+β (V) of positive invertible operators, preserving its metric and
its linear connection (see Section 6).

• Adg : Lβ(V)→ Lβ̃(V) is a C∗-algebra isomorphism.

The diagram (15) can be read as follows:

ΦLgβ = ΦβLgAdg−1 .

As was noted in Section 6, the group G(V) acts on L+β (V) by means of the action Lg. G(V) acts
also on I(V) as noted above. The commutativity of the diagram (15) implies that Φβ intertwines
both actions:

Φβ : L+β (V)→ I(V) , LgΦβ = ΦβLg.
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11.2 The Poincaré half-space

We shall denote the Poincaré half-space of V by Π(V), which is the set

Π(V) = {σ ∈ S(V) : Im(σ) ∈ I(V)},

where Re(σ) = 1
2(σ + σc) and Im(σ) = i

2(σ
c − σ). We define charts in Π(V). Let β ∈ I(V).

Clearly Φβ(a
∗) = Φβ(a)

c. Therefore Φβ maps the Poincaré halfspace space H(Lβ(V)) of the
C∗-algebra Lβ(V) as defined in Section 1, onto Π(V).

The purpose of this Appendix is to introduce the geometry of the bundle of observables
associated with the space of metrics I(V) of the Hilbertizable space V. Specifically, the bundle

O → I(V),

where the fiber Oβ over β ∈ I(V) is the vector space

Oβ = {a ∈ Lβ(V) : a∗ = a}.

We claim that the natural way to present the bundle of observables is as the tangent bundle
TI(V).

But the space TI(V) can be identified with the Poincaré half-space Π(V) as follows. A
tangent vector X ∈ (TI(V)β is, canonically, an element of S0(V). Therefore the map

(β,X) ∈ (TI(V)β ←→ X + iβ ∈ Π(V)

identifies TI(V) with Π(V) in a natural way.

11.3 The group of movements in Π(V).

Let Φβ and Φβ̃, with β̃ = Lgβ for g ∈ G(V), be a pair of charts. We shall denote by φ the
change of charts given by

Lβ(V)
Φβ→ S(V)

↑ ψ
Φ

β̃

ր
Lβ̃(V)

, Φ−1
β Φβ̃ = LgAdg−1 = ψ.

The C∗-isomorphism Adg−1 : Lβ̃(V) → Lβ(V) enables one to relate any construction done in
both algebras. For instance, the forms θH and their unitary groups U(θH). Consider the group
U(θH)β , which acts on the half-space Π(Lβ(V)) ⊂ Lβ(V). If h ∈ U(θH)β and z ∈ Π(Lβ(V)),
denote by Λhz the action of h on z. We have the following diagram:

Π(Lβ(V))
ψΛ

h̃
ψ−1

−→ Π(Lβ(V))
↑ ψ ↑ ψ

Π(Lβ̃(V))
Λ
h̃−→ Π(Lβ̃(V))

.

Here Λh̃ denotes the action of h̃ ∈ U(θH)β̃ on Π(Lβ̃(V)). We want to exhibit how the transition
maps ψ translate this action on Π(Lβ(V)). Note that

ψΛh̃ψ
−1 = LgAdg−1Λh̃AdgLg−1 = LgΛhLg−1 . (16)
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Denote by Gβ(V) the group of invertible operators in Lβ(V). There is a representation

u : Gβ(V)→ U(θH)β , u(g) =

(

g 0
0 ĝ

)

.

(Recall that ĝ = (g−1)∗). Using this representation we may write (16) above as

ψΛh̃ψ
−1 = u(g)Λhu(g)

−1.

Moreover, if we denote by Adg : U(θH)β → U(θH)β̃ ,

Adg = u(g)hu(g)−1,

it is straightforward to verify that

ψΛh̃ψ
−1 = AdgλAd

g−1
h̃. (17)

Therefore we have obtained the following construction:

• To each β ∈ I(V) we associate the group U(θH)β.

• If β̃ = Lgβ, to the pair (β, β̃) we associate the group isomorphism

ωββ̃ : U(θH)β̃ → U(θH)β, ωβ̃,β(h̃) = AdgλAd
g−1

h̃.

Remarkably, this isomorphism ωββ̃ does not depend on the choice of g: if β̃ = Lgβ =

Lg′β, then g and g′ give rise to the same isomorphism. This is another straightforward
computation left to the reader.

We shall refer to this system of groups and group isomorphism as the group of movements U(θ)
of the Poincaré half-space Π(V). This group of movements acts on Π(V) and is independent on
the choice of coordinates. Thus, Π(V) is a homogeneous space of the group of movements U(θ).

11.4 The relative case

So far, the building blocks of this construction are a Hilbertizable space V, the space of forms
S(V) and its subset of inner products I(V). Now we want to restrict these constructions to a
subalgebra A ⊂ L(V). Let us define:
Definition 11.1. A C∗-pair is a pair (V,A), where V is a Hilbertizable space and A ⊂ L(V) is
a subalgebra, such that there exists β ∈ I(V) such that A is a sub-C∗-algebra of Lβ(V).

In such case, we say that β is adapted to A. Let us denote by

I(A) = {β ∈ I(V) : β is adapted to A}.

Denote by GA the invertible group of A. Clearly GA acts on I(V), and Lgβ ∈ I(A) if
β ∈ I(A) and g ∈ GA. Denote by IO(A) ⊂ I(A) an orbit of this action. A C∗-triple is a triple

(V,A,IO(A))

consisting of a C∗-pair and a orbit. With these data, we can repeat the former constructions,
substituting L(V) by A, and I(V) by IO(A).

The Poincaré half-space Π(A) of A is formed by the elements of SO(A) with positive imag-
inary part. The (restricted) group of movements U(θ) acts on Π(A) accordingly.
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Instituto Argentino de Matemática, ‘Alberto P. Calderón’, CONICET,
Saavedra 15 3er. piso, (1083) Buenos Aires, Argentina,
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