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Global symmetric approximation of frames

Eduardo Chiumiento

Abstract

We solve the problem of best approximation by Parseval frames to an arbitrary
frame in a subspace of an infinite dimensional Hilbert space. We explicitly describe
all the solutions and we give a criterion for uniqueness. This best approximation
problem was previously solved under an additional assumption on the set of Parseval
frames in M. Frank, V. Paulsen, T. Tiballi, Symmetric approximation of frames and

bases in Hilbert spaces, Trans. Amer. Math. Soc. 354 (2002), 777-793. Our
proof relies on the geometric structure of the set of all Parseval frames quadratically
close to a given frame. In the process we show that its connected components can
be parametrized by using the notion of index of a pair of projections, and we prove
existence and uniqueness results of best approximation by Parseval frames restricted
to these connected components. 1

1 Introduction

Let H be an infinite dimensional separable Hilbert space. A frame in a closed subspace
K ⊆ H is a sequence {fi} of vectors in K with the property that there are constants
A,B > 0 such that

A‖f‖2 ≤
∞∑

i=1

| 〈f, fi〉 |
2 ≤ B‖f‖2

for all f ∈ K. The frame is a Parseval frame (or normalized tight frame) if A = B = 1. In
2002, Frank, Paulsen and Tiballi [19] introduced the concept of symmetric approximation
of frames. Essentially, this consists in finding the closest Parseval frame to a given frame.
However, one cannot consider arbitrary Parseval frames in this best approximation prob-
lem: one has to restrict to the class of Parseval frames which are weakly similar to the
given frame (a notion explained below). Although symmetric approximation of frames
without the weak similarity assumption has recently been considered in finite dimensions
[4], it has never been studied in infinite dimensional Hilbert spaces without this extra
assumption. This is the aim of the current paper.
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Frames have been employed in signal processing in the recent decades, though their def-
inition was conceived by Duffin and Schaeffer [16] to deal with problems in non-harmonic
Fourier series. Nowadays frame theory has evolved into an active area of research in math-
ematics with numerous applications including image and data compression, filter banks,
coding theory, optics and quantum computing (see e.g. [9, 10, 11, 15]), and it also fruitful
interacts with other areas of mathematics such as operator algebras, operator theory and
Banach space theory (see [8, 14, 23]). In finite dimensional Hilbert spaces, the definition
of frames reduces to the notion of spanning sets. Both notions do not coincide in infinite
dimensional Hilbert spaces, but in any case frames are generally redundant and stable
spanning sets, and these are the key properties which make them useful to applications.

The usual Gram-Schmidt process to find an orthonormal basis from a given set of
vectors is an order-dependent method. It is not suitable to apply with frames, where in
many cases it is not clear how to order the vectors, and it also would give an orthonormal
basis, loosing the redundancy property of frames. Motivated by the Löwdin orthogonal-
ization method in quantum chemistry [26, 1], which approximates an arbitrary basis by an
orthonormal basis, the authors in [19] introduced the method of symmetric approximation
of frames to approximate arbitrary frames by Parseval frames. As we mentioned above,
a frame {fi} in a subspace K ⊆ H is a Parseval frame if satisfies Parseval’s identity

‖f‖2 =
∞∑

i=1

| 〈f, fi〉 |
2

for all f ∈ K. One of the main features of Parseval frames is the following reconstruction
formula: f =

∑∞

i=1 〈f, fi〉 fi, for all f ∈ K, which turns out to be more complicated in
the case of general frames. On the other hand, symmetric approximation seems to be
the appropriate generalization of Löwdin orthogonalization to the frame setting by the
following well-known fact: Parseval frames can be obtained by projecting orthonormal
bases from a larger Hilbert space, while arbitrary frames are given by projecting Riesz
bases.

The precise definition of symmetric approximation is as follows. First recall that two
frames {fi} and {gi} in subspaces K and L, respectively, are called weakly similar if there
is an invertible bounded linear operator T : K → L such that Tfi = gi, for all i ≥ 1.
Then a Parseval frame {yi} is said to be a symmetric approximation of a frame {fi} in a
subspace K ⊆ H if

∞∑

i=1

‖fi − yi‖
2 ≤

∞∑

i=1

‖fi − xi‖
2

for all Parseval frames {xi} in subspaces of H which are weakly similar to {fi}. In order
to avoid non sense comparisons the left hand of this inequality has to be finite.

We can reformulate symmetric approximation as a best approximation problem of
closed range operators by partial isometries. To this end, recall that the synthesis operator
of a frame {fi} in K ⊆ H is the bounded operator defined by

F : ℓ2 → H, F (ei) = fi , i ≥ 1,

2



where {ei} is the standard basis of ℓ2. This operator obviously has range ran(F ) = K.
The synthesis operator establishes a correspondence between frames in subspaces of H
and closed range operators. In particular, the synthesis operator of a Parseval frame is
a partial isometry. Denote by ‖ · ‖2 the usual Hilbert-Schmidt norm. Then a Parseval
frame {yi} with synthesis operator Y is a symmetric approximation of a frame {fi} in a
subspace K ⊆ H with synthesis operator F if the estimate

‖F − Y ‖2 ≤ ‖F −X‖2

is valid for all partial isometries X such that ker(X) = ker(F ). This latter condition on the
kernels is clearly equivalent to the weak similarity of the frames. Now we can describe the
main result on symmetric approximation in [19]. Let F = U |F | be the polar decomposition
(i.e. U is the unique partial isometry satisfying F = U |F | and ker(U) = ker(F )). Then
the Parseval frame {ui} = {Uei} is the unique symmetric approximation of {fi}, whenever
the condition

∑∞
i=1 ‖fi − ui‖

2 < ∞ is verified. This frame {ui} is called the canonical
Parseval frame associated to {fi}, and satisfies that span{ui} = K.

In addition, we point out that best approximation of operators by partial isometries
with several operators norms was studied in [27, 30]; meanwhile for previous results on best
approximation of frames with specific structure by Parseval frames we refer to Janssen
and Strohmer [24], Feichtinger, Kozek and Luef [18], and Han [21, 22].

The results of this paper. In this paper we address the following questions in the setting
of infinite dimensional Hilbert spaces: Do we have a closest Parseval frame to a given frame
when the assumption of weak similarity is dropped? When do we have a unique closest
Parseval frame? To emphasize that the assumption of weak similarity is removed, we shall
often use the term global symmetric approximation. Simple examples can be constructed
to show that the canonical Parseval frame may not be a global symmetric approximation
(see [19, 4]).

For our purpose we first get in Section 2 a better understanding of the set of all Parseval
frames quadratically close to a given frame (see e.g. [13]). Recall that two frames {fi}
and {gi} in subspaces K and L, respectively, are said to be quadratically close if

∞∑

i=1

‖fi − gi‖
2 < ∞.

Now fix a frame F = {fi} in a subspace K ⊆ H with synthesis operator F , and let {ui}
be its canonical Parseval frame. Denote by QF the set of all Parseval frames quadratically
close to {fi}. We show that the condition

∑∞

i=1 ‖fi − xi‖
2 < ∞ for some Parseval frame

{xi}, implies that the synthesis operator F admits a singular value decomposition. Based
on this fact, we prove our first main result: the set QF is nonempty if and only if {ui} is
quadratically close to {fi} (Theorem 2.1). A direct consequence is that the notion of global
symmetric approximation of frame {fi} only makes sense when

∑∞
i=1 ‖fi−ui‖

2 < ∞. Note
that under this assumption, QF can also be described as the set of all Parseval frames
quadratically close to {ui}.
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The strategy in [4] for carrying out global symmetric approximation in finite dimen-
sional spaces heavily relies on the geometry of the partial isometries. This set has a finite
number of connected components parametrized by the rank, and it is possible to find
symmetric approximations restricted to each component. Due to the finite dimension of
the underlying space, a global symmetric approximation exists, and must be one of the
symmetric approximations previously found from the connected components. Returning
to the infinite dimensional setting, obvious difficulties arise: the rank does not determine
the connected components of the partial isometries, and a priori the existence of global
symmetric approximations is not guaranteed.

However, the following simple observation allows us to follow similar steps: given
{xi} ∈ QF a Parseval frame in L ⊆ H with synthesis operator X, and the canonical
Parseval frame {ui} associated to F with synthesis operator U , then the operator

XU∗|K : K → L

is Fredholm. Equivalently, the pair of projections (U∗U,X∗X) is a Fredholm pair [2, 5].
The index of the operator XU∗|K : K → L coincides with the index of the mentioned
pair of projections, and it determines the connected components of the set QF . It is not
difficult to see that there are always infinitely many connected components. Furthermore,
each connected component can be described as an orbit of an action by a Banach-Lie
group. These geometric results are presented in Section 3.

The question of whether global symmetric approximation exists requires an interesting
intermediate step. We study symmetric approximation by Parseval frames restricted to
the connected components of QF . This can be thought as local symmetric approximation.
Now we briefly describe the results in this regard; see Section 4 for the precise state-
ments and details. The canonical Parseval frame is the unique symmetric approximation
belonging to the zero index component (Theorem 4.6). Since this connected component
strictly contains the set of all Parseval frames weakly similar to F , our result extends
the previously mentioned result on symmetric approximation from [19]. Symmetric ap-
proximations from negative index components also exist, and there are always infinitely
many (Theorem 4.8). In contrast, symmetric approximations restricted to a component
of index k > 0 exist if and only if the synthesis operator of the frame F has at least k
lowest singular values. In this case, when symmetric approximations exist, it turns out
that there are only two possibilities: there is a unique approximation or infinitely many
of them (Theorem 4.9). In the aforementioned results, all the symmetric approximations
restricted to any connected component are completely described.

In Section 5, we use our previous results to eventually prove that global symmetric
approximations always exist whenever QF 6= ∅. Indeed, we give an explicit formula for
global symmetric approximations (Theorem 5.3). The singular value decomposition of the
synthesis operator of the frame F , allows us to determine the connected component where
a global symmetric approximation belongs. We shall see that this depends on the number
of nonzero singular values placed below 1/2. We also give a necessary and sufficient
criterion for uniqueness of global symmetric approximation in terms of the singular values.
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2 The canonical Parseval frame

In this section we prove the following:

Theorem 2.1. Let {fi} be a frame in a subspace K of a Hilbert space H. The following
are equivalent:

i) There is a Parseval frame {xi} in a subspace L ⊆ H such that

∞∑

i=1

‖fi − xi‖
2 < ∞.

ii) The canonical Parseval frame {ui} associated to {fi} satisfies

∞∑

i=1

‖fi − ui‖
2 < ∞.

Before proving this, we need to give some preliminary notions and results. The proof
will rely on the Lidskii-Mirsky-Wielandt theorem, an approximation argument using the
index of a pair of projections and the representation of the synthesis operator associated
to {fi} given in Lemma 2.6.

Majorization and Lidskii-Mirsky-Wielandt theorem. Let x = (x1, . . . , xn) be a vector
in Rn. We denote by x↓ the vector obtained by rearranging the coordinates of x in
nonincreasing order. This means that x↓ = (x↓

1, . . . , x
↓
n) satisfies x↓

1 ≥ . . . ≥ x↓
n. Given

two vectors x, y ∈ Rn, we write x≺w y if

k∑

i=1

x↓
i ≤

k∑

i=1

y↓i , k = 1, . . . , n. (1)

In this case, we say that x is submajorized by y and we write x≺w y. If, in addition, there
is an equality for k = n in (1), then we write x≺ y and we say that x is majorized by y.

Given an n × n matrix X, we denote by s(X) = (s1(X), . . . , sn(X)) the vector of its
singular values arranged in non increasing order. The Lidskii-Mirsky-Wielandt theorem
states (see e.g. [6, 25]):

Theorem 2.2. Let F,G be n× n matrices, then

(|s1(F )− s1(G)|, . . . , |sn(F )− sn(G)|)≺w s(F −G).

Index of a pair of projections. We recall the notion of index of a pair of projections (see
[2, 5]). Let P,Q be two orthogonal projections on a Hilbert space H. The pair (P,Q) is
called a Fredhom pair if the operator QP |ran(P ) : ran(P ) → ran(Q) is Fredholm. In this
case, the index of the pair (P,Q) is defined by

j(P,Q) := index(QP |ran(P ) : ran(P ) → ran(Q))

= dim(ker(Q) ∩ ran(P ))− dim(ran(Q) ∩ ker(P )).
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Remark 2.3. We now state two elementary properties of Fredholm pairs which will be
used throughout this paper. The first one follows easily, and the second was proved in [5,
Thm. 3.4].

i) If the operator P −Q is compact, then (P,Q) is a Fredholm pair.

ii) If (P,Q) and (Q,R) are Fredholm pairs, and either Q − R or P − Q are compact,
then (P,R) is a Fredholm pair and j(P,R) = j(P,Q) + j(Q,R).

Let U(H) be the group of unitary operators on H. We consider the Fredholm unitary
group, i.e.

Uc(H) = {L ∈ U(H) : L− I is a compact operator }.

It is a Banach-Lie group in the topology defined by the usual operator norm. In this
section, we will use the following relation between pairs of projections and the Fredholm
unitary group proved by Carey [7, Remark 3.7].

Theorem 2.4. Let P,Q be orthogonal projections on a Hilbert space H. Then P − Q is
compact and j(P,Q) = 0 if and only if there is an unitary L ∈ Uc(H) such that Q = LPL∗.

Remark 2.5. It is worth pointing out that this result was proved in a more general setting,
the compact operators can indeed be replaced by any symmetrically-normed ideal in the
sense of [20]. Throughout this paper, we shall also use this result for the ideal of Hilbert-
Schmidt operators. We refer to [29] for an earlier proof of this case.

Denote by F and X the synthesis operators of the frames {fi} and {xi} in the state-
ment of Theorem 2.1. The fact that these frames are quadratically close, or equivalently,
F − X is a Hilbert-Schmidt operator, determines that F admits the following singu-
lar value decomposition. Below we write f ⊗ g for the rank one operator defined by
(f ⊗ g)h = 〈h, g〉 f , where f, g, h ∈ H.

Lemma 2.6. Let F be an operator with closed range, F = U |F | its polar decomposi-
tion and X a partial isometry. If the operator F − X is compact, then there exists an
orthonormal basis {gi}

α
1 of ker(F )⊥ satisfying

F =

α∑

i=1

si(Ugi)⊗ gi , 1 ≤ α ≤ ∞, (2)

where {si}
α
1 are the nonzero singular values of F . In the case where α = ∞, the series is

unconditionally convergent in the weak operator topology and si → 1.

Proof. Since F −X is a compact operator, F ∗F −F ∗X and F ∗X−X∗X are also compact
operators. Thus, |F |2−Q is compact, where Q = X∗X. Therefore the essential spectrum
of |F |2 satisfies σess(|F |2) = σess(Q) ⊆ {0, 1}. This gives also σess(|F |) ⊆ {0, 1}. The
operator F has closed range, then F ∗ also has this property, and thus ran(|F |) = ran(F ∗)
is closed. Consequently, there are two possibilities: 0 does not belong to the spectrum of
|F | or 0 is an isolated point of the spectrum. Hence the spectrum of |F | must be equal

6



to {si}
α
1 ∪ {0} or {si}

α
1 , where each si is a nonzero singular value of F , 1 ≤ α ≤ ∞ and

si → 1 when α = ∞. By the condition on the essential spectrum, each si 6= 1 is an
eigenvalue with finite multiplicity of the operator |F |.

Applying the spectral theorem for self-adjoint operators, we find that there is an
orthonormal basis {gi}

α
1 of ker(|F |)⊥ such that

|F | =
α∑

i=1

si gi ⊗ gi ; 1 ≤ α ≤ ∞.

When α = ∞, this series converges in the weak operator topology. Using the polar
decomposition, we have

F = U |F | =
α∑

i=1

si (Ugi)⊗ gi .

The convergence only depends on the fact that {gi}
α
1 and {Ugi}

α
1 are orthonormal bases

of ker(F )⊥ and ran(F ), respectively, which implies that the series is unconditionally con-
vergent when α = ∞.

We are now in position to prove Theorem 2.1.

Proof. The nontrivial assertion is i) ⇒ ii). Let F , X and U be the synthesis operators of
{fi}, {xi} and {ui}, respectively. We begin by noting that F − U is a compact operator.
Indeed, by Lemma 2.6,

F − U =
α∑

i=1

(si − 1) (Ugi)⊗ gi.

Since si → 1 when α = ∞, it follows that F−U is a compact operator. Then the sequence
of its singular values arranged in nonincreasing order {si(F − U)} is well defined.

Next note that the frames {fi} and {ui} are quadratically close if and only if the
operator F − U is Hilbert-Schmidt. This latter condition will follow immediately from
the fact that F −X is Hilbert-Schmidt and the dominance property (see e.g. [20, p. 82]),
that is

m∑

i=1

si(F − U) ≤
m∑

i=1

si(F −X), ∀m ≥ 1. (3)

Our task now is to prove these inequalities for the singular values.

Let P be the orthogonal projection onto ker(F )⊥. From the proof of Lemma 2.6, we
have that |F |2 −Q = K is compact, and

P −Q = P − |F |2 +K

=
α∑

i=1

gi ⊗ gi −
α∑

i=1

s2i gi ⊗ gi +K

=

α∑

i=1

(1− s2i ) gi ⊗ gi +K.

7



Using again that si → 1 when α = ∞, it follows that P − Q is compact. In particular,
this gives that (P,Q) is a Fredholm pair.

If 0 < k = j(P,Q), then define the block diagonal operators

F̃ : ℓ2 ⊕ C
k → H⊕ C

k, F̃ = F ⊕ 0, X̃ : ℓ2 ⊕ C
k → H⊕ C

k, X̃ = X ⊕ I .

The corresponding projections P̃ = P⊕0 and Q̃ = Q⊕I now satisfy that P̃−Q̃ is compact
and j(P̃ , Q̃) = 0. Accordingly, the canonical partial isometry is given by Ũ = U ⊕ 0. In
what follows, we will prove that F̃ − Ũ is Hilbert-Schmidt by using that F̃ − X̃ is Hilbert-
Schmidt, but this is equivalent to have that F −U is Hilbert-Schmidt. Following a similar
argument, we can modify F and X to obtain a Fredholm pair with zero index in the case
where j(P,Q) < 0. In the remainder of the proof, for short we write F , X and U to
refer to the operators F̃ , X̃ and Ũ , and by the preceding remarks, we can assume that
j(P,Q) = 0.

By Theorem 2.4, there exists a unitary operator L ∈ Uc(ℓ
2) such that Q = LPL∗. In

the case where α < ∞, F has finite dimensional range, and thus F−U is Hilbert-Schmidt.
So we assume that α = ∞. For n ≥ 1, set

Pn :=

n∑

i=1

gi ⊗ gi ; Qn := LPnL
∗.

Note that rank(Pn) = n, Pn ≤ P , Qn ≤ Q and Pn → P , Qn → Q strongly. On one hand,
note that

|(F − U)Pn| =
n∑

i=1

|si − 1| gi ⊗ gi ,

which gives
s((F − U)Pn) = (|s1 − 1|, . . . , |sn − 1|)↓.

On the other hand,
s(FPn) = (s1, . . . , sn)

↓,

and since Qn ≤ Q,
s(XQn) = (1, . . . , 1).

It follows that
s((F − U)Pn) = |s(FPn)− s(XQn)|

↓, n ≥ 1.

Now if m ≥ 1, then by Theorem 2.2 we get

m∑

i=1

si((F − U)Pn) =

m∑

i=1

|s(FPn)− s(XQn)|
↓
i

≤
m∑

i=1

si(FPn −XQn)

8



In the terminology of [20], this can be rewritten using the Ky-Fan norms ‖ · ‖(m) given
by the sum of the first m largest singular values:

‖(F − U)Pn‖(m) ≤ ‖FPn −XQn‖(m) . (4)

Note that (F − U)Pn → F − U and FPn − XQn → F −X strongly. Using that F − U
is compact, it follows by [20, Thm. 6.3] that ‖(F − U)Pn − (F − U)‖(m) → 0. A similar
argument can be applied to get the convergence in the Ky-Fan norm of the right-hand
side of (4), since

FPn −XQn = FPn −XLPnL
∗ = FPn −X(L− I)PnL

∗ −XPnL
∗

= (F −X)Pn −X(L− I)PnL
∗ −XPn(L

∗ − I),

and L − I, L∗ − I and F −X are compact operators. Letting n → ∞ in the inequality
(4), we obtain

‖F − U‖(m) ≤ ‖F −X‖(m)

for all m ≥ 1. Thus, we have proved the dominance property in (3). This finishes the
proof.

3 Parseval frames quadratically close to a frame

Let F = {fi} be a frame in a subspace K ⊆ H. Let QF denote the set of all Parseval
frames in subspaces of H which are quadratically close to {fi}, i.e.

QF =

{

{xi} is a Parseval frame in L : L ⊆ H,
∞∑

i=1

‖xi − fi‖
2 < ∞

}

.

Of course, we may have QF = ∅. In order to study its geometric structure, we shall
implicitly assume that QF is a nonempty set for the remainder of this section. Recall that
by Theorem 2.1, QF 6= ∅ if and only if the canonical Parseval frame {ui} is quadratically
close to {fi}. Therefore we have the following alternative description

QF =

{

{xi} is a Parseval frame in L : L ⊆ H,
∞∑

i=1

‖xi − ui‖
2 < ∞

}

. (5)

It is natural to endow QF with the ℓ2-distance:

d({xi}, {yi}) =

(
∞∑

i=1

‖xi − yi‖
2

)1/2

, {xi}, {yi} ∈ QF .

Clearly, QF becomes a metric space with this distance. We now turn our attention to
the problem of characterizing the connected components of QF , which will later play a
fundamental role in symmetric approximation.
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Remark 3.1. Given a Parseval frame {xi} in a subspace of H, whose synthesis operator
is a partial isometry X : ℓ2 → H, note that {xi} ∈ QF if and only if the operator X − F
is Hilbert-Schmidt. Using the description in (5), this is equivalent to have that X − U
is a Hilbert-Schmidt operator, where F = U |F | is the polar decomposition. Denote by
I the set of partial isometries from ℓ2 to H and B2(ℓ

2,H) the space of Hilbert-Schmidt
operators between these Hilbert spaces. Then the map

QF → I ∩ (U + B2(ℓ
2,H)), {xi} = {Xei} 7→ X,

is a homeomorphism. Here {ei} is the standard basis of ℓ2 and the space I∩(U+B2(ℓ
2,H))

is endowed with the metric given by the Hilbert-Schmidt norm d2(X, Y ) = ‖X − Y ‖2.
Throughout this section, to prove properties of the Parseval frames in QF we will often
change to partial isometries in I ∩ (U + B2(ℓ

2,H)).

Let U2(H) be the Banach-Lie group consisting of unitaries which are Hilbert-Schmidt
perturbations of the identity on a Hilbert space H, i.e.

U2(H) := {L ∈ U(H) : L− I is Hilbert-Schmidt }.

The product group U2(H)× U2(ℓ
2) acts on QF as follows:

(V,W ) · {xi} = {V XW ∗ei}, W ∈ U2(ℓ
2), V ∈ U2(H), (6)

Indeed, note that if X−U is Hilbert-Schmidt, then V XW ∗−U = (V −I)XW ∗+X(W ∗−
I) +X − U is Hilbert-Schmidt. Given {xi} ∈ QF , its orbit is given by

O({xi}) = { {V XW ∗ei} : V ∈ U2(H), W ∈ U2(ℓ
2) }.

Our next results rely on the following spatial characterization of these orbits (see [12,
Thm. 2.4]). We switch to partial isometries as explained in Remark 3.1.

Lemma 3.2. Consider X, Y : ℓ2 → H two partial isometries. Then X − Y is Hilbert-
Schmidt and j(X∗X, Y ∗Y ) = 0 if and only if there exist W ∈ U2(ℓ

2) and V ∈ U2(H) such
that X = V YW ∗.

We now give the main result of this section.

Proposition 3.3. Let F = {fi} be a frame in a subspace K ⊆ H. Let F be its
synthesis operator and F = U |F | the polar decomposition. Set n1 := dim(ker(F )),
n2 := dim(ker(F )⊥) and n3 := dim(ran(F )⊥). Then QF can be expressed as the union of
infinitely many connected components labeled as follows:

QF =
⋃

k∈J

Qk
F , J = [−min{n1, n3}, n2] ∩ Z.

These connected components have the following equivalent characterizations:

Qk
F = { {xi} ∈ QF : j(U∗U,X∗X) = k }

= { {xi} ∈ QF : j(UU∗, XX∗) = k }

= { {xi} ∈ QF : index(XU∗|K : K → L) = k, L = span{xi} },

where X denotes the synthesis operator associated to each Parseval frame {xi}. Further-
more, each connected component is an orbit of the action defined in (6).
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Remark 3.4. In the definition of the set J we interpret that the interval contains all the
negative numbers when n1 = ∞ and n3 = ∞, and all the positive numbers when n2 = ∞.

Proof. We begin with the proof of the first characterization of the connected components.
Take a Parseval frame {x0

i } ∈ QF . Denote by C the connected component of {x0
i } in

QF . Since the synthesis operator X0 of {x0
i } is such that U −X0 is Hilbert-Schmidt, then

U∗U −X∗
0X0 is also Hilbert-Schmidt, and in particular, by Remark 2.3 i), it follows that

(U∗U,X∗
0X0) is a Fredholm pair. Set j(U∗U,X∗

0X0) = k0. We have to show that C ⊆ Qk0
F .

Let P be the set of all orthogonal projections on ℓ2. Fixed P = U∗U ∈ P, we consider
the following Grassmann manifold

Gr(P ) = {Q ∈ P : P −Q is Hilbert-Schmidt },

which is naturally endowed with the metric d2(Q0, Q1) = ‖Q0−Q1‖2. It was shown in [7,
Remark 3.7] that the connected component of a projection Q0 ∈ Gr(P ) can be described
as

{Q ∈ Gr(P ) : j(Q0, Q) = 0 } = {WQ0W
∗ : W ∈ U2(ℓ

2) }, (7)

and hence by Remark 2.3 ii), the connected components of Gr(P ) are given by

{Q ∈ Gr(P ) : j(P,Q) = k},

where the integer k varies over all the possible values of the index. For instance, note
that when the kernel and range of P are both infinite dimensional the index can be any
integer. However, if P has finite dimensional range (resp. kernel), then the index cannot
take values greater than dim ran(P ) (resp. lower than dim ker(P )). Now using that the
map ϕ : QF → Gr(P ), ϕ({xi}) = X∗X, is continuous, we obtain that ϕ(C) is connected.
This implies that the index does not change in C, and hence C ⊆ Qk0

F .
To prove the reversed inclusion, we will see that Qk0

F is connected. Take two Par-
seval frames {xi}, {yi} ∈ Qk0

F . Then their synthesis operators satisfy j(U∗U,X∗X) =
j(U∗U, Y ∗Y ) = k0. Using Remark 2.3, it follows that j(X∗X, Y ∗Y ) = j(X∗X,U∗U) +
j(U∗U, Y ∗Y ) = −k0+k0 = 0. According to Lemma 3.2, there are two unitaries W ∈ U2(ℓ

2)
and V ∈ U2(H) such that X = V YW ∗. Now recall that the Lie algebra of the group U2(H)
is given by

u2(H) = {A ∈ B2(H) : A = −A∗ },

and the exponential map exp : u2(H) → U2(H), exp(A) = eA is surjective (see e.g. [3,
Remark 3.1]). Then there exist A = −A∗ and B = −B∗ Hilbert-Schmidt operators
such that V = eA and W = eB. Thus, there is a continuous path joining X and Y
given by γ(t) = etAXe−tB, 0 ≤ t ≤ 1. Note that γ(t) − X is Hilbert-Schmidt and
j(X∗X, γ(t)∗γ(t)) = 0 by the characterization in (7). Then {γ(t)ei} is a continuous path
of Parseval frames joining {xi} and {yi} in Qk0

F . Hence Qk0
F is connected.

The second description of the connected components is a direct consequence of the
first and the following fact: if two partial isometries X, Y are such that X −Y is Hilbert-
Schmidt, then j(X∗X, Y ∗Y ) = 0 if and only if j(XX∗, Y Y ∗) = 0. This in turn is an
immediate consequence of Lemma 3.2.
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The third characterization of the connected components follows by noting that K =
ran(U), L = ran(X), and that X∗XU∗U |ran(U∗) : ran(U

∗) → ran(X∗) is Fredholm if and
only if XU∗|ran(U) : ran(U) → ran(X) is. Moreover, we clearly have j(U∗U,X∗X) =
index(XU∗|ran(U) : ran(U) → ran(X)).

In order to determine the index set J labeling the connected components, recall that
from the first and second characterizations of Qk

F , any k ∈ J must satisfy

k = dim(ker(Q) ∩ ran(P ))− dim(ker(P ) ∩ ran(Q))

= dim(L⊥ ∩ K)− dim(L ∩ K⊥),

where P = U∗U , Q = X∗X and X is the synthesis operator of a Parseval frame {xi} ∈ Qk
F

with ran(X) = L. Clearly, this implies the estimates −min{n1, n3} ≤ k ≤ n2. We now
show that there exist Parseval frames for which the index takes all these values. From
Lemma 2.6, there are orthonormal bases {gi} and {Ugi} of ran(P ) and ran(F ), respec-
tively. Next take {g′i} and {hi} orthonormal bases of ker(P ) and ran(F )⊥, respectively.
In the case where n1 ≤ n3, we can define for −n1 ≤ k < 0, the following partial isometry:
Xgi = Ugi for all i ≥ 1, Xg′i = hi for 1 ≤ i ≤ −k, and Xg′i = 0 for i > −k. When k = 0,
we just set X = U , and when 0 < k ≤ n2, we change the definition: take i1, . . . , ik ∈ [1, n2],
put Xgi = Ugi for i 6= i1, . . . , ik, Xgij = 0 for j = 1, . . . , k, and Xg′i = 0 for all i ≥ 1.
For any of these definitions of X, the operator U − X has finite rank and j(P,Q) = k.
Thus the associated Parseval frame {xi} belongs to Qk

F . The case where n1 ≥ n3 follows
similarly. Notice that from this description of J, and since the underlying Hilbert space H
is infinite dimensional, then one of the following conditions holds true: min{n1, n3} = ∞
or n2 = ∞. Thus, there are always infinitely many connected components of QF .

Finally, we prove that the connected components are orbits of the action defined
in (6). Using again that the group U2(H) is path connected, it follows that the orbit
O({xi}) = { {VXWei} : V ∈ U2(H), W ∈ U2(ℓ

2) } is connected, and thus O({xi}) ⊆ C,
where C is the connected component of {xi}. Conversely, take {yi} ∈ C. Then its synthesis
operator is such that Y − U is Hilbert-Schmidt and j(U∗U, Y ∗Y ) = j(U∗U,X∗X) for
some integer k ∈ J. From Remark 2.3, it follows that Y − X is Hilbert-Schmidt and
j(X∗X, Y ∗Y ) = 0. Then there are two unitaries V ∈ U2(H) and W ∈ U2(ℓ

2) satisfying
Y = V XW ∗ by Lemma 3.2. This completes the proof.

Remark 3.5. The action is locally transitive. Indeed, the following fact was proved ([12,
Lemma 3.1]): If X, Y are two partial isometries such that ‖X −Y ‖2 < 1, then there exist
two unitaries V ∈ U2(H), W ∈ U2(ℓ

2) such that Y = V XW ∗. This means that Parseval
frames which have ℓ2-distance less than 1 belong to the same connected component. In
addition, if k0, k1 ∈ J, k0 6= k1, then the distance between the corresponding connected
components satisfies

d(Qk0
F ,Qk1

F ) = inf







(
∞∑

i=1

‖xi − yi‖
2

)1/2

: {xi} ∈ Qk0
F , {yi} ∈ Qk1

F






≥ 1.
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4 Symmetric approximation in connected components

Our aim in this section is to study symmetric approximation by Parseval frames in the
connected components of QF described in the previous section. Actually, this is a partic-
ular case of symmetric approximation by a family of Parseval frames as we now define.

Definition 4.1. Let {fi} be a frame in a subspace K of a Hilbert space H. Let Q be a
nonempty family of Parseval frames in subspaces of H. A Parseval frame {yi} ∈ Q is said
to be a symmetric approximation of {fi} in Q if the inequality

∞∑

i=1

‖fi − yi‖
2 ≤

∞∑

i=1

‖fi − xi‖
2,

is valid for all Parseval frames {xi} ∈ Q and the sum at the left side of this inequality is
finite.

Remark 4.2. The last assumption of the definition avoids the cases where both sides of the
inequality are infinite. However, the right side might be infinite. On the other hand, we
observe that this definition of symmetric approximation by a family of Parseval frames
was previously given in [4] for the finite dimensional setting. In addition, note that if
Qw

F denotes the family of all Parseval frames weakly similar to F = {fi}, then {yi} is a
symmetric approximation of {fi} in Qw

F when {yi} is a symmetric approximation in the
sense of [19].

In order to study symmetric approximation in the connected components Qk
F , k ∈ J,

we will need three supporting results. The first one is about the critical points of the
map X 7→ ‖F − X‖22, where F is the synthesis operator of the frame {fi} and X is any
synthesis operator (partial isometry) of a quadratically close Parseval frame. This result
was proved in [27, Thm. 4.1] for a positive operator F , and was generalized in a remark
after its proof in that article to an arbitrary operator F as we state below.

Lemma 4.3. Suppose that Y is a local extremum of the map X 7→ ‖F −X‖22, where X
varies over those partial isometries such that F−X is Hilbert-Schmidt. Then Y ∗F = F ∗Y .

Taking the adjoint in the definition of the above map, one also has Y F ∗ = FY ∗. By a
basic result in matrix theory that goes back to [17, Thm. II], the relations Y ∗F = F ∗Y and
Y F ∗ = FY ∗ between two matrices F , X are equivalent to the existence of a simultaneous
singular value decomposition. Below we give a version of the simultaneous singular value
decomposition for the type of operators we need. Its proof is adapted from the matrix
case (see [28, Thm. 2.7.12]). It works in our case due the expression of the operator F in
Lemma 2.6 and the fact that F − Y is compact.

Lemma 4.4. Let F be an operator with closed range. Let Y be a partial isometry such
that F − Y is a compact operator and Y F ∗ = FY ∗ and Y ∗F = F ∗Y . Then there exist
orthonormal bases {vi} of ℓ2 and {hi} of H, and two sequences {ri}

α
1 and {ti}

β
1 such that

F =
α∑

i=1

sihri ⊗ vri , 1 ≤ α ≤ ∞,
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and

Y =

β
∑

i=1

ǫihti ⊗ vti , 1 ≤ β ≤ ∞,

where {si}
α
1 are the nonzero singular values of F and ǫi ∈ {−1, 1 }.

Proof. Recall that Lemma 2.6 gives F =
∑α

i=1 si(Ugi)⊗ gi, where {gi}
α
1 and {Ugi}

α
1 are

orthonormal bases of ker(F )⊥ and ran(F ), respectively, and {si}
α
1 are the nonzero singular

values of F . We can complete them to orthonormal bases of ℓ2 and H, which induce two
unitary operators Q ∈ U(ℓ2) and P ∈ U(H). In the coordinates given by these bases we
write

F = P

(
∆ 0
0 0

)

Q∗,

where ∆ = diag(s1, s2, . . .) is an invertible diagonal matrix. The compact operator defined
by A = F −Y also satisfies AF ∗ = FA∗ and A∗F = F ∗A. Using the block decomposition
with respect to ℓ2 = Q∗(ker(F ))⊥ ⊕Q∗(ker(F )) and H = P ∗(ran(F ))⊕ P ∗(ran(F ))⊥, we
write in the same coordinates as above

A = P

(
B C
D E

)

Q∗.

Next note that FA∗ is self-adjoint, so P ∗FA∗P is also self-adjoint, and

P ∗FA∗P = (P ∗FQ)(Q∗A∗P ) =

(
∆B∗ ∆D∗

0 0

)

.

This implies that D = 0 and ∆B∗ = B∆. Applying a similar argument to the self-adjoint
matrix Q∗F ∗AQ, one sees that C = 0 and ∆B = B∗∆. Therefore, ∆2B = B∆2, which
gives ∆B = B∆ and B = B∗. Since ∆ is diagonal, there are a block unitary matrix R
and a real diagonal matrix Λ such that R∗∆R = ∆ and R∗BR = Λ. The size of the
blocks of R are given by the multiplicities of the nonzero singular values {si}

α
1 .

Next we use that E is also a compact matrix, so it admits a singular value decompo-
sition, which in matrix form means that E = XΓZ∗ for two unitaries X and Z, and a
diagonal matrix Γ with non negative entries. Set

W = P

(
R 0
0 X

)

, V = Q

(
R 0
0 Z

)

.

It follows that

W ∗FV =

(
∆ 0
0 0

)

, W ∗AV =

(
Λ 0
0 Γ

)

.

Therefore

W ∗Y V =

(
∆− Λ 0

0 −Γ

)

is a real diagonal matrix. Since Y is a partial isometry, W ∗Y V is also a partial isometry,
and thus V ∗Y ∗Y V = (W ∗Y V )∗(W ∗Y V ) is a projection. Hence the only possible values
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of the diagonal entries of W ∗Y V are −1, 0, 1. Then the desired orthonormal bases {vi}
and {hi} are defined by the unitaries V and W . The sequences {ri}

α
1 and {ti}

β
1 can be

chosen to satisfy that {vri}
α
1 and {hri}

α
1 are orthonormal bases of ker(F )⊥ and ran(F ),

and {vti}
β
1 and {hti}

β
1 are orthonormal bases of ker(Y )⊥ and ran(Y ).

Using the previous lemma, we will reduce problems of existence and uniqueness of
symmetric approximation of frames to similar problems for diagonal operators. This can
be thought as the optimization problem involving sequences that we discuss below.

Fix {ai} a sequence of non negative numbers such that

∑

i : ai 6=0

(ai − 1)2 < ∞. (8)

Consider the set

B :=

{

{bi} : bi ∈ {−1, 0, 1 },
∞∑

i=1

(ai − bi)
2 < ∞

}

.

For every sequence {bi} ∈ B, it is straightforward to see that the following version of the
index is well defined

j({ai}, {bi}) := #{ i : bi = 0, ai > 0 } −#{ i : bi 6= 0, ai = 0 }.

Actually, this is the index of the pair of projections onto the orthogonal complements of
the kernels of the diagonal operators defined by {ai} and {bi}. The values of the index
give a decomposition of B in the following sets:

Bk := { {bi} ∈ B : j({ai}, {bi}) = k },

where the integers k can take all the values

−#{ i : ai = 0 } ≤ k ≤ #{ i : ai > 0 }. (9)

Here the lower and upper bounds can be −∞ and ∞. Notice that the value k = 0 is
always achieved by choosing bi = 1 if ai > 0 and bi = 0 if ai = 0, and using the assumption
in (8).

Lemma 4.5. With the notation above, consider the function

f : B → R, f({bi}) =
∞∑

i=1

(ai − bi)
2 .

For any integer k satisfying (9), the minimizers of the function f restricted to the set Bk

are given as follows:
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i) If k = 0, then there is a unique minimizer given by

bi =

{

1 if ai 6= 0,

0 if ai = 0.

ii) If k < 0, then the set Ak := { i : ai = 0 } satisfies #Ak ≥ −k. There are 2−k
(
#Ak

−k

)

minimizers if #Ak < ∞, or infinitely many minimizers if #Ak = ∞, which can be
described as follows. For i1, . . . , i−k ∈ Ak,

bi =







1 if ai 6= 0,

±1 if i = i1, . . . , i−k,

0 if ai = 0 and i 6= i1, . . . , i−k.

(10)

iii) If k > 0, then there exists a minimizer if and only if there are k nonzero lowest
numbers an1

≤ . . . ≤ ank
in the sequence {ai}. In this case, set

A
k := { {n1, . . . , nk} : 0 < an1

≤ . . . ≤ ank
≤ aj , ∀ j 6= n1, . . . , nk, aj 6= 0 }.

Then all the minimizers can be described as follows: for {n1, . . . , nk} ∈ Ak,

bi =

{

1 if ai 6= 0, i 6= n1, . . . , nk,

0 if ai = 0 or i = n1, . . . , nk.

Thus, there is a unique minimizer if and only if #Ak = 1.

Proof. i) The condition imposed by the index and the inequality (a − 1)2 < a2 + 1 for
a > 0, implies that any candidate to be a minimizer {bi} must satisfy

#{ i : bi = 0, ai > 0 } = #{ i : bi 6= 0, ai = 0 } = 0.

This means that bi = ±1 if ai > 0, and bi = 0 if ai = 0. Then the inequality (a − 1)2 <
(a + 1)2 for a > 0 can be used to deduce that there is a unique minimizer of the desired
form.

ii) Note that #Ak ≥ #{ i : bi 6= 0, ai = 0 } ≥ −k because Bk 6= ∅. The proof is
similar to the previous item, we only remark that for the indices i1, . . . , i−k, we can have

bij = 1 or bij = −1. Hence there are 2−k
(
#Ak

−k

)
minimizers if #Ak < ∞, or infinitely many

minimizers if #Ak = ∞.

iii) Suppose that there are k values of the sequence {ai} such that 0 < an1
≤ . . . ≤ ank

≤
aj for all j 6= n1, . . . , nk, aj 6= 0. Again from the condition given by the index and the
inequality (a−1)2 < a2+1 for a > 0, any candidate to be a minimizer {bi} have to satisfy

#{ i : bi = 0, ai > 0 } = k, #{ i : bi 6= 0, ai = 0 } = 0. (11)
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Then, using the inequality (a − 1)2 + b2 < a2 + (b − 1)2 for b < a, we conclude that if
we place k zeros on the indices n1, . . . , nk of a sequence {bi}, then we obtain a minimizer.
The set Ak is defined to take into account the possibly repetition of the k lowest values
of {ai} which leads to other minimizers. Indeed, if {n1, . . . , nk}, {n

′
1, . . . , n

′
k} ∈ Ak, then

an1
= an′

1
, . . . , ank

= an′

k
. This implies that f({bi}) = f({b′i}), where {bi} and {b′i} are

the minimizing sequences in Bk associated to {n1, . . . , nk} and {n′
1, . . . , n

′
k}, respectively.

On the other hand, it is now clear that there is unique minimizer when #Ak = 1.
In order to prove the converse, assume that do not exist k lowest values of {ai}.

As before, if we suppose that there is minimizer {bi} ∈ Bk, then it must satisfy (11).
Thus, bn1

= . . . = bnk
= 0 for some integers n1, . . . , nk. By hypothesis there exists

n0 6= n1, . . . , nk such that 0 < an0
< anj

for some j = 1, . . . , k. We define another
sequence {b′i} ∈ Bk as follows: b′i = bi if i 6= n0, nj , b′n0

= 0, and bnj
= 1. Since

(anj
− 1)2 + an0

< a2nj
+ (an0

− 1)2, we have f({b′i}) < f({bi}). This is a contradiction,
which shows that the function f does not have minimizers in this case.

Our first result on symmetric approximation now follows. It gives the existence and
uniqueness of symmetric approximation in the connected component Q0

F . In the statement
we assume the existence of quadratically close Parseval frames, which is a necessary
condition to seek for symmetric approximations.

Theorem 4.6. Let F = {fi} be a frame in a subspace K ⊆ H, and let {ui} be its canonical
Parseval frame. Suppose that there exists a Parseval frame quadratically close to {fi}.
Then the estimate

∞∑

i=1

‖fi − ui‖
2 ≤

∞∑

i=1

‖fi − xi‖
2

is valid for all Parseval frames {xi} ∈ Q0
F . Furthermore, equality holds if and only if

{xi} = {ui}.

Proof. The proof of the existence of symmetric approximations is similar to Theorem 2.1,
but we do not have to deal with the Fredholm unitary group and the Ky-Fan norms now.
We begin by noting that by Theorem 2.1, there exists a Parseval frame quadratically close
to {fi} if and only if

∑∞
i=1 ‖fi − ui‖

2 < ∞. This gives that Q0
F 6= ∅ and also the last

condition in Definition 4.1 of symmetric approximation is verified.
As usual, we write F = U |F | for the polar decomposition. Now take an arbitrary

Parseval frame {xi} ∈ Q0
F . According to Proposition 3.3, this means that its synthesis

operator X is a partial isometry such that X − U is Hilbert-Schmidt and j(P,Q) = 0,
where Q = X∗X and P = U∗U is the orthogonal projection onto ker(F )⊥. It follows that
P −Q is Hilbert-Schmidt. As we stated in Remark 2.5, Theorem 2.4 holds if we replace
compact operators by Hilbert-Schmidt operators and the Fredholm unitary group by the
group U2(H). Hence there exists L ∈ U2(ℓ

2) such that Q = LPL∗.
Applying Lemma 2.6, we obtain an orthonormal basis {gi}

α
1 of ker(F )⊥ satisfying

F =
∑α

i=1 si(Ugi)⊗ gi, where {si}
α
1 are the nonzero singular values of F . In what follows,

we assume that α = ∞ (the case α < ∞ is easier since we do not need an approximation
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argument). Given n ≥ 1, set

Pn :=

n∑

i=1

gi ⊗ gi ; Qn := LPnL
∗.

Note that rank(Pn) = n, Pn ≤ P and Qn ≤ Q. Since the singular values satisfies
s((F − U)Pn) = (|s1 − 1|, . . . , |sn − 1|)↓, s(FPn) = (s1, . . . , sn)

↓ and s(XQn) = (1, . . . , 1),
it follows that

s((F − U)Pn) = |s(FPn)− s(XQn)|
↓, n ≥ 1.

Then, by Theorem 2.2, for all m ≥ 1 we get
m∑

i=1

si((F − U)Pn) =

m∑

i=1

|s(FPn)− s(XQn)|
↓
i

≤
m∑

i=1

si(FPn −XQn).

This implies that ‖(F −U)Pn‖2 ≤ ‖FPn−XQn‖2 by the dominance property [20, p. 82].
Noting that Pn → P , Qn → Q strongly, and that the operators F−U , F−X and L−I are
Hilbert-Schmidt, we have ‖(F−U)Pn−(F −U)‖2 → 0 and ‖FPn−XQn−(F −X)‖2 → 0
(see [20, Thm. 6.3]). This gives ‖F−U‖2 ≤ ‖F−X‖2. Hence {ui} = {Uei} is a symmetric
approximation of {fi} in Q0

F .

Now we prove the uniqueness. Suppose that {yi} is another symmetric approximation
of the frame {fi} in Q0

F . This means that its synthesis operator Y satisfies ‖F − Y ‖2 ≤
‖F − X‖2, for all partial isometries X which are synthesis operators of Parseval frames
{xi} ∈ Q0

F . Therefore Y is a local minimum of the differentiable map X 7→ ‖F − X‖22,
and by Lemma 4.3, it follows that Y ∗F = F ∗Y and Y F ∗ = FY ∗. According to Lemma
4.4, there exist orthonormal bases {vi} of ℓ2 and {hi} of H, and two sequences {ri}

α
1 and

{ti}
β
1 such that

F =
α∑

i=1

sihri ⊗ vri , Y =

β
∑

i=1

ǫihti ⊗ vti ,

where {si}
α
1 are the nonzero singular values of F and ǫi ∈ {−1, 1 }. Using the notation of

Lemma 4.5, set

ai =

{

si, if i = rj for some 1 ≤ j ≤ α,

0, otherwise;
b̃i =

{

ǫi, if i = tj for some 1 ≤ j ≤ β,

0, otherwise.

For each sequence {bi} ∈ B0, we define a partial isometry X =
∑∞

i=1 bihi ⊗ vi ∈ Q0
F .

Then,

f({bi}) =
∞∑

i=1

(ai − bi)
2 =

∞∑

i=1

‖(F −X)vi‖
2 = ‖F −X‖22

≥ ‖F − Y ‖22 =
∞∑

i=1

‖(F − Y )vi‖
2 =

∞∑

i=1

(ai − b̃i)
2 = f({b̃i}).
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By Lemma 4.5 i), we have that {b̃i} is the unique minimizer of the function f restricted
to B0. Thus, b̃i = 1 if ai > 0, and b̃i = 0 if ai = 0. Hence,

Y =
∞∑

i=1

b̃ihi ⊗ vi =
α∑

i=1

hri ⊗ vri = U,

which implies that {yi} = {ui}.

Remark 4.7. Given an arbitrary frame F = {fi}, consider the set

Qw
F =

{

{xi} : {xi} Parseval frame weakly similar to {fi},
∞∑

i=1

‖xi − fi‖
2 < ∞

}

.

Since Qw
F ⊆ Q0

F , it follows that Theorems 2.1 and 4.6 generalize [19, Thm. 2.3]. Fur-
ther, the geometric structure of Qw

F can also be studied using previous results for partial
isometries (see [12, Thm. 2.3]). For instance, we have that Qw

F coincides with the orbit
of the following action:

V · {xi} = {V Xei}, V ∈ U2(H),

where {xi} is any Parseval frame belonging to Qw
F with synthesis operator X. As a

straightforward consequence Qw
F is connected.

We now study symmetric approximation restricted to connected components of the
form Qk

F 6= ∅, k < 0. We first observe that, according to Proposition 3.3, Qk
F 6= ∅ for

some k < 0 if and only if

n1 = dimker(F ) > 0 and n3 = dimK⊥ > 0. (12)

Our next result shows that symmetric approximations in these type of connected compo-
nents always exist, and it is possible to give a complete description of them.

Theorem 4.8. Let F = {fi} be a frame in a subspace K ⊆ H. Let F be its synthesis
operator, F = U |F | the polar decomposition and {ui} = {Uei} the canonical Parse-
val frame. Assume that both conditions in (12) hold. Then for any integer satisfying
−min{n1, n3} ≤ k ≤ −1, and every partial isometry S : ker(F ) → ran(F )⊥ such that
rank(S) = −k, the estimate

∞∑

i=1

‖fi − ui − S(I − U∗U)ei‖
2 ≤

∞∑

i=1

‖fi − xi‖
2

is valid for all Parseval frames {xi} ∈ Qk
F . Thus, there are always infinitely many sym-

metric approximations of {fi} in Qk
F . Moreover, all the symmetric approximations are

given by {ui+S(I−U∗U)ei}, where S is a partial isometry satisfying the above conditions.
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Proof. Take an integer k under the above assumptions, and let {xi} ∈ Qk
F be a Parseval

frame in a subspace L ⊆ H. Denote by X its synthesis operator, and set Q = X∗X and
P = U∗U . Since j(P,Q) = dim(ker(Q) ∩ ran(P ))− dim(ker(P ) ∩ ran(Q)) = k, it follows
that dim(ker(F )) = dim(ker(P )) ≥ −k. By Proposition 3.3, the second characterization
of the connected components, yields j(UU∗, XX∗) = dim(K ∩ L⊥) − dim(K⊥ ∩ L) = k.
Thus, dimK⊥ = dim ran(F )⊥ ≥ −k. Hence it is always possible to construct partial
isometries S : ker(F ) → ran(F )⊥ satisfying rank(S) = −k.

Now we consider the partial isometry US := U + S(I − P ), which is the synthesis
operator of the Parseval frame {ui + S(I − U∗U)ei}. We express the initial projection
of US as P ′ = P + P ′′, where P ′′ = (I − P )S∗S(I − P ). Noting that P ′ − P is a
finite rank operator, by Remark 2.3 ii) the following formula for the index is applicable:
j(P ′, Q) = j(P ′, P ) + j(P,Q) = 0. According to the remark after Theorem 2.4, there
exists L ∈ U2(ℓ

2) such that Q = LP ′L∗. On the other hand, by Lemma 2.6, the operator
F may be expressed as

F =
α∑

i=1

si(Ugi)⊗ gi, 1 ≤ α ≤ ∞.

We now assume that α = ∞. The case where α < ∞, i.e. F a finite rank operator,
follows similarly and is easier (it is not necessary to approximate the projections P ′ and
Q as below). For n ≥ 1, we define the projections

Pn =

n∑

i=1

gi ⊗ gi + P ′′; Qn := L∗PnL.

Observe that rank(Pn) = rank(Qn) = n − k, Pn ≤ P ′, Qn ≤ Q, and Pn → P ′, Qn → Q
strongly. Since

|(F − US)Pn| =
n∑

i=1

|si − 1|gi ⊗ gi + P ′′,

it follows that

s((F − US)Pn) = (|s1 − 1|, . . . , |sn − 1|, 1, . . . , 1
︸ ︷︷ ︸

−k

)↓

= |(s1, . . . , sn, 0, . . . , 0
︸ ︷︷ ︸

k

)↓ − (1, . . . , 1
︸ ︷︷ ︸

n−k

)|↓

= |s(FPn)− s(XQn)|
↓.

Using Theorem 2.2 and the same approximation argument of Theorem 4.6, we can con-
clude that {ui + S(I − P )ei} is a symmetric approximation of {fi} in Qk

F .
It remains to show that every symmetric approximation of {fi} in Qk

F (k ∈ J, k < 0) is
given by that formula. Take {yi} such a symmetric approximation. Its synthesis operator
Y satisfies ‖F−Y ‖2 ≤ ‖F−X‖2, for all partial isometries X which are synthesis operators
of Parseval frames {xi} ∈ Qk

F . Hence Y is a local minimum of the differentiable map
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X 7→ ‖F − X‖22. As in the proof of the uniqueness part of Theorem 4.6, recall that
Lemmas 4.3 and 4.4 can be used to reduce the problem to the diagonal case. By Lemma
4.5 ii), we have that each minimizer {bi} is defined by −k numbers i1, . . . , i−k ∈ Ak.
Therefore,

Y =

∞∑

i=1

bi hi ⊗ vi =

α∑

i=1

hri ⊗ vri +

−k∑

j=1

ǫjhij ⊗ vij = U +

−k∑

j=1

ǫjhij ⊗ vij ; ǫj = ±1.

Then, S :=
(
∑−k

j=1 ǫjhij ⊗ vij

)

|ker(F ) : ker(F ) → ran(F )⊥ is a partial isometry of rank −k

such that yi = ui + S(I − P )ei.

In contrast to the previous result, symmetric approximations in Qk
F (k > 0, k ∈ J)

do not always exist. Below we prove a necessary and sufficient condition for existence
of symmetric approximation restricted to these connected components in terms of the
singular values of the synthesis operator. These singular values are also useful to give a
uniqueness criterion, and to the describe all the possible symmetric approximations.

Theorem 4.9. Let F = {fi} be a frame in a subspace K ⊆ H. Let F be its synthesis
operator, F = U |F | the polar decomposition and {ui} = {Uei} the canonical Parseval
frame. Denote by {si}

α
1 (1 ≤ α ≤ ∞) the nonzero singular values of the operator F .

Assume that there exists a quadratically close Parseval frame to {fi}. Then for any
integer 1 ≤ k ≤ α the following statements hold:

i) There exists a symmetric approximation of the frame {fi} in Qk
F if and only if

there are k nonzero singular values {sni
}k1 satisfying sn1

≤ . . . ≤ snk
≤ sj, for all

j 6= n1, . . . , nk.

ii) Assume that the previous condition for existence holds, and define

A := { j : 0 < sj < snk
}, B := { j : sj = snk

}.

Then all the symmetric approximations in Qk
F are given by

{ui − U(E0 + E1)ei} , (13)

where E0 is the orthogonal projection onto ⊕j∈A ker(|F | − sjI) and E1 is any or-
thogonal projection such that ran(E1) ⊆ ker(|F |−snk

I) and rank(E1) = k−#A. In
particular, there is a unique symmetric approximation if and only if #A+#B = k.
Otherwise, there are infinitely many symmetric approximations.

Proof. We are assuming that there exists a quadratically close Parseval frame to {fi},
then by Proposition 3.3 we have Qk

F 6= ∅ for any integer k satisfying 1 ≤ k ≤ n2 = α,
where α is the number of nonzero singular values of F . So it makes sense to look for
symmetric approximations in these type of components.
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i) Assume that there exist k singular values of the synthesis operator F such that 0 <
sn1

≤ . . . ≤ snk
≤ sj, for all j 6= n1, . . . , nk, sj 6= 0. We will prove that the Parseval frame

defined in (13) is a symmetric approximation. Suppose that the above sets are given by

A = {n1, . . . , nt }, B = {nt+1, . . . , nk } ∪ {n′
i : 1 ≤ i ≤ γ },

where 0 ≤ t < k and 0 ≤ γ ≤ ∞. Here we interpret that A = ∅ if t = 0, and
{n′

i : 1 ≤ i ≤ γ } = ∅ if γ = 0. Note that 1 is the unique nonzero singular value which
could have infinite multiplicity (this happens when γ = ∞).

Let E1 be an orthogonal projection such that ran(E1) ⊆ ker(|F |−snk
I) and rank(E1) =

k−t. This projection can be written as E1 =
∑k−t

i=1 vi⊗vi, where {vi}
k−t
1 is an orthonormal

basis of ran(E1). An examination of the proof of Lemma 2.6 combined with the fact
vi ∈ ker(|F | − snk

I) for all i = 1, . . . , k − t, yields that we may choose an orthonormal
basis {gi}

α
1 of ker(F )⊥ such that

F =

α∑

i=1

si(Ugi)⊗ gi

and gnt+1
= v1, . . . , gnk

= vk−t. Now note that the projection E0 defined in the statement
is given by E0 =

∑t
i=1 gni

⊗ gni
.

Pick a Parseval frame {xi} in Qk
F , k > 0, with synthesis operator X. Set Q = X∗X,

P = U∗U and {m1, m2, . . .} = N\{n1, . . . , nk }. We assume that α = ∞ (the case α < ∞
follows similarly). We define the following projections:

P ′ :=

∞∑

i=1

gmi
⊗ gmi

; P ′′ :=

k∑

i=1

gni
⊗ gni

= E0 + E1 .

Thus, P = P ′ + P ′′. Again noting that P − P ′ is a finite rank operator, j(P ′, Q) =
j(P ′, P ) + j(P,Q) = −k + k = 0. From Remark 2.5, there is a unitary L ∈ U2(ℓ

2) such
that Q = LP ′L∗. Set

Pn :=

n∑

i=1

gmi
⊗ gmi

; Qn := LPnL
∗.

We have that rank(Pn) = rank(Qn) = n, Pn ≤ P ′, Qn ≤ Q, and Pn → P ′, Qn → Q
strongly. Note that the partial isometry

Uk =
∞∑

i=1

(Ugmi
)⊗ gmi

is the synthesis operator of the Parseval frame defined in (13). The assumption on the k
lowest singular values is used now to write in non increasing order the following vector of
singular values:

s(F (Pn + P ′′)) = ((sm1
, . . . , smn

)↓, snk
, . . . , sn1

).
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Note that
s(XQn) = (1, . . . , 1

︸ ︷︷ ︸

n

, 0, . . . , 0
︸ ︷︷ ︸

k

),

which gives

s((F − Uk)(Pn + P ′′)) = (|sm1
− 1|, . . . , |smn

− 1|, snk
, . . . , sn1

)↓

= |s(F (Pn + P ′′))− s(XQn)|
↓ .

Now the result follows by applying Theorem 2.2 and the usual approximation argument.

For the converse, we observe that the proof can be reduced to the diagonal case as in
the uniqueness part of Theorem 4.6, and then we can use Lemma 4.5 iii) to derive the
result.

ii) We have proved that the Parseval frame defined in (13) is a symmetric approximation
of {fi} in Qk

F . The fact that every such symmetric approximation has this form follows
again by an application of Lemmas 4.3, 4.4 and 4.5 iii) as in the uniqueness part of
Theorem 4.6. Note that if there is a unique symmetric approximation, then there is only
one orthogonal projection E1 such that rank(E1) = k−#A and ran(E1) ⊆ ker(|F |−snk

I).
It is not difficult to see that E1 must be the orthogonal projection onto ker(|F | − snk

I).
Hence we obtain #B = dimker(|F | − snk

I) = rank(E1) = k − #A. Conversely, suppose
that #A+#B = k, then the projection E1 onto ker(|F | − snk

I) is the unique orthogonal
projection satisfying the conditions rank(E1) = k − #A and ran(E1) ⊆ ker(|F | − snk

I).
Since every symmetric approximation has the form (13), we get that there is a unique
symmetric approximation.

In the case where symmetric approximation is not unique, it follows that k − #A <
#B = dimker(|F | − snk

I). Therefore there are infinitely many orthogonal projections E1

satisfying rank(E1) = k−#A and ran(E1) ⊆ ker(|F | − snk
I), and consequently, there are

infinitely many symmetric approximations.

5 Global symmetric approximation

Let F = {fi} be a frame in a subspace K ⊆ H. In this section we discuss existence
and uniqueness of symmetric approximations of {fi} in the set QF of all Parseval frames
quadratically close to {fi}.

Remark 5.1. From the proofs of Theorems 4.6, 4.8 and 4.9, when there exists a symmetric
approximation in Qk

F , the ℓ2-distance to these connected components can be expressed in
terms of the nonzero singular values {si}

α
1 of the synthesis operator F :

• k = 0: d2({fi},Q
0
F) =

∑α
i=1(si − 1)2.

• k < 0: d2({fi},Q
k
F) =

∑α
i=1(si − 1)2 + 1 + . . .+ 1, where the number of 1’s is −k.

• k > 0: d2({fi},Q
k
F) =

∑

i 6=n1,..., nk
(si − 1)2 +

∑k
i=1 s

2
ni

.
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Next we need to recall a result of best approximation by partial isometries in the finite
dimensional setting.

Remark 5.2. Let A be an m× n matrix with nonzero singular values

s1 ≥ . . . ≥ sp > 1/2 ≥ sp+1 ≥ . . . ≥ sq, q ≤ min{m, n}.

Suppose that A = V ΣW ∗ is a singular value decomposition of A, i.e. V,W are uni-
tary matrices and Σ is a diagonal matrix with the singular values of A arranged in non
increasing order. Define the following partial isometry

Sp = V

(
Ip 0
0 0

)

W ∗,

where Ip is the p×p identity matrix. The following estimate was proved in [4, Thm. 3.7]:

‖A− Sp‖2 ≤ ‖A− Y ‖2

for any m× n partial isometry Y .

Now we can give our result on existence and uniqueness of global symmetric approxi-
mations.

Theorem 5.3. Let F = {fi} be a frame in a subspace K ⊆ H, and let {ui} be its canonical
Parseval frame. Suppose that there exists a Parseval frame quadratically close to {fi}.
Let F be the synthesis operator associated to {fi}, F = U |F | its polar decomposition and
{si}

α
1 its nonzero singular values. Define r := #{ j : sj ≤ 1/2 }, and consider E the

orthogonal projection onto ⊕r
j=1 ker(|F | − snj

I), where sn1
≤ . . . ≤ snr

≤ 1/2. Then the
following estimate

∞∑

i=1

‖fi − (ui − UEei)‖
2 ≤

∞∑

i=1

‖fi − xi‖
2

is valid for all Parseval frames {xi} ∈ QF . Moreover, the Parseval frame {ui −UEei} is
the unique symmetric approximation in QF if and only if #{ j : sj = 1/2 } ≤ 1. If this
condition fails, then there are infinitely many symmetric approximations.

Proof. We begin by noting that we have assumed QF 6= ∅, so it makes sense to look for
symmetric approximations. Next note that r < ∞. This follows by Lemma 2.6, where
we have proved that si → 1 when α = ∞. According to Proposition 3.3, we can write
as a disjoint union of connected components QF =

⋃

k∈J Q
k
F , where J ⊆ Z is an infinite

subset. From Theorem 4.9, or Theorem 4.6 when r = 0, we know that the Parseval frame
{ui − UEei} is a symmetric approximation of {fi} in Qr

F , that is,

d({fi},Q
r
F) = d({fi}, {ui − UEei}).

Now we divide the proof into three cases. We will show that the ℓ2-distance of the frame
{fi} to Qr

F is lower than the ℓ2-distance to the other components.
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In the first case we compare with components of the form Qk
F , k < 0. By Theorem

4.8, the existence of symmetric approximations to these components is guaranteed. Using
this fact and Remark 5.1, we have d({fi},Q

r
F) < d({fi},Q

k
F ).

In the second case, we compare with components Qk
F , 0 ≤ k < r. According to

Theorem 4.9, there exists a symmetric approximation restricted to these components by
the assumption k < r. Using that a2 ≤ (a−1)2 for 0 < a ≤ 1/2 and Remark 5.1, we have
d({fi},Q

r
F) ≤ d({fi},Q

k
F). Furthermore, equality holds if and only if snk+1

= . . . = snr
=

1/2.
In the last case, we compare with components Qk

F , k > r. If α < ∞, then there exist
symmetric approximations, and the proof is similar to the previous cases. In the case
where α = ∞, we might not have the existence of symmetric approximations restricted
to these components. Equivalently, the distance of the frame {fi} to Qk

F might not be
attained. We have Qk

F 6= ∅, so there exist k nonzero singular values sn1
≤ . . . ≤ snr

≤
1/2 < snr+1

≤ . . . ≤ snk
of the operator F . Pick {gni

}k1 orthonormal vectors satisfying
|F |gni

= sni
gni

, i = 1, . . . , k. Note that in the proof of Lemma 2.6 we may complete this
basis to an orthonormal basis {gi} of ker(F )⊥ such that F =

∑∞
i=1 si(Ugi)⊗ gi.

Take a Parseval frame {xi} ∈ Qk
F with synthesis operator X. Set Q = X∗X,

{m1, m2, . . .} = N \ {n1, . . . , nk } and

P ′ =

∞∑

i=1

gmi
⊗ gmi

, E ′ =

k∑

i=r+1

gni
⊗ gni

.

Note that E =
∑r

i=1 gni
⊗ gni

. Since j(P ′, Q) = 0 and P ′ −Q is Hilbert-Schmidt, there is
a unitary L ∈ U2(ℓ

2) such that Q = LP ′L∗. We define

Pn =
n∑

i=1

gmi
⊗ gmi

, Qn = LPnL
∗,

and Ur = U(P ′ +E ′), which is the synthesis operator of the Parseval frame {ui −UEei}.
We apply the result stated in Remark 5.2 with p = n + k − r, A = F (Pn + E + E ′),
Sn+k−r = U(Pn + E ′) = Ur(Pn + E + E ′) and Y = XQn. Thus, we obtain

‖(F − Ur)(Pn + E + E ′)‖2 ≤ ‖F (Pn + E + E ′)−XQn‖2.

Letting n → ∞, we find that ‖F − Ur‖2 ≤ ‖F −X‖2 for any partial isometry X ∈ Qk
F .

Hence we obtain the desired inequality d({fi},Q
r
F) ≤ d({fi},Q

k
F). From these three

cases, we conclude that {ui − UEei} is a symmetric approximation of {fi} in QF .

Now we turn to the uniqueness assertion. If we have l := #{ j : sj = 1/2 } > 1,
then d({fi},Q

r
F) = d({fi},Q

k
F) for k = r − l + 1, . . . , r − 1. Using the notation of

Theorem 4.9, we have #A = r − l and #B = l, so k < #A + #B, and then there are
infinitely many symmetric approximation belonging to each Qk

F . Conversely, suppose
that #{ j : sj = 1/2 } ≤ 1. Assume that {xi} is another symmetric approximation in
QF . Then {xi} is in particular a symmetric approximation in Qk

F for some k ∈ J. We
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have seen that d({fi},Q
r
F) < d({fi},Q

k
F) for k < 0. In the case where k 6= r, k ≥ 0, the

equality d({fi},Q
r
F) = d({fi},Q

k
F) implies snk+1

= . . . = snr
= 1/2 if k < r. On the other

hand, if r < k, then d({fi},Q
r
F) = d({fi},Q

k
F) is not possible, since it would give the

contradiction (k− r)/2 = snr+1
+ . . .+ snk

> (k− r)/2. Thus, we must have that {xi} is a
symmetric approximation in Qr

F . But 1/2 has multiplicity at most one as singular value
of F , so by Theorem 4.9 ii), {xi} is the unique symmetric approximation of {fi} in Qr

F .
Hence {xi} = {ui − UEei}.

Remark 5.4. We emphasize that if r = 0, then E = 0, and thus the canonical Parseval
frame {ui} associated to {fi} is the unique global symmetric approximation. On the
other hand, observe that in the last part of the proof we actually exhibit all the possible
symmetric approximations when l = #{ j : sj = 1/2 } > 1. In addition to the global
symmetric approximation in the statement, there are infinitely many global symmetric
approximations belonging to each component Qk

F , k = r− l+1, . . . , r−1, which have the
form given in Theorem 4.9.

Remark 5.5. Symmetric approximation can be thought as a problem of best approximation
of closed range operators by partial isometries in the Hilbert-Schmidt norm. We point out
that all the results concerning the existence of best approximation proved in this paper
can be generalized to the setting of symmetrically-normed ideals. However, uniqueness
results can be extended only to the p-Schatten ideals (1 < p < ∞), where Lemma 4.3 still
holds (see [27, Thm. 4.1]).
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