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A B S T R A C T

The study analyzes the relationships between working memory capacity, executive attention, and self-regulated
learning (SRL) on math performance (MP), and more specifically on items with different levels of complexity and
difficulty. Sample: 575 university students (female: 47.5%; 18–25 years old), first academic year. Instruments:
Attention Network Test; Automated Operation Span; Mathematics Test; On-line Motivation Questionnaire, and
Learning Strategies Questionnaire. Results confirm the crucial role of individual differences in WMC that impact
directly on MP, mediated by subjective competence. Affective SRL contribute significantly as mediating variables
but their positive effect depends on the availability of cognitive resources. Findings partially confirmed the
differential contribution of cognitive processes in the prediction of performance in complex vs difficult items. We
found support for a complex pattern of interactions between cognitive processes and components of SRL model
at the strategy level, in their effect on MP, and given specific item characteristics.

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

1. Introduction

Self-regulated learning (SRL) is a broad construct that involves the
interaction between different control systems (cognition, attention,
metacognition, emotions, motivation, and volition) (Boekaerts, 2011;
De Corte, Mason, Depaepe, & Verschaffel, 2011; Schunk & Zimmerman,
2008; Zimmerman & Schunk, 2011). According to the literature, self-
regulation involves a set of cognitive and affective processes that share
a common characteristic: the coordination of information processing
and control (Heyder, Suchan, & Daum, 2004).

Although there is substantial research which has investigated the
influences of: (a) working memory (e.g. Pickering, 2006); (b) atten-
tional systems (e. g. Rueda, Posner, & Rothbart, 2004); (c) motivational
and affective factors, on math performance (Seegers & Boekaerts, 1996;
Pekrun, Elliot, & Maier, 2006), we have little understanding about how
these cognitive and non-cognitive variables interact among themselves.
The assessment of individual differences in working memory capacity

(WMC) and attentional resources as micro-processes of SRL is absent
from most educational psychology research (Boekaerts, 2017). The
cognitive literature has pointed out that WMC could explain how dif-
ferent resources are available in a specific learning situations according
to the student's goal(s), while another function such as executive at-
tention (EA) could help to maintain the focus on the task (Checa &
Rueda, 2011; Kane, Conway, Hambrick, & Engle, 2008; Posner,
Rothbart, Sheese, & Voelker, 2014). The main research question of this
study focuses on the relationships between these cognitive processes
and self-regulated learning factors in their effects on math performance
in general, and specifically on the effect they have in the processing and
therefore the outcome for different types of items (according to their
complexity and difficulty characteristics).

2. Theoretical framework

2.1. Self-regulated learning

Several SRL models have been described in the educational litera-
ture (for a recent literature review see Panadero, 2017). The present
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study is based on two interrelated models of SRL: a structural model
and a dynamic model, which have been shown to successfully describe
many aspects of the learning process and academic outcomes
(Boekaerts, 1993, 1997, 2002a, 2006, 2007, 2011).

The structural model describes the main components that are in-
volved in the students' self-regulation of their learning (for a graphic
representation see Panadero, 2017): 1) content domain, 2) cognitive
strategies, 3) cognitive regulatory strategies, 4) meta-cognitive knowl-
edge and motivational beliefs, 5) motivation strategies, and 6) moti-
vational regulatory strategies (Boekaerts, 1997). Each component re-
presents a certain type of prior knowledge that can be used when
necessary and they are structured around two basic mechanisms of SRL:
cognitive and affective/motivational self-regulation (Panadero, 2017).

The dynamic model explains how these components of the struc-
tural model interact and how information flows depending on the main
purpose that guides the self-regulation process (for a graphic re-
presentation see Boekaerts, 2011; Panadero, 2017). The dynamic “dual
processing self-regulation model” states that three purposes coexist and
guide self-regulated learning: (1) the students' desire to increase their
knowledge and skills, (2) their wish to maintain personal well-being,
and (3) their wish to protect their commitment to the learning task. The
first purpose defines top-down strategies where values, needs and
personal goals guide the pursuit of task goals: the student is on a
mastery/growth pathway. The second purpose activates bottom-up
strategies which focus on the self and thus follows a well-being
pathway. The last purpose refers to the redirection of the strategies
from the well-being to the mastery/growth pathway via external or
internal stimulus (Boekaerts, 2011). The appraisal construct has a
central role in this model, consisting of a dynamic “working model”
which is constantly fed information from three sources: 1) the percep-
tion of the learning situation including the task, instructions and the
context; 2) declarative and procedural knowledge, cognitive strategies
and metacognitive knowledge relevant to the learning situation; and 3)
the self-system involving the self-concept, values, goals, and other
motivational beliefs. It is assumed that positive appraisals are triggered
by a primarily positive working model, either because cognitive re-
sources and knowledge are available or because motivational control is
possible, or both (Boekaerts, 2011). Different findings have supported
this hypothesis revealing that the joint effect of positive and negative
task judgments influences the students' intention to learn and their
experiential state (e.g. Boekaerts, 1999).

This study also focuses on cognitive strategies related to the learning
strategies (LS) construct that is those which involve any thoughts or
behaviors that help students to acquire new information and to in-
tegrate it with their existing knowledge (Weinstein, 1987; Weinstein &
Mayer, 1986; Weinstein, Palmer, & Schulte, 1987). In addition, this
work examines the role of subjective competence which refers to the
belief that students hold about their own ability in relation to a specific
domain (Boekaerts, 2002b). Previous research supports the strong in-
fluence of self-efficacy beliefs on mathematics performance (De Corte
et al., 2011; Fast et al., 2010; Hoffman & Schraw, 2009; Kingston &
Lyddy, 2013; Marcou & Philippou, 2005; Wigfield, Battle, Keller, &
Eccles, 2002).

2.2. Self-regulation, working memory capacity and executive attention

Working memory (WM) plays a fundamental role in several opera-
tions of self-regulation: a) maintaining an active mental representation
of self-regulatory goals and standards (Hofmann, Schmeichel, &
Baddeley, 2012; Kruglanski & Kopetz, 2009; Miller & Cohen, 2001); b)
exercising a top-down control in direction to the goal-relevant in-
formation and away from tempting stimulus in different cognitive tasks
(Kavanagh, Andrade, & May, 2005; Knudsen, 2007; Unsworth, Schrock,
& Engle, 2004); c) shielding of goals and standards from interference
because of the sustained attention following a goal (Dreisbach &
Haider, 2009); d) having a primary role in providing an indirect way of

inhibitory control; e) participating in the suppression of ruminative
thoughts (Brewin & Smart, 2005); and f) exercising down-regulation of
undesirable affect and impulses, providing a mental “workspace” for
emotional regulation (Wranik, Barrett, & Salovey, 2007).

WM has been conceptualized as a limited capacity system that al-
lows the short-term representation and manipulation of information. A
large body of research shows that working memory capacity (WMC)
plays a key role in many areas and it is central to the understanding of
complex behaviors in a variety of cognitive activities such as problem
solving, reasoning and comprehension (Engle, 2002). Previous research
has demonstrated that both storage and processing components of
working memory predict higher-order cognitive abilities (Unsworth,
Redick, Heitz, Broadway, & Engle, 2009). WMC, as is measured by
complex span tasks, requires to remember some type of items which are
interspersed with some type of processing task unrelated to the reten-
tion of items. It has been shown that both recall scores from the storage
component, and aspects of processing (speed and accuracy) provide an
index of WMC (Unsworth et al., 2009). Therefore, these studies have
highlighted the multifaceted nature of complex span tasks: they refer to
multiple processes that underlie higher-order cognitive abilities
(Unsworth et al., 2009).

According to an “executive attention” theory of WMC, there are
domain-general executive attention processes that explain individual
differences in the performance in a complex span task (Kane et al.,
2008). Although some theories have explained WMC and attention as
closely related processes, even considering them isomorphic (Cowan,
2005; McCabe, Roediger, McDaniel, Balota, & Hambrick, 2010;
Rensink, 2002), there is evidence in the literature which suggests im-
portant differences (Fougnie, 2008; Shipstead, Redick, Hicks, & Engle,
2012). Some authors have suggested that the relationships between
WMC and attention depend on the stage of attention involved and the
kind of information maintained in WM (Awh, Vogel, & Oh, 2006). One
exhaustive review by Fougnie (2008) has found strong evidence of the
functional differences between attention and storage in WM. According
to Fougnie's review, attention is mostly involved in the manipulation of
information in WM, but it has minimal participation in WM main-
tenance (Fougnie, 2008).

Executive attention refers to a system that controls interference and
solves conflicts between possible responses (Fan, McCandliss, Sommer,
Raz, & Posner, 2002). Although WM span differences are related to the
performance in a variety of attentional tasks, the interaction between
WM span and executive attention is yet unclear (Friedman & Miyake,
2004; Heitz & Engle, 2007). Redick and Engle (2006) have found high
WM participants perform significantly better in the executive control
network but not in the orienting or alerting networks. However, the
interaction effects between different levels of WMC and executive at-
tention in performance tasks, such as math tasks, has still not been
examined. In addition, several studies have confirmed two separate, but
strongly correlated factors underlying WMC: the scope and the control
of attention (Shipstead et al., 2012). “Scope” refers to the amount of
information maintained in working memory, while “control” is the
ability to direct attention to goal-relevant information, inhibiting irre-
levant information (Shipstead et al., 2012).

In order to understand how these cognitive processes are integrated
in a specific task, we adopted a conceptual framework of human cog-
nitive-architecture, the Adaptive Control of Thought-Rational (ACT-R)
(Anderson, 2007; Anderson & Lebiere, 1998). ACT-R assumes all tasks
engage knowledge that can be described as the set of declarative and
procedural knowledge relevant to the task. Declarative knowledge in-
volves concepts, images, facts, and sounds, and is represented in terms
of knowledge units or “chunks” (Anderson, Matessa, & Lebiere, 1997).
Procedural knowledge is represented by production rules that specify
the operations of how to bring declarative knowledge to solve a pro-
blem (Anderson et al., 1997).

According to ACT-R theory, WM can be defined in terms of two
aspects. One is the content that is being maintained (e.g., the letters in a

M.F. Musso, et al. Learning and Individual Differences 71 (2019) 58–70

59



working memory task), and the other one is the process. WM in terms of
the content involves the most highly activated part of declarative nodes
where the actual processing takes place. Its internal structure, as re-
presented in the production rules, guides the sequence of cognitive
activity (Anderson, Reder, & Lebiere, 1996). The process-oriented de-
finition considers WM as “the propagation of source activation from the
current goal” (Lovett, Reder, & Lebiere, 1999; p. 143). In this cognitive
architecture, there is a control or goal module that “keeps track of one's
current intentions in solving the problem” (Anderson, 2005, p. 314).
This goal module enables disengagement from basic or immediate goals
and focuses on the means (Anderson, 2005, 2007; Beaman, 2010).
Conceptually, executive attention could be considered as this functional
module given that it reduces the interference allowing the cognitive
system to focus on the relevant information. From a methodological
perspective, the activation control conditions, whether of facilitation
and/or inhibition involved in the executive attention measure, re-
present to a large extent the functions of this goal buffer of the ACT-R
theory (Anderson, 2005; Fan et al., 2002).

2.3. Item characteristics: complexity and difficulty

Various studies have investigated the relationship between some
characteristics of the task and performance (e.g. Campbell, 1988;
Haerem & Rau, 2007; Mangos & Steele-Johnson, 2001). Perry, Phillips,
and Dowler (2004) have found that complexity of the tasks was an
important predictor of the opportunities to develop and engage in self-
regulated learning. There is little consensus about the features of a
complex and/or difficult task (Campbell, 1988). A difficult item can be
defined in terms of the probability of correct response, as represented
by the difficulty parameter in item response theory (IRT) (Hambleton,
Swaminathan, & Rogers, 1991). However, this probability of correct
response is not necessarily related to the complexity of the item (i.e.,
there could be an ‘easy’ item which involves a ‘complex’ cognitive
process, such as compare-and-contrast; similarly, a simple ‘recall’ item
could be very difficult with low probability of being correctly an-
swered). Complexity is related to the processing demands of the task in
terms of the multidimensional structure underlying the item (Boekaerts,
2017). This study refers to complexity in terms of the structure of the
problem, with multiple paths to a solution and potentially multiple
solutions, where expertise can help but may not be sufficient, and
where an uncertainty of outcome remains (Glouberman & Zimmerman,
2002; Haerem & Rau, 2007).

A model of working memory developed from the perspective of the
ACT-R cognitive architecture assumes that a limited attentional re-
source, focused on the current goal, increases the availability of goal-
relevant knowledge compared to the availability of other knowledge
elements. In a complex task (with more elements connected to each
goal node) the limited source activation must be spread among the goal
nodes, thus decreases the amount of source activation reaching any one
linked node (Lovett et al., 1999). There are individual differences in this
attentional resource which have an impact on the ability to access the
most important information across domains (Lovett et al., 1999).

3. Present study

The main objective of this research was to study the effects of basic
cognitive processes such as working memory capacity (WMC) and ex-
ecutive attention (EA) on mathematics performance (MP), and the
mediating effects of specific self-regulated learning factors (SRL). In
addition, we extend these analyses to understand the effect of those
factors on math performance given certain item characteristics such as
complexity and difficulty. Specifically, we address these questions:
What amount of variance in mathematics performance is explained by
all the variables considered? Which is the relative importance of each
predictor?

Previous studies have found significant moderate correlations

between WMC and MP (Ashcraft & Kirk, 2001; Peng, Namkung, Barnes,
& Sun, 2016). However, there is still a certain amount of debate re-
garding the relationship of WMC with executive attention in their joint
–and independent- contribution to math performance (e.g. Barkley,
1998; Fernandez-Castillo & Gutiérrez-Rojas, 2009; Redick & Engle,
2006), with some authors stating that the joint impact of these cogni-
tive factors has not been sufficiently studied in the literature (e.g., Heitz
& Engle, 2007). On the one hand, we consider WMC as the active part of
declarative memory and EA as the goal module which reduces the in-
terference allowing the focusing of the activation on the relevant in-
formation. On the other hand, when students solve math tasks they
have to hold, manipulate, and update information in WM (Bull & Espy,
2006), thus it is expected that math performance will demand more
involvement from WM than simply the goal-relevant module (EA), in-
cluding the total area of activation for solving problems (Anderson,
2005; Lovett et al., 1999). We can expect:

Hypothesis 1. WMC will show a higher contribution than EA in
predicting MP.

Previous studies have emphasized a mediating role of SRL on aca-
demic performance (Dupeyrat & Marine, 2005; Fenollar, Roman, &
Cuestas, 2007; Simons, Dewitte, & Lens, 2004). Based on the motiva-
tional efficiency hypothesis which predicts that self-efficacy would fa-
cilitate focused effort and strategy use, thus increasing the efficiency of
problem-solving (Hoffman & Schraw, 2009), we propose the following
hypothesis:

Hypothesis 2. SRL components will mediate the relationship between
cognitive processes (WMC & EA) and MP.

More specifically, and considering the fundamental role of self-ef-
ficacy beliefs on mathematics performance found in the literature as a
major mechanism of motivation and self-directedness (Bandura, 1991;
Bandura, Barbaranelli, Caprara, & Pastorelli, 2001; Locke & Latham,
1990), we should expect:

Hypothesis 3. Subjective competence (SC) will show a higher
contribution than other SRL factors in predicting MP.

Given that in a complex task (with more pathways to each goal
node) the limited source activation must be spread among the goal
nodes, it is expected a decrease in the amount of source activation
reaching any given linked node (Lovett et al., 1999). However, diffi-
culty is related to the probability of a correct response (independently
from complexity), so a low complexity-high difficulty item would not
increase the workload for the cognitive system, and WMC in particular.
Instead, this type of item would only require an inhibitory control of
non-relevant information to select a correct response among several
options, and with particular demands on the goal-maintaining elements
(Shipstead et al., 2012). Thus, the following hypotheses were proposed:

Hypothesis 4. WMC will show a higher contribution to the prediction
of performance in high complexity-low difficulty items than to the
prediction of low complexity-high difficulty items.

Hypothesis 5. EA will show a higher contribution to the prediction of
performance in low complexity-high difficulty items than to the
prediction of high complexity-low difficulty items.

If we consider that cognitive strategies and affective components of
SRL increase the efficiency of problem-solving through the use of
strategies and of focused effort, then a more challenging task will de-
mand the application of effortful strategies (Boekaerts, 2007; Boekaerts,
2011; Dunlosky & Kane, 2007; Dunlosky & Thiede, 2004; Dunning &
Holmes, 2014; Fredrickson & Losada, 2005; Hoffman & Schraw, 2009).
Then, we propose:

Hypothesis 6. SRL will have stronger mediation effects in their
prediction of performance in high complexity-low difficulty items,
than in low complexity-high difficulty items.
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4. Material and methods

4.1. Participants

The total sample consisted of 848 university students (Female:
51%), 18 to 25 years old (M= 20.16; SD= 3.19), attending the first
year in several disciplines (psychology, engineering, medicine, law,
social communication, business and marketing) from private uni-
versities. A total of 109 participants were excluded because they had
lower than 80% accuracy in the interference task of the Automated
Operation Span test (WMC). In addition, we excluded 164 outliers as
suggested by Kline (1998): extreme skew>3; kurtosis> 10; and ac-
cording to the Mahalanobis distance criterion (AMOS 21.0). The final
sample consisted of 575 students (Female: 47.5%; M age=20.13;
SD=3.22). Based on Graffar's modified scale (Méndez-Castellano & de
Méndez, 1994) 69.1% of the sample belonged to stratum II or medium-
high SES, while 26.2% of the sample corresponded to a medium-low
SES (stratum III), and only 4.7% belonged to low SES (stratum IV).

4.2. Instruments and measures

Table 1 summarizes the measures and instruments used:

Attention Network Test (ANT) (Fan et al., 2002). This test measures
three attentional networks: alerting, orienting, and executive at-
tention. Participants are asked to indicate when a central arrow
points left or right, via two mouse buttons (left or right, respec-
tively). (See Fan et al., 2002 for more detailed information about
this task). Reliability studies have indicated a high reliability for
total reaction times (RT) (0.87). The other conditions, determined
by the previously described operations with the respective RT, show
the following reliabilities: the executive control network has the
highest reliability (0.77), the orienting network has a moderate re-
liability (0.61), and the alerting network has a test-retest reliability
of 0.52 (Fan et al., 2002).
Automated Operation Span (AOSPAN). This is a computerized version
of the Ospan task that measures WMC (Unsworth, Heitz, Schrock, &
Engle, 2005). The participant is asked to remember a series of letters
(3–7 letters) while he/she has to solve a simple math operation (See
Unsworth et al., 2005, for a more detailed information about this
task). Test-retest reliability for the absolute AOSPAN score is 0.77.
Reliability studies indicated relatively small practice effects on the
AOSPAN and the rank-ordering of individuals was stable across test
sessions (Redick et al., 2012). As reported by Redick and Engle
(2006), the analyses performed were carried out using the Absolute

AOSPAN score (the sum of all perfectly recalled sets) and the pro-
cessing time component (reaction times to solve math operations).
Although the use of partial scores has been recommended from a
measurement or psychometric perspective (Conway et al., 2005), we
have decided to use the absolute score span for theoretical reasons.
First, based on the WMC definition and the ACT-R theory as general
framework, a WMC measure should be able to focus on the active
maintenance component of the information, while a second task is
being processed. Second, we consider that an absolute score is more
consistent with our research question about the differential effects of
maintenance and executive control component on math perfor-
mance. A partial recall measure would not necessarily capture the
cognitive capacity of the system required by a full recall, and it
would therefore blur the distinction between the processes being
studied (Anderson et al., 1996; Anderson et al., 1997; Redick &
Engle, 2006). In addition, a high and significant correlation was
found between the absolute score and the partial score in the sample
of the four cognitive groups (r=0.91; p < .001), and from a
measurement perspective, the reliability of the absolute score is
satisfactory (0.77).

Other studies have used an 85% (math) accuracy criterion for the
interference task. This criterion is used in order to ensure that partici-
pants do not show a trade-off between solving the operations and re-
membering letters (Unsworth et al., 2005), and that they are actually
performing both tasks to the best of their ability, thus ensuring that the
simple arithmetic operations are actually interfering and taxing their
cognitive capacity, therefore obtaining an accurate measure of their
WMC. In this particular study, the revised criterion of 80% correct was
used as a measure of their arithmetic “accuracy”. The decision to use
this slightly revised accuracy requirement was taken after an analysis of
the math test in this sample of students. The math test included items
from the international Trends in International Mathematics and Science
Study (Garden et al., 2006) study, which were used to equate the results
with international norms. These results showed that the sample popu-
lation from this study was performing at a significantly lower level of
ability than the international test participants in basic mathematics
operations. Results from the Item Response Theory (IRT) equating
method used showed that the mean ability (Theta value) for this sample
was 0.66 standard deviation lower than the international sample. Given
the demonstrated significantly lower level of mathematical ability of
this group, and after observing that an elevated number of errors were
due to true arithmetic errors and not to distractions from the interfering
task (as observed and controlled by the experimenter) we decided to
slightly modify the cut-off criterion in order to more accurately reflect

Table 1
Summary of conceptual variables, measures and instruments.

Conceptual variable Measure Instrument

Cognitive variables Absolute Span Score: sum of all perfectly recalled sets AOSPAN
Reaction Time Operation (Logarithm n) AOSPAN
Executive attention: mean RT of all congruent flanking conditions, summed across cue
types, from the mean RT of incongruent flanking conditions (lower RT indicates better
efficiency of the attentional network)

Attention Network Test

Self-regulated Learning Subjective Competence Online Motivation Questionnaire
Personal relevance of the task/Learning Intention
Task Attraction
Emotion-Task

Learning Strategies Learning Strategies Learning Strategies Questionnaire
Math Performance Math Score: sum of correct responses Equated Math test (50 items from local test

+15 items from TIMSS)
Math Performance by item

characteristics:
Complexity: cognitive domains in
TIMSS
Difficulty: b parameter (Item
Response Theory)

High Complexity & High Difficulty items score: 24 items (ω=0.73) Equated Math Test
Low Complexity & High Difficulty items score: 5 items (ω=0.73)
High Complexity & Low Difficulty items score: 17 items (ω=0.74)
Low Complexity & Low Difficulty items score: 16 items (ω=0.81)
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the true effect of the interference task.

Mathematics Test. This test consisted of 65 multiple choice items
with four or five options and only one correct answer (50 items were
taken from a national mathematics test developed for last-year (end-
of year assessment) high-school students (Cortada de Kohan &
Macbeth, 2007) and 15 items were selected from disclosed items of
the TIMSS test (TIMSS, 1995). The local calibration for the test was
done applying a 1-parameter IRT model (difficulty parameter)
centered on ability. This analysis was done in order to classify the
items according to their difficulty levels, but the mathematics score
was calculated based on the sum of correct responses. The items
measure simple algorithms for arithmetic problems: some items
required the use of percentages or proportions, decimal numbers,
and a few others are algebra and geometry questions. There was no
time limit to take the test, but its duration for all students was under
two hours. In order to guarantee that it was not a speeded test
(which would violate the IRT assumptions), it was required that>
95% of students had to be able to attempt to respond to all of the
items; this number was actually much higher in the study, close to
99%.
On-line Motivation Questionnaire: The latest version of the original
On-line Motivation Questionnaire, namely the OMQ91 (Boekaerts,
2002a) is a self-report questionnaire to measure student's appraisals
and emotions before and after a specific task. This study only ana-
lyzed the relationships between the pre-task variables and MP. The
section administered before the task (the mathematics test) included
18 items that measure three factors according to an exploratory and
confirmatory factor analysis of the Spanish version (Musso,
Boekaerts, & Cascallar, 2015): 1) subjective competence (seven
items: α=0.876); 2) personal relevance/learning intention (six
items; α=0.814); 3) task attraction (three items; α=0.824). In
addition, one subscale regarding “task-related emotion” (four items;
α=0.666) was included. The four-factor model showed an accep-
table fit (χ2= 766.095; df=164; p < .001; CFI= 0.91;
RMSEA=0.06). The students complete the OMQ just before the
math task and immediately afterwards. For Part 1 they were asked
to respond to the questions focusing on the upcoming math test. The
researcher showed examples of the kind of item types to be pre-
sented to the test-takers.
Learning Strategies Questionnaire (LASSI,Weinstein & Palmer, 2002).
A validated Spanish-version of the LASSI was administered (Meza &
Lazarte, 1998). It is a 77-item questionnaire grouped in 10 subscales
that assesses “the students' awareness about, and use of, learning
and study strategies related to skill, will, and self-regulation com-
ponents of strategic learning” (Weinstein & Palmer, 2002, p. 4). This
study considered the total score of the learning strategies measure,
which was included in the SEM on total math performance
(α=0.827).
Item complexity: The level of complexity classification of the items in
the mathematics test involved the participation of three judges,
experts in mathematics teaching and in cognitive psychology, who
carried out the classification according to the pre-established cate-
gories of complexity as per the definitions of complexity by cogni-
tive domains in TIMSS 2008 (Garden et al., 2006). Three cognitive
domains were defined: Knowing, Applying and Reasoning, each one
involving different behaviors. At the end of the classification pro-
cess, an additional group of three expert consultants, experienced
researchers in cognitive psychology and with ample mathematical
background, received the complete final item set and were asked to
validate the complexity categorization of each item. The inter-judge
agreement was satisfactory: Spearman correlation was 0.803 and
Cohen's Kappa was 0.735.
Item difficulty: refers to the probability of correct response. It was
defined by the “difficulty parameter” of the IRT analysis of the math
test. Table 1 shows the four types of items based on the resulting

2×2 matrix of item-characteristics (low/high levels of complexity
by low/high levels of difficulty), and reliability coefficients of each
math score obtained from our sample). Low and high levels were
defined based on median split. All the math scores achieved an ac-
ceptable reliability considering the recommended cut-off of 0.70
(Campo-Arias & Oviedo, 2008). Reliability analyses were carried out
for the math scores using the Omega-coefficient because of their
dichotomic scales and the small number of items for the low com-
plexity/high difficulty set (Elosua Oliden & Zumbo, 2008; McNeish,
2017).
Background variables: gender and socio-economic status were mea-
sured in order to control their direct and mediation effects given the
evidence from previous studies (Eccles, 2009; Simpkins, Davis-Kean,
& Eccles, 2006). Gender was registered and coded 1 for females and
2 for males, so that positive coefficients designate higher scores for
males. Graffar's modified scale was applied to control socioeconomic
variables (Méndez-Castellano & de Méndez, 1994). This method
ranks 1 to 5 each of four indicators: profession of family head,
maternal education level, income of main source of family, and
housing conditions. Higher total scores correspond to a lower level
of SES.

4.3. Procedure

Before conducting this study, institutional permission for carrying
out research with human subjects was obtained after the study was
reviewed by the Ethics Committee of the university. Before the ad-
ministration of the instruments, informed consent was obtained from
each participant following the current APA Code of Conduct guidelines
(APA, 2002). Students were informed of the purpose of the research,
expected duration of the session, their right to decline to participate,
and to withdraw from the research once participation had begun.

All stimuli of the cognitive tasks were presented via E-Prime soft-
ware, on an IBM-compatible personal computer running Windows 7,
and presented on a 17-inch monitor, with a resolution of 1024× 768.
The distance between the subjects' eyes and the screen remained con-
stant at 60 cm, for both cognitive tasks, maintaining the visual angle.
All the instruments were individually administered in the same order
during the first 2 h of the session, in a computer-based classroom, with a
short break (15min) between the computerized cognitive tasks and the
rest of the tasks. The order was as follows: 1) ANT; 2) AOSPAN;3) a
brief socio-demographic questionnaire; 4) Learning Strategies
Questionnaire; 5) OMQ pre-task; 6) Math Test; and 7) OMQ post-task.
Before the OMQ pre-task, the researcher explained to the students the
type of questions and exercises of the mathematics task: a set of 65
multiple choice items about arithmetic problems and basic concepts of
mathematics corresponding to the content at the end of the high school
curriculum. All instruments were presented using individual personal
computers linked to the same network but presenting the instruments at
the individual pace of each student, and with individual timing of
events.

4.4. Data analysis

Standard model fit indices such as the confirmatory fit index (CFI)
and the root mean square error of approximation (RMSEA) were used
for a series of structural equation models (SEM) to evaluate the model
fit. CFI values> 0.90 and 0.95 indicate acceptable and excellent fit to
the data respectively. RMSEA values between 0.06 and 0.08 are con-
sidered indicators of a good/acceptable fit, respectively (Hu & Bentler,
1999).

First, we identified the measurement model for math performance
as a construct, including the four types of items, as continuous score
data with a confirmatory factor analyses, using maximum likelihood
(ML) estimation, with AMOS 22.0.

Second, a structural equation model was created including all the
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variables to test hypotheses 1 and 2 (see Fig. 1). In addition, to test
hypothesis 3 we run a nested more parsimonious model with non-sig-
nificant parameters fixed to zero, and a chi-square difference test sta-
tistic was used to test if this parsimonious model fitted the data equally
well.

Finally, to test hypotheses 4–6 about the differential contribution of
cognitive processes and SRL on performance given complexity vs dif-
ficulty, we created another structural model with the scores of two type
of items as dependent measures, based on the more parsimonious model
(Fig. 2). Three items of “low complexity/high difficulty measure” were
dropped out of this math measure because of their very low factor
loading (< 0.30), in order to run this SEM (Bacon, Sayer, & Young,
1995). The default models were compared with more restricted models
in which the regression paths from subjective competence and learning
intention to each type of items were set equal to each other.

The regression assumptions for linearity, homoscedasticity of re-
siduals, and lack of outliers were met analyzing skewness and kurtosis
values. The plot of the standardized predicted values of math perfor-
mance with the residuals revealing a relatively random pattern of
scatter, given evidence that the data do not appear to violate assump-
tions of linearity, normality, and homoscedasticity.

5. Results

5.1. Descriptive statistics and inter-correlations

Means, standard deviations, skewness and kurtosis for all the vari-
ables are shown in Table 2. Multivariate normality for all the models
was tested and all results were satisfactory (Mardia's coefficients within
critical values −1.96 to 1.96). Correlations between all variables are
provided in Table 3.

5.2. Math performance measurement model

We used four scores corresponding to the four types of items to
analyze the underlying math performance construct. The model showed
an excellent fit (χ2= 1.501; df=2; p > .05; CFI= 1.00; NFI= 0.998;
RMSEA=0.000) and acceptable reliability (α= .753).

Fig. 1. Inclusive model 1 for Math Performance [indicated by High Complexity-High Difficulty (HC-HD), Low Complexity-High Difficulty (LC-HD), High Complexity-
Low Difficulty (HC-LD), and Low Complexity-Low Difficulty (LC_LD)]: WMC (Working Memory Capacity), Reaction Times solving math operations (RT Op), SES
(Socio-Economic Status), Executive Attention, Subjective Competence (SC), Task Attraction, Learning Strategies (Learning S), Emotion Task, Learning intention. Path
coefficients are standardized.
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5.3. Structural equation model (SEM)

5.3.1. Cognitive processes & self-regulated learning on total math
performance

The general model, in which no restrictions were applied, provided
a good fit to the data (χ2=113.18; df=56; p < .001; CFI= 0.961;
NFI= 0.928; RMSEA=0.042) explaining a total of 37% of variance of
math performance (see Table 4: model 1; Fig. 1). Given that SES,
learning strategies, task attraction, emotion, and executive attention
had no significant impact on math performance (p-values > .05), we
compared this unconstrained model to a nested model with all these
non-significant paths fixed to zero (χ2= 121.823; df=65; p < .001;
CFI= 0.961; NFI= 0.924; RMSEA=0.039). This more parsimonious
model did not fit the data worse than the general model, providing a
more elegant and practical way to explain the relationships within the
model (χ2

diff=8.64, dfdiff=9, p= .47). This model shows that WMC
has a significant direct effect on math performance (β=0.042,
b=0.25, SE=0.007, p < .001), but also shows that subjective com-
petence mediates significantly this effect on math performance (indirect
effect: β=0.010, b=0.061). WMC also has a significant direct effect
on subjective competence (β=0.032, b=0.15, SE=0.009,
p < .001). In addition, subjective competence has a direct positive
effect on math performance (β=0.283, b=0.35, SE=0.041,
p < .001).

Reaction times has a significant direct effect on total math score
(β=−1.735, b=−0.14, SE=0.499, p < .001) and a direct effect on

Fig. 2. Model 2: mediated model for High Complexity-Low Difficulty (HC-LD) and for Low Complexity-High Difficulty items performance (LC-HD): WMC (Working
Memory Capacity), Executive Attention, Subjective Competence (SC), Learning Intention, Reaction Times (RT Op). Path coefficients are standardized.

Table 2
Means (M), standard deviations (SD), scale, skewness, and kurtosis.

Variable M SD Scale Skewness Kurtosis

Executive Attention 97.05 27.56 RT in ms 0.50 0.25
Working Memory Capacity

(WMC)
28.46 13.18 1–75 0.30 −0.47

Ln Reaction Time Operation 7.01 0.18 RT in ms 0.21 −0.15
Subjective Competence (SC) 12.35 2.75 7–28 −0.19 −0.10
Personal relevance of the task/

learning intention
16.46 3.66 6–24 −0.39 −0.24

Emotion Task 9.53 1.53 4–16 −0.82 −0.04
Task Attraction 4.44 1.48 3–12 0.21 −0.64
Learning Strategies 243.74 23.27 77–385 0.22 2.74
Math Performance 30.50 8.41 1–65 0.40 −0.27
High Complexity-

Low Difficulty items
10.06 3.04 1–17 −0.01 −0.65

Low Complexity-
High Difficulty items

2.44 1.38 1–8 0.45 −0.19

High Complexity-
High Difficulty items

7.36 3.31 1–24 0.75 0.22

Low Complexity-
Low Difficulty items

10.64 2.85 1–16 −0.34 −0.35
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subjective competence (β=−2.024, b=−0.13, SE=0.622,
p < .001). In other words, faster reaction times, better math perfor-
mance. Executive attention has a direct effect on subjective competence
(β=−2.070, b=−0.13, SE=0.626, p < .001), and an indirect ef-
fect on math performance through SC (β=−0.004, b=−0.055).
Thus, high executive attention students outperformed low executive
attention students in math performance if they also had high subjective
competence.

Gender had a direct effect on math performance (β=0.388,
b=0.09, SE=0.177, p < .05) and on subjective competence
(β=0.574, b=0.10, SE=0.224, p < .01), suggesting that males
students not only achieved higher scores in math performance, but that
they also self-perceive more competent in math, which leads to a higher
math score.

Subjective competence has a significant direct effect on task at-
traction (β=0.277, b=0.51, SE=0.020, p < .001) and task related
emotion (β=0.073, b=0.13, SE=0.024, p < .01). Task attraction
has a significant direct effect on learning intention (β=0.930,
b=0.60, SE=0.052, p < .001) and in turn, learning intention on
emotion (β=0.145, b=0.22, SE=0.028, p < .001). Learning in-
tention shows a significant positive path to math performance
(β=0.099, b=0.10, SE=0.048, p < .05).

5.3.2. Mediation model on specific item types
In order to test hypotheses about the differential contribution of

cognitive processes and the mediation of SRL factors on specific type of
items (high complexity/low difficulty, and low complexity/high diffi-
culty), we run another model considering only the most significant
variables (see Fig. 2). This model achieved an acceptable fit to the data
(χ2= 86.687; df=19; p < .001; CFI= 0.917; NFI= 0.901;
RMSEA=0.079; see Table 4: Model 2). The predictors explained more
variance of high complexity-low difficulty items performance

(R2=0.23) than for the performance in low complexity-high difficulty
items (R2=0.08). WMC has a significant positive direct effect on high
complexity/low difficulty items, but not on low complexity/high dif-
ficulty items. Subjective competence (SC) mediates this effect con-
tributing significantly to the explanation of the variance of high com-
plexity/low difficulty items (β=0.310, b=0.28, SE=0.046,
p < .001), and SC also contributes significantly to low complexity/
high difficulty items performance (β=0.089, b=0.21, SE=0.019,
p < .001). Learning intention has a positive significant path on both
types of items (for high complexity/low difficulty items: β=0.193,
b=0.15, SE=0.052, p < .001; for low complexity/high difficulty
items: β=0.049, b=0.10, SE=0.021, p < .05). In addition, reaction
times only have a significant effect on high complexity/low difficulty
items performance, indicating that faster RT is important for com-
plexity, and not for difficulty (β=−2.108, b=−0.12, SE=0.639,
p < .001). EA only has an indirect effect on both types of items
through subjective competence (for high complexity/low difficulty
items: β=−0.005, b=−0.043; for low complexity/high difficulty
items: β=−0.001, b=−0.03). Gender impacts both scores only
through the mediation of subjective competence (direct effect of gender
on subjective competence: β=0.587, b=0.11, SE=0.223, p < .01):
males have higher subjective competence which leads to a higher math
score in both item types (indirect effect for high complexity/low diffi-
culty items: β=0.213, b=0.035; for low complexity/high difficulty
items: β=0.060, b=0.02).

To test the differential contribution of SRL components on both
types of items, the default model 2 was compared with more restricted
models in which the regression paths from subjective competence and
learning intention to both scores were set equal to each other, sepa-
rately (see Table 4: constrained model 2 SC & constrained model LI).
Chi-square (χ2) differences test showed significantly worse model fit for
both restricted models. In line with hypothesis 6, SRL components

Table 3
Correlations between all variables included in the models.

Variable 1 2 3 4 5 6 7 8

1-Executive Attention –
2-Working Memory Capacity −0.18⁎⁎⁎

3- Ln RT Operation 0.047 −0.205⁎⁎

4- Subjective Competence −0.19⁎⁎⁎ 0.21⁎⁎⁎ −0.148⁎⁎

5- Task Attraction −0.09⁎ 0.10⁎ −0.041 0.51⁎⁎⁎

6- Emotion Task −0.002 −0.019 −0.095⁎ 0.21⁎⁎⁎ 0.14⁎⁎⁎

7- Personal Relevance Task/Learning Intention −0.09⁎ 0.04 −0.006 0.35⁎⁎⁎ 0.61⁎⁎⁎ 0.26⁎⁎⁎

8- Learning Strategies −0.02 −0.04 −0.020 0.03 0.18⁎⁎⁎ 0.10⁎ 0.22⁎⁎⁎

9- Math Performance −0.14⁎⁎⁎ 0.33⁎⁎⁎ −0.225⁎⁎ 0.45⁎⁎⁎ 0.30⁎⁎⁎ 0.10⁎ 0.24⁎⁎⁎ 0.06

⁎ p < .05.
⁎⁎ p < .01.
⁎⁎⁎ p < .001.

Table 4
Model fit indices and results of nested model comparisons.

Fit indices Model comparison

χ 2 df RMSEA [CI] CFI df ΔCMIN p

Model 1: Total Math 113.18⁎⁎ 56 0.042 [0.031, 0.053] 0.961
Parsimonious model 116.81⁎⁎ 61 0.040 [0.029, 0.051] 0.962 5 3.631 0.60
Model 2: Complexity- Difficulty 86.687⁎⁎⁎ 19 0.079 [0.062, 0.096] 0.917
Constrained SC 106.533⁎⁎⁎ 20 0.087 [0.071, 0.103] 0.894 1 19.846 0.001
Constrained LI 93.155⁎⁎⁎ 20 0.080 [0.064, 0.097] 0.910 1 6.468 0.01

Note. N=575. RMSEA= root mean square error of approximation with 90% confidence interval (CI) in brackets; CFI= comparative fit index. RMSEA ≤0.06 and
CFI≥ 0.95 represent a good model fit (Hu & Bentler, 1999), whereas RMSEA≤0.08, SRMR≤0.10, and CFI≥ 0.90 still indicate an acceptable fit (Browne & Cudeck,
1993; Hu & Bentler, 1999).
Constrained SC: Regression paths from Subjective Competence (SC) to High Complexity- Low Difficulty Items and to Low Complexity-High Difficulty Items were set
equal to each other; Constrained LI: Regression paths from Learning Intention (LI) to High Complexity- Low Difficulty Items and to Low Complexity-High Difficulty
Items were set equal to each other.

⁎⁎⁎ p < .001.
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contributed significantly more in the prediction of performance in high
complexity-low difficulty items, than in low complexity-high difficulty
items.

6. Discussion

6.1. Cognitive processes on math performance

The general objective of this research was to understand the re-
lationships between basic cognitive processes and self-regulated
learning factors in their impact on mathematics performance, and to
examine these effects more specifically given certain characteristics of
the items (complexity and difficulty). In line with our hypothesis 1 and
previous studies, WMC contributed more substantially to the prediction
of math performance, supporting the crucial role of WMC in math
performance (e.g. Engle & Kane, 2004; Passolunghi & Pazzaglia, 2004,
in Pickering, 2006; Peng et al., 2016). One recent meta-analysis of 110
studies has also found a significant moderate correlation between WM
and mathematics performance (r=0.35) (Peng et al., 2016). However,
in addition to the replication of those findings, our results show that
WMC impacts directly and independently of executive attention and
subjective competence, and that it shows a greater contribution than EA
to the prediction of math performance. This differential contribution
can be explained if we consider that WMC has a central role in main-
taining relevant information, goals and standards, and in the retrieval
of previous information from inactive memory (Shipstead, Harrison, &
Engle, 2016) while executive attention network is responsible for in-
terference control (Fan et al., 2002). According to recent findings fo-
cusing on the mental processes that account for the correlation among
different tests (Shipstead et al., 2016), an operational definition of
WMC emphasizes more its role in the maintenance of active informa-
tion, rather than in the disengagement process from irrelevant in-
formation (Engle, 2018). Executive attention, on the other hand, mea-
sured through a flanker task, would have a greater role in the
mechanism of disengagement from irrelevant information than that of
the maintenance of activation. From the ACT-R theory perspective, and
avoiding the central control problem, the interference control provided
by executive attention could be understood as a mechanism that col-
laborates in the maintenance of active relevant information for the goal
(taking place in WM), arising from a network which is constantly up-
dated by input modules (and constantly disengaging irrelevant in-
formation through executive attention processes), without the need to
assume a central executive (Logie, 2016; Nijboer, Borst, van Rijn, &
Taatgen, 2014; Parra, Della Sala, Logie, & Morcom, 2014).

Processing time (reaction times) as a main component of WMC also
provides a unique contribution to the prediction of math performance,
over and above what was accounted for by the storage component. This
finding is consistent with previous studies (Blair & Li, 2011; Unsworth
et al., 2009). In line with these previous studies and with several the-
ories of WMC (e.g. Friedman & Miyake, 2004, Daneman & Carpenter,
1980), results of the present study regarding the negative correlation
between processing time and recall, suggest that students who process
math operations faster tend to remember more words than students
who are slower in processing math operations. These theories have
pointed out that storage and processing components compete for a
limited resource (Daneman & Carpenter, 1980). Other hypothesis sug-
gests that if less time is consumed by the processing activity, the items
will have less opportunity to be forgotten and more time for rehearsal
processes (Towse, Hitch, & Hutton, 1998). At the same time, these
students have better math performance, but the processing time com-
ponent doesn't fully mediate the relationship between storage/recall
and math performance, in line with previous studies (Unsworth et al.,
2009).

6.2. SRL as mediators on MP

Regarding the second hypothesis, a mediated model involving
cognitive processes, gender, affective and cognitive SRL components
before the task (subjective competence, relevance of the task, task at-
traction, emotional factors, and learning strategies), explained 37% of
the variance in math performance. In line with our hypothesis 2, the
main contribution of SRL factors is provided by subjective competence:
higher SC contributes to the achievement of better results in math
performance. This result is consistent with the self-efficacy literature
and the social cognitive theory which considers SC as a central cogni-
tive mechanism that explains motivation and self-directedness
(Bandura, 1991; Locke & Latham, 1990). Efficacy beliefs shape the basis
on which students decide how much effort to invest in a task, how long
to persevere when facing difficulties, and what challenges to undertake
(Bandura, 1991; Locke & Latham, 1990). “Those who have a strong
belief in their capabilities redouble their efforts and try to figure out
better ways to master the challenges.” (Bandura, 1999; p. 49). Previous
research supports the strong influence of self-efficacy beliefs on
mathematics performance (Fast et al., 2010; Marcou & Philippou, 2005;
Pajares & Graham, 1999). Fast et al. (2010) have found a pattern of
effects where students with higher levels of math self-efficacy achieve
higher scores in math performance. Moreover, Kingston and Lyddy
(2013) obtained similar results for proportional reasoning in a nu-
meracy task, suggesting that “self-efficacy explained a significant pro-
portion of the variance in performance above and beyond the effects of
short-term memory” (Kingston & Lyddy, 2013, p. 185).

WMC and processing time had a very basic role impacting directly
on math performance, independently of subjective competence. In ad-
dition, both WMC and processing time were mediated by subjective
competence. On the other hand, EA was almost fully mediated by this
motivational belief. Bell and Kozlowski (2002) have also found sig-
nificant interactions between goal orientation and abilities, suggesting
that learning orientation would be of help only to high ability in-
dividuals. Results from PISA 2012 regarding the positive impact of
perseverance only on high performance students in complex problem-
solving tasks (OECD, 2013), are also in line with our results.

Although other affective components related to the appraisal of the
task (a task perceived as interesting, and self-confidence/at ease emo-
tions) do not contribute significantly to the prediction of math perfor-
mance, the general model shows that they participate in a positive (or
negative) representation of the learning situation. This is in line with
some studies which have found that being attracted by the content of a
domain predicts the enrollment and the attendance in courses in that
domain better than success in the course (Harackiewicz, Barron, Tauer,
Carter, & Elliot, 2000; Wigfield et al., 2002). Students are more willing
to work hard on more interesting and affectively rewarding learning
tasks (Frenzel, Pekrun, & Goetz, 2007). According to our results, a
student with high cognitive resources and high subjective competence
is more likely to feel attraction to the task and would feel able to cope
with it. This attraction, in turn, promotes a positive attitude towards the
task and then, a learning intention which contributes to a better math
performance. In line with the Model of Adaptable Learning (Boekaerts
& Niemivirta, 2000), the students' appraisals of a learning situation
impact on their goal setting (learning intention) and their goal striving
(learning vs coping strategies), through a fast processing. The goals are
based on fast interpretations which can be focused on the task or on
themselves. If students self-perceive with less competence, they will
focus on negative self-related and motivational beliefs. Therefore, this
primary appraisal maps onto goal striving, which is oriented towards
restoring well-being, impacting negatively on performance. Given the
limited nature of cognitive resources, it is expected that those students
with low WMC will deplete their source activation decreasing math
performance.

In addition, this result lends support to the hypothesis that emotions
are interpreted as a signal that the students either had or did not have

M.F. Musso, et al. Learning and Individual Differences 71 (2019) 58–70

66



enough resources to do the task (Boekaerts, 2007, 2011; Fredrickson &
Losada, 2005). Positive or negative feelings may combine with cogni-
tive information to regulate the management and allocation of effort
(Boekaerts, 2011). If students who feel anxious when trying to cope
with a math task would re-focus on different and more efficient stra-
tegies to control this negative emotion they would bring into play their
own cognitive abilities, thus reinforcing a growth pathway instead of a
well-being pathway. Our findings emphasize the importance of in-
dividual differences in cognitive processing capacity for the explanation
of differences in the efficiency of emotional regulation on math per-
formance.

Gender differences found in the present results suggest that male
students outperform female students in math performance and that this
effect is not fully mediated by motivational beliefs, as previous studies
have shown (e.g. Guo, Marsh, Parker, Morin, & Yeung, 2015). This
relative independence could be explained if we consider the significant
-but weak- correlation between gender and WMC, on the one hand, and
gender-executive attention on the other hand: male students tend to
recall more items and have higher executive attention (faster reaction
times). If we consider both direct and mediated effects of gender on
math performance, findings also indicate that male students not only
achieved higher scores in math performance, but that they also self-
perceive more competent in math, which leads to a higher math score.
However, the evidence in the literature is controversial regarding
gender differences in the relationships between self-efficacy, SES, and
educational outcomes across different cultures (Guo et al., 2015;
Schoon & Polek, 2011; Watt et al., 2012).

No evidence has been found regarding the mediating role of
learning strategies, unlike what was reported by previous research
(Dupeyrat & Marine, 2005; Fenollar et al., 2007; Simons et al., 2004).
This could be a measurement problem: the self-report learning strate-
gies scale used asks for the reporting of decontextualized behaviors
applied on academic studies in general, while the other self-regulated
learning components refer to the specific math task used in the study.

6.3. Mediation model by item characteristics

Regarding the effects of cognitive and non-cognitive factors on math
performance given certain item characteristics, we found that WMC is a
key resource required in high complexity/low difficulty items. These
items have high probability of being answered correctly, but they de-
mand greater level of reasoning operations, such as: analyzing, gen-
eralizing, integrating, justifying information, and solving non-routine
problems. A large body of literature provides supporting evidence for
WMC playing a crucial role in these complex cognitive behaviors (e.g.
Engle, 2002; Hofmann et al., 2012). According to a WMC model within
the ACT-R cognitive architecture, complex items would add inter-
ference impairing the retrieval of goal-relevant information by a limited
attentional resource which is spread more thinly (Lovett et al., 1999).
However, EA has no effect either on high complexity/low difficulty or
on high difficulty/low complexity items. Difficult items demand recall,
recognition, computation and/or retrieval but they have a lower
probability of being answered correctly (independently of their level of
complexity). The performance in these items would be explained by
other factors which we have not controlled in this study, such as prior
knowledge or a long-term memory factor, rather than WMC and ex-
ecutive attention (EA).

Differential effects of WMC and EA on complexity vs difficulty, as
item characteristics, have important implications for the measurement
of performance in the context of Item Response Theory (IRT) models. If
the complexity of items is not carefully controlled during test con-
struction according to the cognitive processes involved, a new hidden
dimension could be introduced, not completely explained by difficulty
(or discrimination), which would violate the unidimensionality as-
sumption of commonly used Item Response Theory (IRT) models.

The present study also finds a significant additional relationship

between cognitive processes and subjective competence, not just on the
overall performance in the math task, but also when taking into account
certain item characteristics. Subjective competence mediates the effects
between both storage and processing time components of WMC and
high complexity/low difficulty items performance. Hoffman and
Schraw (2009) have found that self-efficacy was beneficial when de-
mands on working memory increase. Self-efficacy seems to increase the
problem-solving efficiency of the cognitive system through strategic
performance. These authors explained the results following the moti-
vational efficiency hypothesis which predicts that self-efficacy would
facilitate focused effort and strategy use, thus increasing the efficiency
of problem-solving (Hoffman & Scharaw, 2009). However, self-regula-
tion mechanisms and executive attention share the same available
cognitive resource pool for processing, requiring flexibility to modify
our thoughts and behaviors (Ilkowska & Engle, 2010; Schmeichel,
2007). This assumption leads to the expectation that there will be a
depletion of the cognitive resources when the student performs a task
under a high cognitive load condition and in demanding social situa-
tions (Ilkowska & Engle, 2010). Therefore, when the resources are
limited and below a certain threshold, the positive effect of self-efficacy
would not be able to manifest itself. These results can also be explained
in terms of the greater efficiency of WMC as a result of better strategy
use (McNamara & Scott, 2001). Another hypothesis related to “strategy-
as-effect” suggests that a high WMC enables students to produce and
apply effortful strategies when performing a complex task (Dunlosky &
Kane, 2007; Dunlosky & Thiede, 2004; Dunning & Holmes, 2014).
Further research is needed to evaluate this last hypothesis.

6.4. Educational implications

The focus of this study has been the interrelationships between
constructs derived from two relatively independent research areas (e.g.,
Metcalfe & Shimamura, 1994; Fernandez-Duque, Baird, & Posner,
2000). On the one hand, metacognition, learning strategies, and moti-
vation, from the educational psychology literature, based on more
naturalistic tasks and self-report data. On the other hand, WMC and
executive attention which originate from cognitive and neuroscience
research, experimental in nature, and more interested in the cognitive
processes and their links to certain brain areas, using an information
processing approach (Fernandez-Duque et al., 2000). The findings re-
garding the relative independency of WMC and EA could have im-
portant implications for more targeted interventions training specific
strategies on math performance.

For educational practice, as many previous studies have found, it is
important to notice that subjective competence has proven to be the
most important variable to explain achievement in math. Task attrac-
tion and positive emotion related to the task increase when students
trust in their own abilities in a specific domain. Therefore, teachers
should be aware of students' cognitive processing capacity (WMC and
EA in a domain) and give feedback according to these cognitive dif-
ferences in order to increase the students' sense of self-efficacy for
specific tasks. The intervention should include a reinforcement of po-
sitive motivational beliefs and the awareness of own goals, taking into
consideration individual differences in cognitive resources (especially
differences in WMC). In particular, task complexity which is influenced
by individual differences in cognitive resources, should be taken into
account in the design of targeted intervention programs.

6.5. Limitations

It is important to consider some limitations regarding the self-report
measures used for SRL. Specifically, cognitive components related to
learning strategies involved the recall of learning episodes in various
undefined school-subject areas and not for a specific domain. Future
research should select instruments that measure metacognitive regula-
tion related to the demands of math problem solving, preferably on-
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line. In addition, additional studies should also consider the students'
use of metacognitive strategies.

7. Conclusion

The results of this study confirm the crucial role of individual dif-
ferences in WMC for both metacognitive regulation and metacognitive
knowledge applied to math performance at a functional processing
level. WMC impacts directly on math performance, mediated by posi-
tive appraisals, specifically a positive subjective competence assess-
ment. Moreover, the effect of motivational/affective variables depends
on the availability of WMC and executive attention resources. The in-
teraction effects between motivational or cognitive components of SRL
at a strategic level, emerge from the processing capacity of the cognitive
system. Furthermore, results also partially confirmed our hypotheses
about the differential contribution of WMC and executive attention in
the prediction of complexity vs difficulty effects in item performance.
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