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Bouncing window for colliding nanoparticles: Role of dislocation generation
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Available macroscopic theories—such as the Johnson-Kendall-Roberts (JKR) model—predict spherical
particles to stick to each other at small collision velocities v; above the bouncing velocity, vb, they bounce. We
study the details of the bouncing threshold using molecular dynamics simulation for crystalline nanoparticles
where atoms interact via the Lennard-Jones potential. We show that the bouncing velocity strongly depends
on the nanoparticle orientation during collision; for some orientations, nanoparticles stick at all velocities.
The dependence of bouncing on orientation is caused by energy dissipation during dislocation activity. The
bouncing velocity decreases with increasing nanoparticle radius in reasonable agreement with JKR theory. For
orientations for which bouncing exists, nanoparticles stick again at a higher velocity, the fusion velocity, v f ,
such that bouncing only occurs in a finite range of velocities—the bouncing window. The fusion velocity is
rather independent of the nanoparticle radius.

DOI: 10.1103/PhysRevE.99.032904

I. INTRODUCTION

Collisions of nanoparticles (NPs) have attracted increased
attention in the recent past. On the one hand, they are relevant
in diverse areas stretching from aerosol science [1] to astro-
physics [2]. There, dust grain and agglomerate collisions are
decisive for the buildup of planetesimals and cometesimals in
the protoplanetary disks surrounding young stars [3–5]. On
the other hand, it remains unclear to what extent available
macroscopic models of particle collisions also apply to the
nanoworld. Recent simulational studies point at a more com-
plex role of attractive interactions in nanocollisions than are
incorporated in existing macromodels [6,7].

A basic characteristic of particle collisions is the threshold
between sticking and bouncing collisions. The corresponding
velocity has been termed the bouncing velocity, vb. In a
macroscopic view—such as, for instance, that expressed in
the Johnson-Kendall-Roberts (JKR) model [8]—low-velocity
collisions are sticking, since the elastic energy of the rebound
is not sufficient to surpass the surface adhesion of the two
grains; only beyond vb, bouncing is possible.

In recent years, molecular dynamics (MD) simulations
have allowed us to gain more insight into the collision char-
acteristics of NPs. For some materials, such as silica and
water ice, strong deviations from the JKR model [8] have been
found [6,7]. In silica, the rupture of the neck forming between
the two NPs during the outgoing collision trajectory demands
more time and more work than predicted by the macroscopic
model. In water ice, collision-induced heating may melt the
two grains in the vicinity of the contact area; the increased NP
plasticity lead to a strong increase of the bouncing velocity.
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These results show that material-dependent aspects may
strongly influence the collision dynamics of NPs. In this paper
we want to address the question to what extent a generic
material obeys the predictions of the macroscopic collision
laws in the nanoworld. To this end, we study a Lennard-Jones
(LJ) material. We note that this (computationally) important
system has already been used repeatedly in previous work
for studying NP collisions [9–16]. However, some of these
simulations have been performed at higher collision energies
(leading to NP fragmentation), or with strongly modified
potentials, which strongly alter the collision dynamics. Thus,
the bouncing behavior of pure LJ NPs needs investigation.
Tanaka et al. [12] address this issue; however, results were
only reported for a single NP radius.

MD simulations also demonstrate that at high velocities,
where collisions lead to strong NP deformation, particles
stop bouncing and fuse again. This is caused by the energy
dissipation during the strongly inelastic collision. As a con-
sequence, a “bouncing window” exists between the (lower)
bouncing velocity, vb, and the (higher) fusion velocity, v f .
Towards small particle radii, the bouncing window may close
altogether such that collisions at all velocities are sticking.

Such considerations show that the mechanisms of energy
dissipation are crucial for an understanding of NP collisions
and their connection to macroscopic laws. Millán et al. [17,18]
studied the emergence of plasticity in LJ NP collisions and
showed the existence of a threshold velocity vep beyond which
dislocations are formed in the colliding NPs. Its size is of
a similar magnitude as the bouncing velocity. Also Takato
et al. [15] discuss NP collisions, albeit using modified LJ
potentials. They find the bouncing velocity to be in good
agreement with the JKR prediction for NP radii in the range of
a few nanometers. In addition they find that plasticity plays an
important role in particular in the temperature dependence of
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TABLE I. NP radii, R, in LJ units and numbers of atoms per NP,
N , used in this study.

R N

44.1 390 045
58.8 924 597
70.0 1 560 282
88.2 3 120 234
132.3 10 531 010

the coefficient of restitution. Later Schöner and Pöschel [19]
studied Ag particles colliding with an adhesive rigid wall by
MD simulations and discussed the role of dislocations and
plastic slip on the coefficient of restitution.

In the present paper, we study the bouncing of NPs subject
to the unmodified LJ potential; this allows us to obtain generic
properties of NP collisions that can be compared to the predic-
tions of the macroscopic JKR model. By covering a suitably
wide range of NP radii, we can investigate the limits of the
macroscopic JKR model. Dislocation emission is identified as
the prime channel for energy dissipation, and its dependence
on NP orientation is studied.

II. METHOD

We use the standard Lennard-Jones (LJ) potential with
length parameter σ and energy parameter ε; the potential is
cut off at rc = 5σ . In the following we use LJ units which are
built in the standard way from σ , ε, and the atom mass m. The
unit of time is τ = σ

√
m/ε; lengths are measured in units of

σ , and the unit of velocity is
√

ε/m.
We build spherical NPs by cutting a sphere of radius R out

of a block of fcc LJ material; the NP is then relaxed to van-
ishing pressure and temperature. The use of single-crystalline
particles with spherical shape is the standard in atomistic
simulations of NP collisions [9–19]. Even though experiments
with such systems do not appear to have been reported, sub-
micrometer-sized single-crystalline NPs are routinely used in
experiments, e.g., of nanoplasticity [20–22]. Table I gives an
overview of the NP radii and atom numbers used in our study.

Before starting a collision, we duplicate the NP. In the
simplest case both NPs face each other with a (100) facet.
To investigate the orientation dependence, one or both of the
NPs are rotated before the collision, as described in detail in
the next sections. All collisions are central, i.e., with a zero
impact parameter; we denote the relative velocity of the grains
by v. The simulations are run up to time 350 in LJ units.

After the collision, we calculate the relative center-of-mass
velocity, v′, of the two grains. The coefficient of restitution
(COR) is then defined as

e = |v′|/v. (1)

Sticking collisions obey e = 0.
The lowest velocity at which bouncing occurs is denoted

as the bouncing velocity, vb. We verify the difference be-
tween sticking and bouncing collisions by monitoring the time
dependence of the NP trajectories. If their distance remains
constant after the collision (apart from oscillations), it is a
sticking collision; otherwise it is bouncing. We emphasize

that in the velocity regime studied in this paper, all collisions
are either bouncing or sticking. However, at higher collision
velocities, other alternatives can occur, viz., fragmentation
events.

The molecular dynamics simulations are performed with
the LAMMPS code [23]. Atomic snapshots are generated with
OVITO [24].

III. RESULTS

A. Two representative cases

In Fig. 1(a), we plot the COR for two NP orientations
which exhibit drastically different behaviors. While NP 1
always collides with a (100) facet head-on, NP2 has either the
same (100) orientation or collides with a heading (110) face.
In the first case, the COR is zero at all velocities; in other
words the two spheres stick. In the second case, we observe
a bouncing window between v = 0.02 and 0.2. The striking
distinction between these two cases is the topic of this paper
and is explained in detail in Sec. III B.

We can compare this behavior with the prediction of JKR
theory. COR in JKR theory has been modeled by the following
law [25]:

eJKR(v) = a

√
1 −

(vb

v

)2
. (2)

In the original formulation, a has been set equal to 1; this
amounts to ignoring all energy dissipation above the bouncing
velocity. We included the factor a to allow for dissipative
effects as they are the subject of this paper.

Figure 1(a) shows that—in the velocity range of v �
0.04—we get good agreement for the bouncing (100)(110)
orientation with vb = 0.023 and a = 0.97. Thus JKR can
describe the onset of bouncing at small velocities correctly,
but not the decrease of the COR at velocities >0.04 and the
entire disappearance of bouncing at v > 0.2.

To understand the difference between the two orientations,
we plot in Fig. 1(b) the fraction of defective atoms generated
by the collision, at the end of the simulation. Defective atoms
are non-fcc atoms as identified by common neighbor analysis
with adaptative cutoff as implemented in OVITO [24]. The
initial value of around 3.5% is due to surface atoms which
are counted as defects. For both orientations, (almost) no
defects are created at low velocities, v � 0.04; thereafter
defect production starts and increases approximately linearly
with velocity. Note that defect production is somewhat more
pronounced for the nonbouncing (100)(100) case.

The defects formed are dislocations. They are generated
in the contact zone where the pressure is highest, and then
spread throughout the spherical grains until they are absorbed
at the opposite grain surfaces, leaving behind behind planar
defects [18]. These planar defects are predominantly stacking-
fault planes and twin boundaries. Figure 2 shows the defective
planes left behind after the collision. At low velocity, v =
0.03, dislocations are only generated in the nonbouncing
(100)(100) case. The dislocations are embryonic and cannot
leave the contact area; still their generation requires energy
which then prevents the NPs from separating again. Note
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FIG. 1. Sticking (100)(100) and bouncing (100)(110) collisions for NPs of radius R = 88.2 as a function of collision velocity v. (a) COR
as a function of velocity compared to the JKR model. (b) Fraction of defective atoms (non-fcc) generated by the collision, at the end of the
simulation, as determined by CNA detection in OVITO [24]. Vertical dashed lines indicate the bouncing window for (100)(110) collisions.

that at this velocity, the (100)(110) case does not generate
dislocations, but is bouncing.

At higher velocity, v = 0.06, also the bouncing case de-
velops dislocations, but only in the (100)-oriented sphere.
Dislocations in the (110)-oriented sphere are only generated
at considerably higher velocity, v = 0.2; at this velocity the
bouncing window ends [cf. Fig. 1(a)].

Note that the defects generated are predominantly
stacking-fault planes; however, in a few cases—such as the
back plane in the case of the v = 0.1 (100)(110) collision—
twin boundaries have formed.

Figure 3 provides a zoom into the collision zone of the
sticking (100)(100) collision at velocity v = 0.1. In addition
to the stacking-fault planes spanning the entire NPs, several
dislocations remained in the collision zone. Since in fcc
crystals several distinct types of dislocations can exist, we
analyzed their Burgers vectors. The majority of dislocations
found in Fig. 3 are so-called Shockley partials, that is, dislo-
cations with a Burgers vector of 1/6〈112〉; these are indeed

the dislocations found most commonly in fcc crystals [26].
In addition, the generation of stair-rod dislocations is notable;
these are immobile [26] and hence cannot leave the collision
zone. They are produced by the interaction of moving dislo-
cations; their appearance is reminiscent of the work-hardening
mechanism in heavily worked metals [26].

In fcc crystals, the dislocation glide planes are {111}
planes, on which dislocations glide in 〈110〉 directions [27].
These planes run obliquely to the impact velocity vector for
the nonbouncing (100)(100) case, as is clearly seen in Fig. 2.
Note that different glide-plane orientations within the {111}
family can be activated. The activation of dislocation glide
can be quantified by the Schmid orientation factor, which
determines the shear stress resolved into the glide plane [26];
it is determined by the cosine of the angle between the applied
stress and the glide-plane normal, multiplied by the cosine of
the angle between the applied stress and the glide direction.
In our simulations, the applied-stress direction is taken as the
impact-velocity direction. In the bouncing case, dislocations

FIG. 2. Snapshots showing the dislocations and planar defects generated. Top row: Sticking (100)(100) collision. Bottom row: Bouncing
(100)(110) collision. Velocities increase from left to right: v = 0.03, 0.06, 0.10, and 0.20. The left-hand-side NP (red or light gray) is always
in (100) orientation.
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FIG. 3. Zoom-in into the collision zone of the sticking
(100)(100) collision at velocity v = 0.1 [cf. Fig. 2(b)]. Besides the
stacking-fault planes left behind by partial dislocations that swept
through the grains, dislocations are left over close to the collision
zone. Dislocations are colored according to their Burgers vector b.
Green (medium gray): Shockley partials 1

6 〈112〉; black: stair-rod
1
6 〈110〉; blue (light gray): perfect 1

2 〈110〉; red (dark gray): other.

could travel straight on along the impact velocity in the (110)
grain; however, the glide plane is now oriented perpendicular
to the acting force; hence the Schmid orientation factor is zero
and the glide activation is small.

From studies of nanoindentation of fcc surfaces it is
known that dislocations form in the regions of the highest re-
solved {111}〈110〉 shear stress [28]. For example Ziegenhain
et al. [29] have shown that the pressure necessary for nucle-
ation of dislocations is largest for (111) and (110) surfaces
and smallest for the (100) surface. This finding is in agreement
with the early nucleation of plasticity found in our simulations
for (100)-oriented NPs and the induced sticking. We note that
in our simulations, we also find (100)(111) collisions to be
entirely sticking (see Sec. III C below), in agreement with this
argument.

We conclude the following from this comparison of bounc-
ing and nonbouncing orientations.

(i) Local crystal orientations are decisive for the disloca-
tion generation; this has already been shown previously [18].

(ii) Surface orientations, in which dislocation emission is
facilitated, suffer higher energy losses and hence lead to stick-
ing collisions; in the case shown here, bouncing is precluded
altogether.

(iii) Finally, since generation of plasticity stores collision
energy as potential energy inside the NPs, the COR is reduced
and may vanish altogether at high dislocation generation,
resulting in a finite bouncing window. This is in strict contrast
to JKR theory.

B. Time evolution of dislocations

In Fig. 4 we provide the time evolution of the length of
dislocation lines generated in the two collision cases studied in
Sec. III A. The total length of dislocation lines shows a strong
time dependence: After collision, dislocations are produced
such that their lengths reach a maximum at a time of around
70. Afterwards they decay, since they are annihilated at the
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FIG. 4. Time evolution of the dislocation length in the sticking
(100)(100) collision, denoted as (100), and the bouncing (100)(110)
collision, denoted as (110), at a velocity of v = 0.1.

grain surface after they traveled through the grain leaving
behind stacking-fault planes. The Shockley partials that form
the most common type of dislocations in fcc crystals [26] also
form the majority of dislocations found in the NP collisions
analyzed here (Fig. 4).

In agreement with the snapshots of Fig. 2 displaying
the final state, more dislocations are created in the stick-
ing (100)(100) collision. The dislocations remaining in the
(100)(100) collision case are found in the collision area, in the
region where stacking-fault planes intersect, creating sessile
junctions (see Fig. 3). In the bouncing (100)(110) case, fewer
dislocations are produced, and they only exist over a small
amount of time. They disappear at time t = 150. The amount
of dislocations in this case is not large enough to lead to
junctions, and this is why they disappear completely, unlike
what happens in the (100)(100) case.

These data allow us to discuss the energy dissipated during
the motion of dislocations. It is well known that the density
of dislocations ρ moving with velocity vd is connected to the
dissipated energy via

Ediss = C
∫

ρ(t )vd dt, (3)

where C is a proportionality constant [30–32]. For a qual-
itative discussion, we may assume that vd is constant for
the same impact velocity, and the dissipated energy is hence
proportional to the area under the dislocation length curves in
Fig. 4.

In the bouncing (100)(110) case, fewer partials are pro-
duced, and they only exist over a small amount of time,
between 40 and 200 time units. In the sticking (100)(100) case
the density is much larger and the time window over which
dislocations are available is larger; we conclude that energy
dissipation is significantly higher in this case. This analysis is
in line with the observation that this collision is sticking.

We conclude that the emission and motion of dislocations
leads to energy dissipation for the (100)(100) collision larger
than that for the (100)(110) collision; this explains why the
former collision is sticking and the latter one is not.
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FIG. 5. Schematic view of the orientation of NP 2, defining the
angles α and β. The grid line spacing is 5◦.

C. Orientation dependence

In a first step, rather than randomizing completely the
orientations of the two colliding NPs, we keep the orientation
of NP 1 fixed such that it collides with a (100) facet head-on.
NP 2 is rotated with respect to NP 1 as shown in Fig. 5; here
the orientation angles α and β are introduced.

Figure 6(a) shows us the orientation dependence of the
COR for a variety of collision velocities when turning NP 2
from its (100) orientation towards the (110) orientation, which
will be reached at β = 45◦. For velocities v < 0.02 and larger
than v � 0.3, the collisions are sticking for all orientations.
When rotating NP 2 from the sticking (100) direction to-
wards the bouncing (110) direction, the COR monotonically
increases. This can be understood from the arguments given
in Sec. III A above, in that the activation of dislocation glide
becomes increasingly difficult when NP 2 approaches the
(110) direction.

In Fig. 6(b), the orientation of NP 2 varies between the
bouncing (110) direction, α = 0◦, to the sticking (100) di-
rection, α = 90◦, via another trajectory which also covers the
(111) orientation, α = 35.3◦. We observe that the (111) facet
is also sticking. The physics of this sticking case parallels
that of the (100)(100) collision described in detail above:
dislocations are produced abundantly during the collision;
their generation and migration dissipate collision energy such
that the NPs cannot separate after the collision. At α = 90◦,
NP 2 is hit on a (001) facet (see Fig. 2); however, it is rotated
by 45◦ with respect to the (100) facet of NP 1; this explains the
high bouncing probability encountered for this orientation.

We conclude that the bouncing window closes in those
orientations where dislocation emission—and hence energy
dissipation—is crystallographically possible. For orientation
in between these sticking directions, bouncing becomes
possible.

D. Orientation average

Finally we want to obtain an overview of the NP collisions
for random NP orientation. To this end, we display the aver-
ages over ten simulations, in which both NPs have average
orientations, in Fig. 7. We observe that small NPs always tend
to stick, while bouncing becomes more pronounced for larger
NPs. This can be understood in terms of energy dissipation by
dislocation generation and motion. Since the resulting defects
are planar (see Fig. 2), the energy stored in these defects
scales as R2, while the total collision energy scales with R3

for constant velocity. As a consequence, energy dissipation in
dislocation generation and glide loses importance for larger
NPs. Already for R = 44, the COR is below 10%; we did not
observe any bouncing for radius R = 29.4, the smallest radius
in our simulations.

The COR decreases with velocity towards the upper bounc-
ing velocity. From macroscopic contact theory, it has been
argued that the decay is ∝v−1/4 [25,33,34]. In earlier MD
studies of NP collisions based on modified LJ potentials,
a dependence ∝v−1 was found [14,15,35]. These authors
argue that the energy dissipation caused by extensive plastic
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FIG. 6. COR as a function of the orientation of NP 2. (a) α = 0◦, while β is varied; (b) β = 45◦, while α is varied. NP 1 always collides
with a leading (100) facet. The sphere radius has been fixed to R = 88.2.
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deformation, which is observed in the simulation but not
sufficiently included in the macroscopic theory, causes the
stronger falloff of the COR. We find here from the data
shown in Fig. 7 a stronger decay, approximately proportional
to v−3, for velocities above v = 0.1. It may be surmised
that this even stronger falloff of the COR is caused by our
consequent use of the LJ potential for all atoms. The previous
studies [14,15,35] used potentials that artificially enhance the
bouncing probability by reducing the interparticle attraction
or even using purely repulsive potentials between atoms of
different NPs. In our case, the bouncing probability is reduced
by the stronger interparticle adhesion warranted by the un-
modified LJ interaction, leading to higher energy dissipation
and a consequently stronger decay of the COR with velocity.

As a second feature, we observe that the bouncing window
has an upper limit, v f , which is rather constant at v f = 0.3. At
these large velocities, already strong deformations of the NP
at the surface can be seen which mostly originate from slip and
which lead to high energy dissipation and to NP fusion [18].

In Fig. 8, we plot the upper and lower velocities of the
bouncing window as observed in our simulations. The lower
bouncing velocities are obtained from a fit of the COR data in
Fig. 7 to the JKR estimate, Eq. (2). Note that for the largest
sphere, R = 132, we simulated only a single orientation so
that this data point may not be representative. In this logarith-
mic presentation the decrease of the lower bouncing velocity
vb can be seen more clearly. We compare with the literature
data of Tanaka et al. [12], who simulated the collision of
R = 87.6 NPs similar to what we have done. We evaluate the
bouncing window boundaries from their Fig. 7; they are in
reasonable agreement with our results.

We can compare our simulation results for the bouncing
velocity vb with the prediction of JKR. The JKR model
predicts the bouncing velocity of two identical NPs of radius
R to be determined by the surface energy γ , the indentation
modulus Eind, and the mass density ρ via [25,36,37]

vb =
(

C

ρ

)1/2(
γ 5

E2
indR5

)1/6

. (4)
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FIG. 8. Dependence of the upper bouncing velocity, vb, and the
lower bouncing velocity, v f , on the NP radius R. Comparison to the
data by Tanaka et al. [12, Fig. 7], R = 87.6, to JKR theory, Eq. (5),
and to the elastic-plastic threshold, Eq. (6). Data are averages over
ten random orientations, with the exception of the data for R = 132,
which is based on a single simulation.

Here, C is a constant which—depending on the
model assumptions—assumes values between 0.30 and
18.3 [25,36–38]. Using values appropriate for a LJ
material—γ = 2.3, Eind = 107, and ρ = 1.085 [17]—Eq. (4)
simplifies to

vJKR = C1/2 0.405

R5/6
. (5)

Figure 8 compares the prediction, Eq. (5), to our simulation re-
sults. The bouncing velocity was calculated as an average over
the bouncing collisions only. A least-square fit yields C =
7.66; this value is well within the range of C = 0.3, . . . , 18.3
discussed in the literature [25,36–38]. Note that for the largest
sphere, R = 132, we have no statistics since our data are based
on a single bouncing collision; the bouncing velocity of the
other four radii are within the error bars described by Eq. (5).

Finally, we relate our data with the onset of plasticity
that has recently been obtained by an extensive series of
simulations of LJ NP collisions; it is located at [17,39]

vep = 2.15

R2/3
. (6)

Figure 8 shows that the onset of plasticity is located (slightly)
above the bouncing velocity. This is in agreement with our
finding [Fig. 1(b)] that dislocations are only generated above
the bouncing velocity. As the power exponents in Eqs. (5)
and (6) indicate, and as is confirmed by Fig. 8, the velocity
range above the bouncing velocity in which the collision is
purely elastic widens for larger NPs. Millán et al. [17] find that
for NP radii of R = 15, collisions produce no dislocations up
to collision velocities of v = 0.3, i.e., at the fusion velocity.
Since we find the bouncing velocity to be below the elastic-
plastic threshold, this is in agreement with our finding that at
such low velocities bouncing has ceased.
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IV. SUMMARY

From our MD simulations of LJ NP collisions we can draw
the following conclusions.

(i) At small radii R � 30 no bouncing is observed. NPs
stick to each other since adhesive forces gain importance for
small radii.

(ii) At radii larger than around 30, a bouncing window
opens up. The bouncing velocity, vb, is in reasonable agree-
ment with the JKR prediction.

(iii) Towards high velocities, the fusion velocity, v f , sep-
arates the bouncing regime from the fusion of strongly de-
formed NPs. The fusion velocity is approximately indepen-
dent of NP size at v f = 0.3.

(iv) Generation of dislocations sets in at the elastic-plastic
threshold, vep, which is slightly larger than the bouncing
velocity.

(v) The generation of dislocations is strongly dependent
on the NP orientation. Orientations which allow for easy
dislocation generation are found to be sticking at all velocities,
since the energy that would be necessary for NP separation is
dissipated during the collision.

(vi) The COR shows at small velocities the character-
istic rise predicted by the JKR model above the bouncing
velocity. This characterizes a regime where no dislocations
are generated. The COR never reaches the value of 1, since
all collisions are inelastic; neck formation and, at higher
velocities, dislocation generation and eventually strong NP
deformation dissipate energy. At higher velocities, however,
the COR decays again and reaches zero at the fusion velocity.

In the present study, we focused on ideal single-crystalline
NPs. In the future it might be interesting to investigate
the influence of preexisting defects in the colliding NPs.

In reality, NPs may be polycrystalline and contain defects
such as point defects, dislocations, and twins from previous
collisions; thus their microstructure may deviate considerably
from the ideal single-crystalline setup considered here. The
stress required to to move preexisting dislocations would be
significantly lower than the stress required to nucleate new
dislocations [26]. The stress required to induce grain boundary
activity in polycrystals is also much lower than the disloca-
tion nucleation stress [40]. Therefore, threshold velocities for
plastic energy dissipation could be significantly lower than
those in the perfect crystal case. For amorphous nanoparti-
cles, the formation of shear transformation zones [41] would
provide an effective energy dissipation channel. We note
that we performed a series of exploratory simulations for
amorphous NPs; however, in the size range investigated
here, all collisions were sticking and no bouncing was
found.

A further issue to be studied is the relevance of other
energy dissipation channels such as the excitation of NP
oscillations. Here it should be noted that macroscopic models
of NP collisions including NP oscillations predict a strong
influence of these oscillations on the COR if the duration of
particle contact equals the NP oscillation period [42,43]. It
will be interesting to study the influence of such oscillations
on the bouncing behavior.
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