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Postharvest technology in the 21st century:  
revisiting and refining traditional tools 

Postharvest science has greatly improved in recent years. Se-
quencing of some important fruit and vegetable species, develop-
ment of powerful high-throughput analytical ('omic´) approach-
es, and progress in deciphering the epigenetic regulation of plant 
development are contributing to increase our understanding of 
the physiology of harvested fruits and vegetables [1-4]. Some rela-
tively new technologies such as the use of the ethylene action 
inhibitor 1-methylcyclopropene and the refinement of dynamic 
controlled atmospheres have provided alternative ways to control 
ripening and senescence [5-8]. In spite of this progress the main 
challenge on a global scale is still to develop sustainable tools to 
maintain the safety, nutritional and organoleptic quality of fresh-
ly harvested products and to reduce the unacceptably high losses 
occurring during distribution, storage and retail [9].  
 
Recently there has been increased interest in revisiting the use of 
physical treatments (heat, irradiation) and natural edible coatings 
to prevent fruit and vegetable deterioration [10]. The fact that 
these methods have been envisioned as environmentally-friendly 
approaches to complement traditional postharvest handling 
methods [11] has raised the interest of industry and academia.  
 
Postharvest physical treatments and edible coating applications 
have evolved relatively independently. However, they may have 
high potential as complementary approaches for postharvest 
management. Herein, we briefly describe the general features and 
trends in fresh produce edible coating applications. We also dis-

cuss the potential of combining coating technologies with appro-
priate postharvest physical methods. Active collaboration be-
tween researchers working on postharvest physical treatments 
and edible coatings offer opportunities to maximize their benefits 
on quality maintenance. 
 

Edible coatings for fruits and vegetables:  
uses and formulations  

Edible coatings consist of a thin layer of protective material added 
by dipping or spraying that can be consumed as a part of the 
product [12, 13]. The main interest in edible coatings is generally 
based on their potential to prevent quality loss and extend the 
shelf life of the commodities by modifying their surface proper-
ties. Coating applications have been used in fresh fruits and vege-
tables for a long time. Some records indicate that citrus fruits 
were waxed already in China in the 12th and 13th centuries [14]. 
Suspensions of oils or waxes in water were among the first fruit-
coating formulations likely used to reduce dehydration. Since 
these early practices the aims of coating applications have ex-
panded. Fruits and vegetables could be coated:  

• to improve surface gloss,  

• to reduce abrasion,  

• to prevent the absorption of undesirable odors, 

• to minimize solute leakage, 

• to establish a barrier to moisture loss,  

• to change CO2 and O2 levels inside the commodity, thereby  
modulating ripening and senescence,  

• to retard decay, or 
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• to enhance produce stability and safety by including function-
al ingredients such as antioxidants and antimicrobials. 

 
A variety of materials, including lipids, polysaccharides, and pro-
teins, alone or in combination, have been used in edible coating 
formulations [12, 15]. Coating matrices generally comprise a major 
constituent, to which other components such as plasticizers, emulsi-
fiers, reinforcements, additives and solvents (eg, water and alcohols) 
are added. The large battery of materials used and their possible 
combinations provide coating systems with a wide range of physical 
and chemical properties that could fit different applications. 
 
The main matrix components used in coating applications are 
hydrocolloids, lipids and their mixtures (composites) [16*]. Poly-
saccharides (cellulose derivatives, alginate, pectin, starch, chitosan, 
carragenan and gums) and proteins (from vegetal origin like soy 
protein, wheat gluten, corn zein, and from animal sources such as 
gelatin, whey, casein and keratin) have been tested [17, 18]. Special 
interest has been devoted to the re-utilization of industrial byprod-
ucts (ie, gelatin, soy protein, whey and chitosan from the meat, 
oilseed, cheese and seafood industries, respectively) [19**]. 
 
Both protein and polysaccharide films and coatings generally ex-
hibit excellent barrier properties against oxygen, and aroma, but 
have high water vapor permeability [19**]. A number of different 
lipid sources including waxes (beeswax, candelilla wax, carnauba 
wax), free fatty acids, fatty alcohols, fatty acid and sucrose esters, 
edible terpene resins, such as shellac and paraffins, have been used 
for fruit and vegetable coating [18, 20-22]. They usually increase 
surface gloss and limit water loss. Finally, composite coatings are 
produced by combining two or more constituents. They could be 
emulsions, multilayer coatings or blends [23, 24]. In emulsions and 
lipid-hydrocolloids composite coatings, the type of lipid, location, 
volume fraction, polymorphic phase, and drying conditions have 
significant impact on the final moisture-barrier properties [25]. 
The size of the dispersed component in an emulsion also has great 
effect on the coating characteristics. It can range from 0.2-50 µm in 
macro-emulsions to 10-100 nm in micro-emulsions [26-28]. Multi-
layer coatings are in general more effective water vapor barriers 
than emulsion films. However, the fact that they should be gener-
ated in various steps by sequential deposition of materials of inter-
est in the commodity surface represents a technological drawback. 
An alternative promising strategy to improve the properties of 
edible coatings is biopolymer blending [29, 30].  
 
As in the field of synthetic polymers the new generation of materi-
als in the area of biopolymers is focusing on obtaining bio-
nanocomposites. These materials consist of a biopolymer matrix 
reinforced with nanoparticles (particles having at least one dimen-
sion in the nanometer range 1-100 nm). They are expected to ex-
hibit better mechanical and barrier properties, thermal stability, 
chemical resistance and surface appearance, even at low loading 
levels (5-10%), than traditional materials due to the high surface 
area of the nanoparticles, which allows them to interact strongly 
with the remaining components [31, 32]. The addition of nanoclays, 
like montmorillonite, to protein and polysaccharide formulations 
has enhanced the mechanical and barrier properties of biopoly-
meric films [33, 34]. Cellulose nanofibers, chitin and starch nano-
whiskers have improved the mechanical properties of casein, 
starch and chitosan films [35-37]. Nanocomposites may also modu-
late the release of active ingredients incorporated in the polymeric 
matrix [28-41].  
 
Different ingredients can be incorporated into edible coating ma-
trices to improve or modify their functionality. Plasticizers are 
commonly added in polysaccharide and protein-based coatings to 

decrease brittleness [42-44]. Common plasticizers used in edible 
coatings include water, glycerol, propylene glycol, sorbitol, su-
crose, polyethylene glycol, fatty acids, and monoglycerides [42]. 
Added in different proportions (15-40% relative to the main matrix 
constituent) plasticizers may enhance film flexibility and suscepti-
bility to humidity and decrease its strength and barrier properties 
against moisture and oxygen [45]. Hydrophobic plasticizers, such 
as citrate esters are also being studied [46].  
  
The functionality of these main matrix constituents can be also 
modified by chemical, physical or enzymatic treatments [47-49]. 
Protein cross-linking may reduce the material solubility, generate 
stronger matrices and in some cases increase surface hydrophobi-
city [49-50]. Traditional chemical cross-linkers may not be suitable 
for edible materials due to their toxicity. In this case protein modi-
fying-enzymes such transglutaminase, lipoxidase, lysyl-oxidase, 
polyphenol oxidase and peroxidase may be useful. Phosphorylation 
of soy proteins by a protein kinase can also be used to modulate 
the material solubility and emulsifying capacity [51]. Polysaccha-
ride properties can be also modified by changing their degree of 
polymerization, side-chains, degree of acetylation or methylation 
[52].  
 
Emulsifiers are surface-active agents of an amphiphilic nature and 
are able to reduce the surface tension of water–lipid or water– air 
interface. They can be also added to improve the formulation wet-
ting, spreading and adhesion ability [53**]. Protein-lipid or poly-
saccharide-lipid composite coatings often require the addition of 
emulsifiers to facilitate the dispersion of the lipid component in 
aqueous media. Common emulsifiers include the polyethylene 
sorbitol esters, some fatty acids and salts, and phospholipids such 
as lecithin [46, 54, 55]. 
 
The functionality of edible coatings can be expanded by adding 
antioxidants, antimicrobials, colorants, flavors, nutrients, and spic-
es to the formulation. These compounds could be retained on the 
food surface enhancing food quality, stability, and safety [56-60]. 
Common antimicrobial agents used in food systems, such as ben-
zoic, propionic and sorbic acid salts, may be incorporated. Starch-
based coatings containing potassium sorbate were applied on fresh 
strawberries to reduce decay [61]. Hydroxypropyl-methyl cellulose 
coatings containing ethanol inactivated Salmonella montevideo on 
fresh tomatoes [62]. Antimicrobial enzymes such as lysozyme have 
been incorporated into chitosan coatings to control Escherichia 

coli and Streptococcus faecalis [63]. Essential oils have been also 
widely investigated as natural antimicrobials for coated fruits and 
vegetables [64]. Interestingly, chitosan shows antimicrobial effects 
per se [65-67]. 
 

Early work by Swenson et al. [68] showed that coatings containing 
butylated hydroxyanisole (BHA), butylated hydroxy toluene (BHT) 
and citric acid reduced rancidity in nuts. Antioxidants such as 
ascorbic acid have been used to reduce browning in coated mush-
rooms [69]. Xanthan gum coatings mixed with α-tocopherol en-
hanced the nutritional quality and improved the surface color of 
peeled baby carrots [70]. Texture enhancers have been also incor-
porated into edible coatings. Hernández-Muñoz et al. [71] observed 
that the addition of calcium gluconate to the chitosan (1%) coating 
formulation increased the firmness of refrigerated strawberries. 
Flavor and coloring agents may also be added to edible coatings. 
However, very little has been reported regarding these applica-
tions. Finally, some researchers have endeavored to incorporate 
micronutrients and bioactive compounds [63-72]. 
 

Challenges in edible coating technologies  
Several works show that the benefits obtained by coating applica-
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tions may be substantial [73-77]. However, compared to the large 
number of studies reported in literature relatively few applications 
have been adopted by the industry. Although various raw materials 
employed are industrial byproducts, the procurement, transport, 
distribution and storage costs of these materials as well as the in-
frastructure for large-scale coating production may be in some 
cases still too high. Modification of established procedures, chang-
es in process operations and processing line layouts, and the need 
to implement specific training programs may have in some cases 
delayed technology transfer. Future studies aimed at helping to re-
categorize coatings as a “widespread technology” should focus on: 
i. selecting the formulation, and coating-formation conditions 

that optimize the properties required for each commodity; 
ii. anticipating potential consumer concerns especially when 

complex activated formulations are tested. For example nano-
technology offers opportunities to develop novel packaging 
strategies [78]; but the debate about the potential benefits 
and risks of human consumption of some nanoparticles is still 
open and legislation on this issue is in many cases diffuse;  

iii. predicting potential difficulties during scaling-up processes 
may be highly useful. Simple procedures in lab settings such 
as generating continuous and even coatings, while avoiding 
physical damage and temperature abuses may be challenging 
in commercial settings.  

 
The evaluation coatings at unacceptably high temperatures and 
low relative humilities for fruit and vegetable handling could over-
estimate their practical benefits. Technologically-oriented studies 
must evaluate coating applications under optimal storage condi-
tions (temperature and relative humidity) since they should be 
considered a complement to proper refrigeration. 
 

Intersecting fruit coating technology and  
postharvest physical methods 

 
Physical treatments before or during coating formation 

The application of physical methods to raw materials may modify 
the properties of the resulting coatings [79, 80]. Heat, high pres-
sure and irradiation treatments have been shown to induce chang-
es in the functionality of the resulting films. The effects are gener-
ally more marked for solubility and mechanical properties than for 
water vapor permeability [81-88].  
 
Mild heat treatments are used in some cases to accelerate coating 
formation [89, 90]. The nature of the treatment applied may affect 
the physical-chemical properties of the coating itself [91]. The dry-
ing process applied to protein films and coatings may affect the 
type and proportion of covalent (S–S bonds) or non-covalent 
(hydrophobic interactions, ionic and hydrogen bonds) interactions 
and, consequently, material properties [92]. In addition, for poly-
saccharides the drying temperature may affect film performance 
[93]. Similarly, the relative humidity and pressure during the dry-
ing period has been also shown to affect the properties of soy and 
amaranth biopolymers [92, 94, 95].  
 
While these physical treatments have been in many cases opti-
mized based only on the material requirements, they may be po-
tentially exploited to induce hormetic responses in the commodi-
ties, maximizing the final outcome of the combined treatment on 
quality maintenance. The presence of a protein, polysaccharide, 
lipid or composite coating on the commodity surface would affect 
the heat transfer properties and consequently the optimal treat-
ment conditions will likely differ compared to the scheduled in 
uncoated products.  
 

Physical treatments after coating formation 
This approach includes: i) the modified atmosphere that would be 

established in coated commodities due to the change in the fruit 
or vegetable surface permeability to gases (CO2, O2, ethylene); or 
ii) any change in the environment aimed in eliciting a desirable 
response in the commodity or in the coating material. 
 

Coating-induced modified atmospheres 

Once the coating is established the gas exchange between the fruit 
and the environment is affected, providing the opportunity to gen-
erate single fruit modified atmospheres. The equilibrium gas com-
position to be reached is determined by a number of product fac-
tors, coating properties and environmental conditions. 
 
Product factors: The respiratory rate of the commodity is the most 
important factor affecting the modified atmosphere reached. It will 
depend on the species, cultivar and on its developmental stage 
[96]. Ethylene production and accumulation may be important 
especially in climacteric coated commodities in which it may in-
crease respiration.  
 
Coating properties: All factors affecting the mass transfer through 
the film and the diffusion process such as permeability to O2, CO2 
and thickness will determine the atmosphere established. Plasti-
cizers, generally increase film permeability. The polymerization 
and/or cross-linking degree of the protein or polysaccharide as 
well as the functional groups/substituents added or removed 
would also contribute to the coating permeability. In general pro-
tein and polysaccharide coatings have high permeability to polar 
substances, such as water vapor, and low permeability to non-polar 
substances, such as oxygen. Protein coatings appear to have lower 
oxygen permeability than cellulose-based coatings. Besides the 
absolute permeability of the different coatings their selectivity is 
also a main determinant of the internal atmosphere of fruits [97, 
98].  
 
Environmental conditions: Coated fresh fruits and vegetables would 
be stored mostly at relative humidities between 85 and 95%. Under 
these conditions some coatings may hydrate, substantially chang-
ing their physical and chemical properties [28, 99]. In general, at 
low and intermediate relative humidity, the permeability to gases 
of protein and polysaccharide materials is much lower than that of 
polyethylene, which makes them interesting materials for certain 
applications. However, the permeability of polysaccharide and 
protein coatings are highly dependent on the relative humidity 
[100]. For instance, the permeability to oxygen and carbon dioxide 
may increase up to a thousand times when these materials are held 
at high relative humidity. In protein materials, this effect is much 
greater for the "hydrophilic" gases (CO2) than for the 
"hydrophobic" gases (O2) [101, 102]. It is important to highlight that 
many of the standard methods of material characterization use 
relative humilities which are far away (58%) from those in which 
they will be used in when coating fresh fruits and vegetables. The 
storage temperature also has a significant impact on the atmos-
phere reached, as it exponentially affects fruit and vegetable respi-
ration rate. Variations in the cold chain may lead to fermentation 
in coated commodities [103]. The CO2 and O2 partial pressures in 
the storage atmosphere may also influence the levels of gases at 
steady state through alterations in the commodity respiration rate. 
 

Post-coating physical treatments 
As previously indicated some physical treatments may be used to 
induce desirable changes in the vegetable physiology [103]. The 
evaluation of post-coating heat treatments has received little at-
tention so far. Post-coating UV-irradiation may be expected to 
affect mostly the coating formulation given its low penetration. 
Some works have shown that the functional properties of biopoly-
mers also can be improved if subjected to some physical treat-
ments after their formation. The tensile strength of soy protein 
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films was improved when subjected to UV or γ radiation. This is 
probably due to the high content of tyrosine and phenylalanine, 
since these amino acids can cross-link when irradiated [104, 105]. 
Changes in the postharvest environment may also be potentially 
exploited to modulate the functional properties of activated coat-
ings [106]. When incorporated into tomato fruit packages, soy 
protein pads absorbed water, facilitating the release of cyclodextrin
-1-methylcyclopropene formulations which delayed ripening [107]. 
Commodity compatible heat treatments during storage may also 
be considered as a strategy to modify the diffusion rate of additives 
present in the coating matrix. In some cases they may also be envi-
sioned as a strategy to increase the rate of temperature dependent 
reactions between coating ingredients (eg, enzymatic reactions). 
The release of active compounds added to the coating by photo-
chemical means (eg, UV-vis radiation) may be another strategy to 
explore.  
 

Concluding remarks 
Edible coatings and postharvest physical methods have a relatively 
long history as treatments to reduce deterioration of stored fruits 
and vegetables and have been envisioned as environmentally-
friendly approaches to supplement refrigeration. Although both 
strategies have evolved quite independently, combined develop-
ments may maximize the beneficial effects on quality maintenance 
of fresh produce. Coatings should be considered as a supplemen-
tary treatment to proper temperature control in intact and fresh-
cut produce. Consequently, studies must compare their benefits 
against controls subjected to proper postharvest management and 
storage (refrigeration and high relative humidity with minimal 
delays). This will unequivocally determine their benefits relative to 
the recommended handling practices. Continuing the currently 
active work oriented to maximize coating functionality will be 
useful. Active collaboration between postharvest technologists and 
material scientists may reduce the boundaries between these two 
fields. Innovative approaches superseding the additive effects of 
combined coating-physical treatments application will be neces-
sary. Some areas that may be explored include the application of 
physical treatments before or during coating formation which may 
improve the material properties while inducing hormetic respons-
es in the commodities. Optimization of the single-fruit modified 
atmospheres generated after coating establishment is still needed. 
The feasibility of using mild post-coating physical treatments to 
make custom changes in the material properties and/or to facili-
tate the release active principles still needs to be determined. Fi-
nally, research aimed at solving technical difficulties arising during 
scaling-up processes may help to boost the transfer rate of coating 
applications from academia to industry. 
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