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Abstract: A new polyketide containing the benzoisoquinoline-9-one moiety, peyronetide A (1),
and three other new derivatives peyronetides B–D (2–4), as well as one known compound (5) were
purified from the cultured broth of the endophytic fungus Peyronellaea sp. FT431, which was isolated
from the Hawaiian indigenous plant, Verbena sp. The structures of the new compounds were
determined through the analysis of HRMS and NMR spectroscopic data. Compounds 1, 2, and 5
showed cytotoxic activities against TK-10 (human kidney adenocarcinoma cells), cisplatin sensitive
A2780S (human ovarian carcinoma cells), and cisplatin resistant A2780CisR cell lines, with IC50 values
between 6.7 to 29.2 µM.
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1. Introduction

Endophytic fungi are wonderful producers of various secondary metabolites, which have
attracted great interest in the past decades to identify structurally unique and biologically active small
molecules [1–6]. Our previous investigation of Hawaiian endophytic fungi had led to the identification
of many new and/or bioactive compounds [7–18], including verbenanone from Peyronellaea sp.
FT431 [13]. The crude extract of FT431 showed antiproliferative activity at 20 µg/mL against the A2780
cancer cell line, but verbenanone was inactive, so we decided to study FT431 further to identify the
antiproliferative compounds.

The fermented whole broth (4.5 L) was filtered through filter paper to separate the supernatant
from the mycelia. The latter was extracted with 80% acetone/H2O (×3), and the extract was
concentrated under reduced pressure to afford an aqueous solution. The aqueous solution was passed
through HP-20 eluted with MeOH-H2O (10%, 50%, 90%, 100%) to afford four fractions (Fr. A–D).
The active fraction (Fr. C) was further separated by preparative HPLC and semi-preparative HPLC to
get compounds 1–5 (Figure 1). Three of them (1, 2, and 5) showed antiproliferative activity against
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different cancer cell lines. Herein, we report the isolation, structure elucidation, and bioactivities of
these isolated compounds.
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2. Results and Discussions

Compound 1 was isolated as a brown solid. Its molecular formula, C24H27NO5, was determined
by HRESIMS (High-Resolution Electrospray Ionization Mass Spectrometry) at m/z 410.1964 [M + H]+

(calcd 410.1968), requiring 12 degrees of unsaturation. A comprehensive analysis of the 1D and 2D
NMR spectra indicated the presence of four methyls, one methoxy group, two methylenes, six methines
(five olefinic or aromatic), and eleven carbons with no hydrogen connected, including two ketones
(δC 205.7, 202.8) (Table 1). The spin systems, C-12-C-13(C-17)-C-14-C-15, were established by the
1H-1H COSY spectrum as shown in Figure 2, which was also verified by the corresponding HMBC
correlations from H3-17 to C-12 and C-14, and from H3-15 to C-13. Meanwhile, HMBC correlations
from the singlet methyl H3-16 (δH 2.16) to C-11 and C-12, C-3, as well as from H-12 to C-3 implied
that the side-chain CH3-CH2-CH(CH3)-CH=C(CH3)- was connected to the ring system at C-3. HMBC
correlations from the methyl group H3-3′ to the ketone C-2′ (δC 205.7) and methylene C-1′ (δC 50.6),
and from H2-1′ to the oxygenated aromatic carbon C-7 (δC 161.6), an oxygenated quaternary C-8 (δC

72.8), and a ketone C-9 (δC 202.8) indicated the presence of another side-chain C-1′−C-3′, which was
connected to C-8. The only methoxy group was assigned at 7-position by an HMBC correlation from
the methoxy group to C-7. In addition, the specific de-shielded aromatic methine resonating at δH

9.43/δC 148.4 implied that it should be a nitrogenated atom. HMBC correlations from H-1 to C-4a,
C-10, and C-10a, and from the aromatic proton H-4 to C-3, C-5, and C-10a suggested the presence of an
isoquinoline ring system (rings A and B). Moreover, the HMBC correlations from H-5 to C-6, and from
H-6 to the oxygenated olefinic carbon C-7, C-8, and C-9a established the naphthalen-1-(2H)-one rings
B and C, and rings A–C were linearly aligned to form a benzoisoquinoline-9-one moiety (rings A–C)
as shown. Literature research indicated that compound 1 had a similar ring system to the compound
O-dihydroquinone (5) that was obtained as an epimer mixture from a marine ascomycete strain, which
was the only report of this type of compound [19]. In spite of this, the presence of the nitrogen atom
at 2-position in compound 1 instead of the oxygen in that of the reported compound was unusual.
The configuration of the double bond C11(12) on the side-chain was determined to be E by the NOE
correlations between H3-16 and H3-17. Hence, the planar structure of 1 was determined as shown.
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Table 1. NMR spectroscopic data for 1 and 2 in acetone-d6.

No.
1 2

δH, J (Hz) a δC
b δH, J (Hz) a δC

b

1 9.43, s 148.4 10.52, s 187.6
3 158.5 166.87
4 7.61, s 115.0 7.42, s 104.2
4a 143.3 112.2
5 7.05, s 114.7 144.2
5a 139.0 136.3
6 6.00, s 98.9 6.33, s 90.7
7 161.6 166.92
8 72.8 73.2
9 202.8 202.6
9a 107.7 106.4
10 164.7

10a 117.9 130.0
11 133.3 124.6
12 6.70, d, 10 140.1 141.0
13 2.60, m 35.7 2.64, m 35.5
14 1.49, m;1.41, m 31.0 1.49, m;1.42, m 30.8
15 0.92, t, 7.4 12.4 0.92, t, 7.4 12.4
16 2.16, d, 1.3 14.5 1.45, d, 1.4 13.6
17 1.07, d, 6.7 20.8 1.10, d, 6.6 20.5
1′ 3.52, s 50.6 3.59, d, 5.5 51.3
2′ 205.7 206.5
3′ 2.09, s 29.6 2.13, s 29.8

7-MeO 3.79, s 56.2 3.91, s 56.9
a Spectra recorded at 400 MHz. b Spectra recorded at 100 MHz. Data based on 1H, 13C, HSQC, and HMBC experiments.
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Compound 2 was isolated as a brown solid. Its molecular formula was determined to be
C24H26O7 by HRESIMS at m/z 427.1751 [M + H]+ (calcd 427.1757), with 12 degrees of unsaturation.
A comprehensive analysis of the 1D and 2D NMR spectra indicated the presence of four methyls,
one methoxy group, two methylenes, five methines (including one aldehyde), and twelve carbons with
no hydrogen connected, including two ketones (δC 206.5, 202.6) and four oxygenated aromatic carbons
(Table 1). The 1H-1H COSY implied that 2 had the same spin system as 1, which was verified by HMBC
correlations as shown in Figure 2. The similarity of the NMR data of 2 to those of 1 implied that both
had similar moieties. The key HMBC correlations from H3-3′ and H2-1′ to the ketone at δC 206.5, from
H2-1′ to C-7, C-8, and C-9, and from H-6 to C-8, C-9a, and C-5, as well as from the methoxy group
to C-7 implied the presence of ring C and the same substituents at 7- and 8-positions as those of 1.
Moreover, the HMBC correlations from the proton of the aldehyde proton H-1 (δH 10.52 ppm) to C-10,
C-10a, and C-4a placed the aldehyde group at C-10a, which implied that ring A in the molecule of 1
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was opened in 2. A combined analysis of the observed HMBC correlations from H-4 to C-4a, and to
the two oxygenated carbons C-3 and C-5 suggested the formation of a furan ring (ring A) as shown.
The side-chain at 3-position was the same as that of 1. The configuration of the double bond was
assigned as E at 11(12)-position by NOESY spectrum. Hence, the planar structure of 2 was determined
as shown.

Compound 3 was isolated as a brown solid. The positive HRESIMS quasi-molecular ion peak
at m/z 427.1760 [M + H]+ (calcd 427.1757) suggested the molecular formula of 3 as C24H26O7, which
was same as that of compound 2. A comprehensive comparison of the NMR data (Table 2) of 3 with
those of 1 indicated that the main difference was the absence of the nitrogenated methine (-N=CH-)
and the presence of a lactone carbonyl group (-O-CO-) at δC 164.8 in 3. The configuration of the double
bond at C-11 was assigned as E by NOESY spectrum. Hence, the planar structure of 3 was determined
as shown.

Table 2. NMR spectroscopic data for compounds 3 (acetone-d6) and 4 (MeOH-d4).

No.
3 a 4 b

δH, J (Hz) δC δH, J (Hz) δC

1 164.8 181.6
2 6.16, s 107.4
3 158.0 164.3
4 6.56 101.6 160.3

4a
5 6.77, s 114.1 6.78, d, 2.0 102.1

5a
6 5.89, s 97.1 163.1
7 163.1 6.69, d, 2.6 118.5
8 72.1 140.2
9 199.9 115.4

9a 109.1
10 159.1 126.8

10a 104.4
11 125.6 142.8
12 6.34, d, 9.7 140.3 2.59, m 35.8
13 2.58, m 34.7 1.52, m; 1.42, m 30.6
14 1.48, m; 1.41, m 29.8 0.92, t, 7.6 12.0
15 0.89, t, 7.4 11.4 1.97, s 12.7
16 1.98, s 11.9 1.08, d, 6.7 20.3
17 1.05, d, 6.6 19.6
1′ 3.46, br.d, 5.9 50.6 4.11, s 42.8
2′ 205.7 176.9
3′ 2.10, s 29.0

7-MeO 3.79, s 56.2 107.4
a Spectra recorded at 400 MHz. b Spectra recorded at 100 MHz. Data based on 1H, 13C, HSQC, and HMBC experiments.

Compound 4, a brown solid, was determined to have a molecular formula of C18H20O5 by
HRESIMS at m/z 317.1390 [M + H]+ (calcd 317.1389), which was six carbons less than those of
compounds 1–3. 1H-1H COSY and HMBC spectra suggested that 4 had the same side-chain (C-10–C-16)
as compounds 1–3 (C-11–C-17). A comprehensive analysis of the NMR data (Table 2), and especially
the HMBC spectrum, implied that 4 was a chromone derivative, which has the same ring system
as that of 2-methyl-5-carboxymethyl-7-hydroxychromone [20]. The main difference between 4 and
2-methyl-5-carboxymethyl-7-hydroxychromone was the long side-chain instead of a methyl group in
the molecule of 4. HMBC correlations from H-2 to C-3 and C-10, and from the olefinic H-10 and single
methyl H3-15 to C-3 confirmed the position of the side-chain. The E configuration of the double bond
was determined by NOESY spectrum. Hence, the planar structure of 4 was determined as shown.
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The known compound 5 (O-dihydroquinone) was identified by comparison of its physical data
with reported values in the literature [19].

We tried to determine the configuration of the new compounds including chemical reactions and
crystallization, but it was unsuccessful. Then we purchased both (S)-(+)- and (R)-(−)- 2-methylbutanoic
acids, and compared the optical rotation of 4 with those of (S)-(+)- and (R)-(−)- 2-methylbutanoic
acids. Compound 4 showed a positive sign of optical rotation, indicating that 4 should also have an
S configuration at 13-position. Hence, assuming a 13-S configuration in compounds 1–3, the relative
configuration of the 8-position remained unknown. To solve this task, we relied on GIAO 13C-NMR
calculations, a strategy that has been extensively employed in recent publications to settle structural and
stereochemical issues of complex organic molecules [21–25]. Several strategies have been developed to
determine the most likely stereostructure among several candidates, including DP4, [22] and DP4+,
an updated version of DP4 including scaled and unscaled NMR shifts computed at higher levels
of theory [23]. The capacity of these methodologies to discriminate among candidates featuring
rigid structures and contiguous or near-by stereocenters is often excellent [24], but when two or
more steroclusters are separated the determination of the relative configuration becomes much more
challenging [25]. In any case, we decided to explore this approach to suggest a sound stereochemical
assignment of the new natural products herein reported and to validate our assignment of the planar
structure of 1 discussed above. Initially, we carried out preliminary DP4 calculations of the two possible
diastereoisomers of 1 (1a = 1–8S,13S and 1b = 1–8S,13R [equivalent to 1–8R,13S], see structures of
1a and 1b in Supplementary Materials) at the affordable B3LYP/6-31G**//MMFF level of theory
[21b]. As shown in the Supporting Information, compound 1a displayed a slightly better fit between
experimental and calculated NMR data, and was identified by DP4 as the most probable candidate
(55% for 1a and 45% for 1b). Most of the calculated shifts agreed well with our experimental values,
providing further evidence of our proposed connectivity analysis. However, we noticed alarmingly
high errors (defined as ∆δ = abs[δexp − δcalc]) in the signals assigned to C-8 (∆δ = 8.2 ppm), C-1′

(∆δ = 9.9 ppm), and C-2′ (∆δ = 9.1 ppm). After a detailed examination of the computational data,
we noticed that such discrepancies arose from the conformations bearing intramolecular H-bonding
between the OH group at C-8 with the ketone oxygen at C-2′, which in turn represented > 93% of the
corresponding Boltzmann distributions according to the B3LYP/6-31G** energies. However, since
the experimental NMR data were collected in acetone-d6, the real conformational landscape of the
system might be shifted toward more flexible structures. Hence, following a similar approach recently
employed in a related situation [14], we recomputed the NMR shifts by neglecting all conformations
featuring intramolecular H-bonding between C8-OH and C2′=O. In excellent agreement with our
hypothesis, a much better fit was computed for C-8 (∆δ = 2.5 ppm), C-1′ (∆δ = 1.9 ppm), C-2′

(∆δ = 2.2 ppm), and H-1′ (∆δ = 0.3 ppm). Nevertheless, the slight preference to 1a (52%) remained
almost constant. We next refined the computational results by performing full geometry optimizations
at the B3LYP/6-31G* level of theory followed by NMR calculations at the PCM/mPW1PW91/6-31+G**
level, the recommended method for DP4+ calculations [21c–e]. Here again, the conformational
preferences of 1a and 1b were considerably shifted toward intramolecular H-bonded structures.
As expected, strong deviations from the experimental values were computed for the 13C-NMR
resonances of C-8, C-1′, and C-2′ (∆δ = 5.1 − 11.8 ppm). Since the Boltzmann distributions hardly
changed upon performing full geometry optimizations in water, we decided to recompute the NMR
data by removing all the conformations showing H-bonding. In this reduced system, a much better
agreement between experimental and calculated NMR data was observed, with a slight preference
toward 1a (CMAE = 1.5 ppm for 1a and 1.6 ppm for 1b). As a result, the DP4+ values identified 1a as
the most probable candidate (69%), in line with the previous DP4 results. From a biogenetic point of
view, 2 and 3 should have the same configuration as 1 at the corresponding chiral centers. However,
given the separation of the two stereocenters, the other relative configurations cannot be completely
ruled out.
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Biogenetically, all the new compounds could be derived from acetyl CoA and malonyl CoA.
However, it is worthy to investigate how the nitrogen atom was introduced [26] into 1-position of
compound 1, and the C3 side-chain to 8-position of compounds 1–3 and 5 (Figure 3).Molecules 2019, 24, x  6 of 11 
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Natural azaanthraquinone derivatives were not rare, for example, bostrycoidin (6) and
tolypocladin (7) [27,28]. However, natural products containing a benzoisoquinoline-9-one moiety are
very uncommon. To the best of our knowledge, pyrenolines A (8) [29,30] and B (9) [30] were the only
two known benzoisoquinoline-9-one derivatives (Figure 4) that were isolated from the culture fluid of
Pyrenophora teres, a pathogen of barley.
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All the compounds were tested against ovarian cancer cell lines A2780S and A2780CisR, and renal
cancer cell TK-10. Compounds 1, 2, and 5 were active, and compound 5 showed moderate activities
against those cell lines (Table 3, see anti-proliferative data in Supplementary Materials).

Table 3. Antiproliferative activities of compounds 1, 2, and 5 against different cell lines.

Compounds
IC50 (µM)

A2780S A2780CisR TK-10

1 24.1 ± 0.8 28.3 ± 7.2 29.2 ± 2.9
2 21.5 ± 0.3 27.2 ± 1.3 22.7 ± 1.3
5 7.1 ± 0.8 6.7 ± 1.2 8.5 ± 0.9

Cisplatin had IC50 values of 0.36, 1.1, and 13.2 µM against A2780S, A2780CisR, and TK-10, respectively.
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3. Materials and Methods

3.1. General Experimental Procedures

Optical rotation was measured with a Rudolph Research Analytical AutoPol IV Automatic
Polarimeter (Hackettstown, NJ, USA). UV and IR spectra were obtained with a Shimadzu UV-1800
spectrophotometer (Kyoto, Japan) and a Thermo Fisher Scientific Nicolet iS50 FTIR spectrometer
(Madison, WI, USA), respectively. NMR spectra including 1D and 2D experiments were recorded in
acetone-d6 or MeOH-d4 on a Bruker 400 MHz NMR (Fällanden, Switzerland). High resolution mass
spectra were obtained on a Waters Micromass Q-Tof Ultima ESI-TOF mass spectrometer (Milford,
MA, USA), or an Agilent Technologies 6530 Accurate-Mass Q-TOF LC/MS (Santa Clara, CA, USA).
HPLC was carried out on a Thermo Fisher Scientific Ultimate 3000 LC system (Germering, Germany),
and all solvents were HPLC grade. Column chromatography used a Diaion HP-20 (Alfa Aesar,
Ward Hill, MA, USA).

3.2. Isolation and Identification of Fungal Strain

The fungal strain was isolated on PDA medium from a healthy leaf of a Hawaiian indigenous
plant, Verbena sp., which was collected in the Lyon Botanical Garden in 2014. The strain FT431 was
identified as Peyronellaea sp. based on the analysis of the DNA sequence of the nuclear ribosomal
internal transcribed spacer, which has been deposited in GenBank with the accession no. KY971272.
A voucher specimen was deposited at the Daniel K. Inouye College of Pharmacy, University of Hawaii
at Hilo, USA (accession no. FT431).

3.3. Cultivation

The fungus was grown under static conditions at room temperature for 30 days in a 1 L conical
flask containing a liquid medium (300 mL/flask) composed of mannitol (20 g/L), sucrose (20 g/L),
monosodium glutamate (5 g/L), KH2PO4 (0.5 g/L), and MgSO4.

3.4. Isolation of Compounds 1–5

The whole fermented broth (4.5 L) was filtered through filter paper to separate the supernatant
from the mycelia. The mycelia were extracted by 80% acetone/H2O three times, and the extracts were
condensed under vacuum to get an aqueous solution. The solution was passed through a Diaion
HP-20 column (Alfa Aesar, Ward Hill, MA, USA), eluted with MeOH-H2O (10%, 50%, 90%, and 100%
methanol in H2O) to afford four fractions (Fr. A-D). Fraction C (517.8 mg) was separated with a
preparative HPLC column (C18 column, 5 µ, 100.0 × 21.2 mm; 10 mL/min; 10–100% methanol in H2O
in 40 min) to generate 40 sub-fractions (C1-40). C35 (27.4 mg) was subjected to the semi-preparative
HPLC (C18 column, 5 µ, 250.0 × 10.0 mm; 4 mL/min; with 0.1% formic acid in 75% methanol in H2O)
to obtain compounds 4 (7.12 mg, tR 31.5 min) and 5 (1.56 mg, tR 33.5 min). Fraction D (347.2 mg) was
separated with a preparative HPLC column (C18 column, 5 µ, 100.0 × 21.2 mm; 10 mL/min; 30–100%
methanol in H2O in 30 min) to generate 30 sub-fractions (D1-30). D20 (8.47 mg) was subjected to the
semi-preparative HPLC (C18 column, 5 µ, 250.0 × 10.0 mm; 3 mL/min; with 0.1% formic acid in 58%
methanol in H2O) to afford compound 1 (1.34 mg, tR 35.0 min). D26 (18.28 mg) was subjected to the
semi-preparative HPLC (C18 column, 5 µ, 250.0 × 10.0 mm; 3 mL/min; with 0.1% formic acid in 75%
methanol in H2O) to afford compounds 2 (8.51 mg, tR 20.8 min) and 3 (1.38 mg, tR 25.6 min).

3.5. Charaterization of Compounds 1–4

Peyronetide A (1): Brown solid; [α]25
D + 73.3 (c = 0.06, MeOH); UV (MeOH) λmax (log e) 298

(4.21), 417 (3.56) nm; IR νmax3388, 2959, 2927, 2871, 1710, 1586, 1478, 1461, 1452, 1383, 1354, 1316, 1280,
1232, 1166, 1200, 1067, 873 cm−1; 1H(acetone-d6, 400 MHz) and 13C-NMR (acetone-d6, 100 MHz) data,
see Table 1; positive HRESIMS m/z 410.1964 [M + H]+ (calcd for C24H28NO5, 410.1968).
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Peyronetide B (2): Brown solid; [α]25
D + 68.8 (c = 0.08, MeOH); UV (MeOH) λmax (log e) 246 (4.13),

254 (4.11), 296 (4.26), 399 (4.22) nm; IR νmax3393, 2960, 2926, 2871, 1711, 1646, 1626, 1560, 1529, 1455,
1404, 1377, 1323, 1261, 1212, 1182, 1149, 1097, 1027, 991, 831 cm−1; 1H(acetone-d6, 400 MHz) and
13C-NMR (acetone-d6, 100 MHz) data, see Table 1; positive HRESIMS m/z 427.1751 [M + H]+ (calcd for
C24H27O7, 427.1757).

Peyronetide C (3): Brown solid; [α]25
D + 79.1 (c = 0.09, MeOH); UV (MeOH) λmax (log e) 285 (4.57),

394 (4.20) nm; IR νmax3400, 2960, 2927, 2872, 1709, 1651, 1611, 1538, 1489, 1455, 1403, 1363, 1335,
1278, 1215, 1170, 1073, 1004, 869, 821, 780 cm−1; 1H(acetone-d6, 400 MHz) and 13C-NMR (acetone-d6,
100 MHz) data, see Table 1; positive HRESIMS m/z 427.1760 [M + H]+ (calcd for C24H27O7, 427.1757).

Peyronetide D (4): Brown solid; [α]25
D + 45.0 (c = 0.02, MeOH); UV (MeOH) λmax (log e) 215 (3.99),

238 (3.83), 257 (3.77), 304 (3.74) nm; IR νmax3382, 2959, 2928, 2872, 2360, 2342, 1617, 1578, 1506, 1452,
1384, 1340, 1315, 1280, 1163, 1110 cm−1; 1H(acetone-d6, 400 MHz) and 13C-NMR (acetone-d6, 100 MHz)
data, see Table 1; positive HRESIMS m/z 317.1390 [M + H]+ (calcd for C18H21O5, 317.1389).

3.6. Anti-Proliferative Activity

The viability of A2780 and TK-10 (from the NCI) and the cisplatin-resistant, A2780CisR [31],
was determined using the CyQuant cell proliferation assay kit, according to the manufacturer’s
instructions (Life Technologies, Eugene, OR, USA). Briefly, cells in 96-well plates, seeded 24 h prior,
were treated with or without compounds for 72 h, and subjected to CyQuant cell viability assay
(Life Technologies, Eugene, OR, USA) [32–34]. Each cell line was cultured in 96-well plates at 6000 cells
per well with the following conditions: 0 (no treatment, vehicle (DMSO)) and increasing concentrations
of compounds for 72 h. Cisplatin was used as a positvie control. Viable cells were analyzed by
subjecting the plates to the CyQuant, as previously reported [32–34]. Relative viability of the treated
cells was normalized to the DMSO-treated control cells. All experiments were performed in triplicate.

3.7. DP4+ Calculations

All of the quantum mechanical calculations were performed using Gaussian 09 [35]. The conformational
search was done in the gas phase using the MMFF (Merck Molecular Force Field) force field
(implemented in Macromodel) [36]. All conformers within 10 kcal/mol from the global minima
(more than 900 different structures) were kept for further calculations. After an exhaustive exploration
of the conformational space of the two possible diastereoisomers of 1, namely, 1a = 1–8S,13S and 1b =
1–8S,13R (equivalent to 1–8R,13S), we were able to locate more than 900 unique conformations for both
compounds. In order to narrow down the number of geometries for B3LYP/6-31G* optimizations, a
previous HF/3-21G geometry optimization stage was carried out, and all confomers within 6 kcal/mol
from the global minima were submitted to full geometry optimizations at the B3LYP/6-31G* level.
The isotropic magnetic shielding constants (σ) were computed using the gauge including the atomic
orbitals (GIAO) method [37–40], at the B3LYP/6-31G**//MMFF level (for DP4 calculations) [22] and
PCM/mPW1PW91/6-31+G**//B3LYP/6-31G* level (for DP4+ calculations) [23] using methanol as the
solvent. The unscaled chemical shifts (δu) were computed using TMS (Tetramethylsilane) as a reference
standard according to δu = σ0 − σx, where σx is the Boltzmann averaged shielding tensor (over all
significantly populated conformations) and σ0 is the shielding tensor of the TMS computed at the same
level of theory employed for σx. The scaled chemical shifts (δs) were calculated as δs = (δu − b)/m,
where m and b are the slope and intercept, respectively, deduced from a linear regression calculation
on a plot of δu against δexp. The DP4+ calculations were run by the Excel spreadsheet available for free
at sarotti-nmr.weebly.com or as part of the Supporting Information of the original paper [23], and the
DP4 calculations were done according to the original reference [22].

4. Conclusions

In conclusion, five compounds (1–5) including four new ones (1–4) were isolated from a
Hawaiian plant-asssociated endophytic fungus Peyronellaea sp. FT431. Compound 1 is a unique

sarotti-nmr.weebly.com
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benzoisoquinoline-9-one derivative with two side-chains, 1,3-dimethyl-1-pentene and 2-propanone at
3- and 8-positions, respectively, which were diagonal to each other in the benzoisoquinoline-9-one.
Compounds 1–5 were evaluated for their antiproliferative activity, and compound 5 was the most
active one with IC50 values of 7.1, 6.7, and 8.5 µM against A2780S, A2780CisR, and TK-10, respectively.
The results indicated that Hawaiian fungi are a good resource of new and bioactive compounds.

Supplementary Materials: The supplementary materials (NMR [including 1H, 13C, COSY, HSQC, HMBC,
and NOESY], HRESIMS, IR spectra, anti-proliferative, and NMR calculation data) are available online.
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