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Unfolded partial least-squares in combination with residual quadrilinearization (U-PLS/RQL), is developed as a
new latent structured algorithm for the processing of fourth-order instrumental data. In order to check its ana-
lytical predictive ability, fluorescence excitation-emission-kinetic-pH data were measured and processed. The
concentration of the fluorescent pesticide carbaryl was determined in the presence of the pesticides fuberidazole
and thiabendazole as uncalibrated interferents, in the first example of fourth-order multivariate calibration. The
hydrolysis of the analyte was followed at different pH values using a fast-scanning spectrofluorimeter, recording
the excitation-emission fluorescence matrices during its evolution to produce 1-naphthol, which does also emit
fluorescence. A set of test samples containing the abovementioned fluorescent contaminantswas analyzedwith
the newmodel, comparing the results with those from parallel factor analysis (PARAFAC). The newly developed
U-PLS/RQL model provides better figures of merit for analyte quantitation (average prediction error, 7 μg L−1,
relative prediction error, 5%, calibration range, 50–250 μg L−1), and is considerably simpler than PARAFAC in
its implementation. The latter, however, furnishes important physicochemical information regarding the
chemical process under study, although this requires the data to be unfolded into an array of lower dimensions,
due to the lack of quadrilinearity of the experimental data.
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1. Introduction

The recent developments in multi-dimensional analytical instru-
mentation and data collection are producing data arrays of increasing
complexity, which are particularly useful for quantitative analysis in
complex mixtures. It is apparent that this progress towards multi-
way data offers theoretical and practical advantages from an analyti-
cal point of view [1-3]. For example, whereas zeroth-order univariate
calibration cannot detect sample components producing an interfer-
ing signal, first-order calibration, which operates using a vector of
data per sample, may compensate for these potential interferents,
provided they are included in the calibration set, a property known
as the 'first-order advantage' [4]. Going one step further, second-
order data lead to three-way arrays which can be uniquely decom-
posed, allowing relative concentrations and profiles of the individual
components in the different domains to be extracted directly. In this
way, analytes can be quantified even in the presence of unknown
interferents which are not included in the calibration set. This proper-
ty has been generally recognized as the 'second-order advantage', a
term coined in 1994 [4], although the first experimental demonstra-
tion of this advantage was reported in 1978, when perylene was de-
termined in mixtures with anthracene, by suitable processing of
fluorescence excitation-emission matrix data [5]. Second-order data
for a given sample can be easily produced in a variety of ways, either
in a single instrument or by resorting to instrument hyphenation. One
of the simplest examples is a fluorescence excitation-emission matrix
(EEM). When recorded for a group of samples, they can be 'stacked'
into a three-way array, which can be processed by any of the available
second-order algorithms, whose relative advantages have been re-
cently reviewed [1-3]. These characteristics of second-order data sup-
port the attractive predominance of second-order calibration and the
numerous analytical applications reported in the subject in recent
years.

Multi-dimensional calibration methods are not limited to second-
order. Third-order, and, in general, Nth-order multivariate calibration,
can also be applied with similar purposes. Third-order data can be
obtained in different ways; one common strategy is to record EEMs
when following the kinetic evolution of a chemical reaction for a
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single sample [2]. Third-order calibration includes a similar second-
order advantage, i.e., the components of interest can be quantified
in the presence of uncalibrated interferents. It may also hold addition-
al advantages, at least according to some authors. For example, the
following candidate properties have been proposed for the 'third-
order advantage': 1) decomposition of the third-order data array for
a single sample, 2) improved algorithmic resolution of highly collin-
ear data, or 3) increased sensitivity and selectivity [6]. However, no
general consensus appears to exist on this matter, other than the
fact that analytical advantages of any order, if they indeed exist,
should be defined in terms of what is really gained in a strictly analyt-
ical sense [6].

Third-order data have been usually processed by resorting to the
well-known parallel factor analysis (PARAFAC) [7]. The combination
of trilinear least-squares with residual trilinearization (TLLS/RTL)
has also been proposed as a new algorithm for four-way data proces-
sing, and shown to be useful for the analysis of complex samples [8,9].
Alternative methodologies based on the use of latent variables do also
exist for processing third-order data, such as multi-dimensional or
N-way partial least-squares (N-PLS) and the unfolded variant U-PLS,
both of them lacking the second-order advantage. However, when
U-PLS and N-PLS are coupled to the separate procedure known as
RTL, they are also able to achieve the second-order advantage
[9-12]. Matrix-based methodologies can also be applied to third-
order data by first unfolding them into matrices, as has been done
with multivariate curve resolution coupled to alternating least-
squares (MCR-ALS) [13].

Surprisingly, only in a few cases have third-order data been
recorded and used to construct quantitative calibration models and
to develop analytical methodologies. This may be attributed to our
lacking of a thorough understanding of their analytical advantages,
or to the fact that the practical acquisition of these data arrays is
still difficult to implement. Hence, although one can imagine a large
number of possible forms of obtaining third-order data, those com-
monly used are the following: 1) with a single instrument, EEMs as
a function of reaction time or decay time, and 2) with hyphenated in-
struments, bidimensional chromatography with time of flight mass
spectrometry (TOFMS) or diode array detection (DAD), such as
GC×GC-TOFMS or LC×LC-DAD, and LC-DAD as a function of reaction
time (GC=gas chromatography, LC=liquid chromatography) [14].

The first third-order analytical example involved the modelling of
EEMs as a function of fluorescence decay time for resolving a binary
mixture using the generalized rank annihilation method (GRAM) as
early as in 1990 [15]. Recently, similar data (excitation-emission
phosphorescence matrices as a function of decay time, measured by
laser excitation modulated emission wavelength delay-time spectro-
phosphorimetry in Spol'skii matrices at liquid helium temperature)
were modelled by PARAFAC for analyzing 2,3,7,8-tetrachloro-
dibenzo-p-dioxin in complex environmental samples [16].

One of the first examples of the processing of third-order time-
evolving EEMs was the modelling of the degradation of chlorophylls
a and b extracted from spinach [17]. On the strictly analytical side,
several successful third-order multivariate calibrations were devel-
oped using analogous strategies. Non-fluorescent cathecholamines
were derivatized to the fluorescent 3,5,6-trihydroxyindole deriva-
tives and analyzed by PARAFAC and N-PLS [18]. Based on analyte ox-
idation by permanganate, these determinations were reported:
methotrexate and leucovorin in urine by PARAFAC [9], and by TLLS
and unfolded-PLS (U-PLS), both coupled to RTL [8], folic acid and
methotrexate in urine by PARAFAC and N-PLS [19], and in serum by
U-PLS/RTL [10], and folic acid in the presence of its two main metab-
olites, 5-methyltetrahydrofolic acid and tetrahydrofolic acid by U-
PLS/RTL and N-PLS/RTL [11]. Alkaline hydrolysis allowed similar
four-way analyses: procaine and its metabolite p-amino benzoic
acid in equine sera by N-PLS/RTL [12] and by a PARAFAC variant
[20], carbaryl in effluents [21] and carbaryl and 1-naphthol in water
samples in the presence of interferents [22]. Finally, the Hantzsch re-
action was used for malonaldehyde quantitation in olive oils, using a
non-linear variant of PARAFAC and a neural network coupled to RTL
[23]. The kinetics of photochemically induced EEMs and of the degra-
dation of EEMs were processed by four-way PARAFAC for the analysis
of several non-fluorescent pesticides [24] and of ternary mixtures of
polycyclic aromatic hydrocarbons respectively [25].

Examples of four-way GC×GC-TOFMS data processed by PARAFAC
have been described for the resolution of four isomers (iso-butyl, sec-
butyl, tert-butyl and n-butyl benzenes) [26], for the analysis of envi-
ronmental samples containing fuel components, pesticides and natu-
ral products [27], and for the identification of chemical differences in
metabolic extracts isolated from fermenting and respiring yeast cells
[28]. Likewise, LC×LC-DAD data were used for the resolution of a
sample composed of 26 indolic compounds in maize seedlings [29],
to remove a background drift in samples of the traditional Chinese
medicines Rhizoma Chuanxiong [30], and for metabolic studies apply-
ing MCR-ALS [31]. Finally, LC-DAD-kinetic data allowed to follow the
hydrolysis of the Aly pesticide [32].

Fourth-order datawould display the obvious advantage of providing
richer analytical information, implying more stable methods towards
interferences and matrix effects, and less prone to minor changes in
reaction conditions. This should allow for an improvement in predictive
ability. To the best of our knowledge, however, no analytical application
of fourth-order data has been reported to date, in spite of the different
possibilities for obtaining them. It is likely that in the near future more
applications will be seen where multi-dimensional data of increasing
complexity are generated. In this sense, there is a continuous require-
ment of algorithmswhich are able to extract themaximum information
for a variety of purposes.

In this report, we describe a new fourth-order multivariate calibra-
tion model based on the combination of U-PLS and residual quadrili-
nearization (RQL), which is introduced for the first time in this work.
In order to test its performance in a real case, it was applied to
fourth-order data corresponding to aqueous mixtures of the pesticide
carbaryl (1-naphthyl methyl carbamate) and other interfering fluo-
rescent pesticides which are usually encountered in environmental
samples, such as fuberidazole and thiabendazole. A fast-scanning
spectrofluorimeter allowed to record a complete EEM in a short
time, and thus excitation-emission-kinetic-pH fourth-order arrays
have been easily measured for each experimental sample. Relative ad-
vantages of the newly proposed U-PLS/RQL algorithm and PARAFAC
are discussed in light of the analytical and physicochemical results.
The introduction of a novel methodological multi-way approach pro-
vides a new tool for the resolution of complex analytical problems.
2. Experimental

2.1. Apparatus

All fluorescence measurements were performed on a fast-scanning
Varian Cary Eclipse spectrofluorometer (Melbourne, Australia) equipped
with two Czerny-Turner monochromators, a xenon flash lamp, a quartz
cell, and connected to a PC microcomputer via an IEEE 488 (GPIB) serial
interface. Excitation-emission fluorescence matrices were recorded in
the following ranges: excitation, 244–312 nm each 4 nm, emission,
311–491 nm each 2 nm, during a time of 11.2 min (2–13.2 min from
the beginning of the reaction each 0.8 min). For each sample, five third-
order arrays were recorded at the following pH values: 9.5, 9.8, 10.0,
10.2 and 10.8. The complete data were collected into a fourth-order
array of size 18×91×15×5, making a total of 122,850 data points. The
slit widths for the excitation and emission monochromators were fixed
at 5 nm, and the detector voltage at 600 V. A wavelength scanning
speed of 12,000 nm/min was employed, so that a complete excitation-
emission fluorescence matrix was obtained in 36 seconds. The total
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experimental time for a given sample was 60 min. The cell was thermo-
statized at 35 °C.

All pH measurements were performed on a Metrohm 713 pH
Meter (Herisau, Switzerland), equipped with a glass membrane elec-
trode, a reference electrode and a temperature sensor.

2.2. Reagents and Stock Solutions

Analytical reagents grade chemicals, pure solvents and Milli-Q
(Millipore, Maryland, USA) water were used in all experiments. Car-
baryl, fuberidazole and thiabendazole were purchased from Sigma-
Aldrich Co. (St. Louis, MO, USA).

Stock standard solutions of carbaryl, fuberidazole and thiabenda-
zole (1.000 g L−1) were prepared in 10.00 mL volumetric flasks by
dissolving accurately weighed amounts of each drug in methanol
and completing to the mark with the same solvent. Working solutions
of each compound (1.000 mg L−1) were prepared by appropriate di-
lution of the corresponding stock standard solution in water, employ-
ing 10.00 mL volumetric flasks.

2.3. Calibration and Test Samples

A set of 5 calibration solutions containing the analyte in the range
50–250 μg L−1 for carbaryl were prepared adding 1 mL of borate buff-
er (0.025 mol L−1, pH 9.5, 9.8, 10.0, 10.2, or 10.8) to the correspond-
ing mixtures of working standard solutions, and completing to the
mark with water in 2.00 mL volumetric flasks. Each sample was mea-
sured 2 min after its preparation, as reported above.

A set of 9 test spiked samples, containing the analyte in the range
100–250 μg L−1, were prepared in 2.00 mL volumetric flasks by ap-
propriate dilution of mixtures of the corresponding working standard
solutions and the interfering agrochemicals fuberidazole and thiaben-
dazole with water before 1 mL of borate buffer (0.025 mol L−1, pH
9.5, 9.8, 10.0, 10.2, or 10.8) was added. The interferent concentrations
in these samples were as follows: samples 1–5 contained thiabenda-
zole 25 μg L−1, and samples 6–9 contained fuberidazole 125 μg L−1.
Each sample was measured 2 min after its preparation, as reported
above.

These test samples are intended to mimic truly unknown samples
composed of uncalibrated substances, where a responsive back-
ground may occur. The inclusion of known chemical components in
these samples had the purpose of checking whether the multivariate
algorithm is able to successfully retrieve their corresponding profiles.

3. Theory

3.1. Nomenclature

In multivariate calibration the term 'order' is usually employed to
denote the number of modes for the data array which is recorded for
a single sample. The term 'way', on the other hand, is reserved for the
number of modes of the mathematical object which is built by joining
data arrays measured for a group of samples. In this sense, the classical
univariate calibration, which operates using a single datum per sam-
ple, is a zeroth-order and also a one-way method. Correspondingly,
first-order data per sample leads to two-way data sets, second-
order data per sample to three-way data sets, third-order data per
sample to four-way data sets, fourth-order data per sample to five-
way data sets, etc. The analytical community seems to prefer 'order'
for distinguishing the various calibration scenarios, focusing on the
data dimensions collected for each sample. This is also linked to the
expression 'second-order advantage', a popular expression in analyt-
ical chemistry works. On the other hand, in the context of multivari-
ate data modelling, in applications outside the analytical arena, and in
many basic chemometric works, the preferred expression is ‘way’.
However, this latter terminology should strictly be applied to truly
multi-way algorithms such as PARAFAC. In multivariate calibration
using U-PLS regression, for example, a multi-way data array is never
built.

Concerning the nomenclature for the different variables described
in the present manuscript, scalars are noted as italicized letters (e.g., x
or X), vectors as boldface lowercase letters (e.g., x), matrices as bold-
face capital letters (e.g., X), and multi-way arrays of three or more di-
mensions as italicized boldface capital letters (e.g., X).

3.2. U-PLS/RQL

Calibration with the U-PLS algorithm implies building a classical
PLS model after unfolding the calibration data into vectors, without
including data for the unknown sample [33]. The Ical fourth-order cal-
ibration data arrays (size J×K×L×M, where J, K, L andM are the num-
ber of data points in each measuring mode) are thus vectorized into
JKLM×1 vectors, and a PLS model is built using these data together
with the vector of calibration concentrations y (size Ical×1). This pro-
vides a set of loadings P and weight loadingsW (both of size JKLM×A,
where A is the number of latent factors), as well as regression coeffi-
cients v (size A×1). The parameter A can be selected by techniques
such as leave-one-out cross-validation [34].

If no unexpected components occurred in the test sample (i.e., the
sample only contains calibrated components), v could be employed to
estimate the analyte concentration according to:

yu ¼ tu
T
vþ Pycal ð1Þ

where tu is the vector of test sample scores (size A×1) and Pycal is the
mean calibration concentration. The second term in the right hand
side of Eq. (1) is needed to de-center the predicted concentration if
mean centered data are employed for PLS modeling.

The score vector tu is obtained by projecting the vectorized data
for the test sample vec(Xu) onto the space of the A latent factors:

tu ¼ W
T
P

� �–1
W

Tvec Xuð Þ ð2Þ

where vec(·) is the vectorization operator.
When unexpected constituents occur in Xu, the sample scores

given by Eq. (2) are unsuitable for analyte prediction through
Eq. (1). In this case, the residuals of the U-PLS prediction step (sp,
see Eq. (3) below) will be abnormally large in comparison with the
typical instrumental noise level:

sp ¼ ‖ep‖= JKLM–Að Þ1=2 ¼ ‖ vec Xuð Þ–P tu‖= JKLM–Að Þ1=2 ð3Þ

where ‖·‖ indicates the Euclidean norm.
This situation can be handled by a separate procedure, introduced

for the first time in the present report, and called residual quadrili-
nearization. The underlying philosophy of RQL is analogous to those
for the already described bi- and trilinearization procedures RBL
[35,36] and RTL [9], extended to the fourth dimension. RQL involves
decomposing the overall signal into a part which can be modeled
using the calibration data, and a remaining part due to the interfer-
ents:

vec Xuð Þ ¼ Modeled signalþ Interferent signalþ eu ð4Þ

where eu is a vector collecting the unmodeled errors.
The contributionof theunexpected components is a fourth-dimensional

data array, which is explained in RQL using a four-dimensional Tucker3
model. The latter can be considered as amulti-dimensional version of prin-
cipal component analysis, and allows to model the interferent signal in a
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flexiblemanner using a latent structure. Therefore, theTucker3 loadings are
in general combinations of the true spectra for the interferents.

In more specific terms, the aim of RQL is to minimize the residuals
when fitting the sample data to the sum of the relevant contributions
in Eq. (4):

vec Xuð Þ ¼ Ptu þ vec Tucker3 Ep

� �h i
þ eu ð5Þ

Ep ¼ reshape ep

� �
ð6Þ

where reshape(·) indicates transforming a JKLM×1 vector into a
J×K×L×M four-way array and ep is from Eq. (3). The Tucker3 model
in Eq. (5) is built with a number of components which should be
tuned for each specific unknown sample under study (see below).
This is due to the fact that RQL models the contribution from the un-
expected interferents, and this might be different for each unknown
sample studied. It may be noticed that the computer time required
to complete the iterative Tucker3 model of Eq. (5) is comparable to
that needed for PARAFAC modeling of the multi-way data array
built with each test sample and the calibration samples.

During the RQL procedure, the loadings P are kept constant at the
calibration values in Eq. (5), and tu is varied until the final RQL resid-
ual error su is minimized using a Gauss-Newton procedure, with su
given by:

su ¼ ‖eu‖= JKLMð Þ1=2 ð7Þ

where eu is from Eq. (4).
The overall problem can thus be formulated as the search of the

vector tu which minimizes the residuals su:

tu ¼ min ‖ vec Xuð Þ–P tu–vec Tucker3 Ep

� �h i
‖ ð8Þ

When the minimization process finishes, the residuals are mini-
mized to a level compatible with the instrumental noise, and the
contribution of the potential interferents is accounted for by the
loadings of Tucker3 model of Eq. (5). Therefore, the final scores tu
are free from interferent effects, and effectively represent the contri-
bution to the signal arising from the calibrated analytes. These scores
can be confidently employed for prediction using the U-PLS predic-
tive expression (1), multiplying the calibration vector of regression
coefficients v by the final tu scores provided by the Gauss–Newton
minimization.

In the present work, the Tucker3 model in Eq. (5) is constructed
by restricting the loadings to be orthogonal, and with no special con-
straints on the core elements. For a single unexpected component, the
Tucker3 model is built with a single component in all dimensions,
which is straightforward and provides the four corresponding inter-
ferent profiles. For additional unexpected constituents, however, the
retrieved profiles no longer resemble true spectral, time or pH pro-
files. Moreover, in this latter case, several different Tucker3 models
could in principle be constructed, because the number of loadings
may be different in each dimension. We notice that the aim which
guides the RQL procedure is the minimization of the residual error
term su of Eq. (7) to a level compatible with the degree of noise pre-
sent in the measured signals. Therefore, if two unexpected compo-
nents are considered, for example, one should explore the possible
Tucker3 models having one or two loadings in each dimension, and
select the simplest model giving a residual value of su which is not
statistically different from the minimum one. For more unexpected
components a similar procedure is recommended. The finally selected
Tucker3 model is the simplest one which provides a value of su which
is not statistically different than the noise level. This can be assessed
by comparing the different squared su on the basis of the so-called
generalized cross-validation error (GCVE), already employed in the
framework of the parent RBL procedure [37]. The definition can be
suitably adapted to RQL as:

GCVE ¼ su
JKLMð Þ1=2

J−NRQL
� �

K−NRQL
� �

L−NRQL
� �

M−NRQL
� �

−A
� �1=2 ð9Þ

where NRQL is the number of RQL components. The GCVE parameter
penalizes the residuals su for excess number of parameters, and de-
creases on adding RQL components, until a minimum is reached
when the correct number of RQL components is achieved.

Two important properties of the U-PLS/RQL procedure must be
noted in connection with the presently discussed analytical problem:
1) the predictive Eq. (1) is unique, regardless of the fact that the an-
alyte is converted into another responsive species through a chemical
reaction, and 2) the latent variable structures of both U-PLS and RQL
strategies make the algorithm suitable for the analysis of data arrays
which do not comply with the quadrilinearity condition. These two
aspects of U-PLS/RQL constitute advantages over the more restricted
PARAFAC model described in the next section.

3.3. PARAFAC

For data processing with the PARAFAC algorithm, each of the Ical
training arrays Xi,cal are joined with the unknown sample array Xu

into a five-way data array X, whose dimensions are [(Ical+
1)×J×K×L×M]. Provided X follows a quadrilinear PARAFAC model, it
can be written in terms of five vectors for each responsive compo-
nent, designated as an, bn, cn, dn and fn, collecting the relative concen-
trations [(Ical+1)×1] for component n, and the profiles in all modes
(J×1, K×1, L×1 and M×1) respectively. The specific expression for
a given element of X is [38]:

xijklm ¼ ∑
N

i¼1
ainbjnckndln fmn þ eijklm ð10Þ

where N is the total number of responsive components, ain is the rel-
ative concentration (or score) of component n in the ith. sample, and
bjn, ckn, dln and fmn are the corresponding intensities at channels j, k, l
and m, respectively. The values of eijklm are the elements of the array
E, which is a residual error term of the same dimensions as X. The col-
umn vectors an are collected into the corresponding score matrix A,
and the profiles bn, cn, dn and fn into the loading matrices B, C, D
and F. A successful decomposition of X, usually accomplished through
an alternating least-squares minimization scheme [39,40], provides
access to the relative concentrations (A) of individual components
in the (Ical+1) mixtures, whether they are chemically known or
not. This constitutes the basis of the second-order advantage.

There are several relevant issues regarding the application of the
PARAFAC model for the calibration of five-way data: 1) initializing
the algorithm, 2) applying restrictions to the least-squares fit,
3) establishing the number of responsive components, 4) identifying
specific components from the information provided by the model and
5) calibrating the model in order to obtain absolute concentrations for
a particular component in an unknown sample.

Initializing PARAFAC for the study of five-way arrays can be done
using several options implemented in the PARAFAC package [39]: 1)
singular value decomposition (SVD) vectors, 2) random orthogonal-
ized values and 3) the best-fitting model of several models fitted
using a few iterations. The first of these alternatives was employed
in the present work.

Restrictions during the PARAFAC fit are employed for retrieving
physically recognizable profiles in all dimensions. In the present
case, however, such restrictions were not necessary.

The number of responsive components (N) can be estimated by
several methods. A useful technique is CORCONDIA, a diagnostic
tool considering the PARAFAC internal parameter known as core
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Fig. 1. Hydrolysis of carbaryl to 1-naphthol.
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consistency [41]. Another useful technique is the consideration of the
PARAFAC sum of squared errors (SSE), i.e., the sum of squared ele-
ments of the array E in Eq. (1)[41]:

SSE ¼ ∑
Icalþ1

i¼1
∑
J

j¼1
∑
K

k¼1
∑
L

l¼1
∑
M

m¼1
eijklm

� �2 ð11Þ

This parameter decreases with increasing N, until it stabilizes at a
value corresponding to the optimum number of components.

Identification of the chemical constituents under investigation is
done with the aid of the estimated profiles, mainly the emission and
excitation spectra, and comparing them with those for a standard so-
lution of the analyte of interest. This is required since the components
obtained by decomposition of X are sorted according to their contri-
bution to the overall spectral variance, and this order is not necessar-
ily maintained when the unknown sample is changed.

Absolute analyte concentrations are obtained after calibration, be-
cause the five-way array decomposition only provides relative values
(A). Calibration is performed by means of the set of standards with
known analyte concentrations (contained in an Ical×1 vector y), and
regression of the first Ical elements of column an (corresponding to
the calibration samples) against y:

k ¼ y
þ � an 1…Icalð Þ ð12Þ

where ‘+’ implies taking the generalized inverse. Conversion of rela-
tive to absolute concentration of n in the unknown proceeds by divi-
sion of the last element of an (corresponding to the test sample) by
the slope of the calibration graph k:

yu ¼ an Icalþ 1ð Þ=k ð13Þ

The above procedure is repeated for each new test sample
analyzed.

It should be noticed that even when several interconverting spe-
cies for a given analyte may occur, the values contained in the vector
y are total analyte concentrations. In contrast, the scores an are specif-
ic for a given analyte species. Therefore, several pseudo-univariate
graphs can in principle be envisaged, by regressing the scores for
each analyte species against the nominal analyte concentrations. Usu-
ally this does not represent a problem, and analysts choose the most
sensitive of these graphs to predict the analyte concentration.

In the presently studied case, where the data are not quadrilinear
due to the fact that D and F profiles are mutually dependent, it might
be necessary to unfold the five-way data array into a four-way array
by concatenating the D and F dimensions. In such a case, the decom-
position would be carried out through the following expression:

xijkp ¼ ∑
N

i¼1
ainbjnckngpn þ eijkp ð14Þ

where gpn identifies an element of the G loading matrix (size LM×N)
with p running from 1 to L×M. The remaining discussion concerning
analyte prediction is analogous to that discussed above for the five-
way array decomposition.

3.4. Software

MATLAB 7.10 was used for all calculations [42]. The PARAFAC algo-
rithm was taken from the web page maintained by Bro (http://www.
models.kvl.dk/algorithms, accessedMarch 2011). TheU-PLS/RQLMATLAB
code is available from the authors on request.
4. Results and discussion

4.1. Carbaryl hydrolysis

Carbaryl is a successful carbamate insecticide due to its broad-
spectrum efficacy to control over 100 species of insects on citrus,
fruit, cotton, forests and other crops. The pesticide is used indiscrim-
inately, so its toxicity has raised the public concern about the ecosys-
tem and human health. Carbaryl is rather stable in acidic conditions,
but suffers a hydrolytic process at alkaline pH values, giving rise to
1-naphthol as the hydrolysis product (see Fig. 1) [20,21,43]. In this
hydrolytic process, the fluorescence emission considerably increases,
as carbaryl is significantly less fluorescent than 1-naphthol. It is also
known that the pseudo first-order kinetics of the carbaryl hydrolysis
is strongly pH-dependent [43]. Therefore, the presently studied hy-
drolysis of the analyte carbaryl introduces several challenges to mul-
tilinear algorithms such as PARAFAC: 1) strong linear dependencies,
due to the fact that in the time dimension the reagent profile of the
analyte is correlated to the profile for the reaction product, and
2) multilinearity losses in the data structure, due to the following rea-
sons: a reaction which is progressing during the time required for
registering a complete EEM, and the dependence of the time profiles
with the pH, which precludes the obtainment of unique time and pH
profiles.

4.2. U-PLS/RQL results

This model requires first to assess the number of U-PLS latent vari-
ables in order to model the calibration data. This was done with the
aid of leave-one-out cross validation [34], which led to the conclusion
that two PLS factors were enough to model the variability across the
calibration set of samples, as expected because two responsive com-
ponents (carbaryl and 1-naphthol) are present in the calibration set.

The next step was the processing of each test sample data, esti-
mating the number of RQL components by gradually increasing the
dimensionality of the Tucker3 model in Eq. (5) until the residual fit
su (Eq. (7)) stabilized. A typical result in terms of retrieved profiles,
i.e., the Tucker3 loadings obtained during the RQL procedure, is
shown in Fig. 2. This corresponds to the test sample No. 4, which con-
tained fuberidazole as a potential interferent, and required a single
RQL component for modeling its signal. Notice that for proper com-
parison with the best four-way PARAFAC model (see below), the
RQL-Tucker3 loadings in the pH and time modes were concatenated
into a single loading. In any case, the RQL profiles are almost identical
to those found by PARAFAC (Fig. 2, see the next section), and aids in
isolating the interferent contribution to the total signal in order to
achieve a successful analyte prediction in the test samples. The results
for the remaining test samples were equally satisfactory. The com-
plexity of the RQL-Tucker3 model needed for a successful modeling
of the interfering signals was assessed by comparison of the fitting re-
siduals sp and su (Eqs. (3) and (7) respectively) for increasing number
of components. In most of the test samples this number was one. The
need of an additional RQL component in samples 3, 5 and 8 appears to
be due to a small background signal found by RQL in the latter sam-
ples. In all cases, the initial fitting residuals sp (Eq. (3)) were signifi-
cantly larger than the final values of su (Eq. (7)), which were in the
range from 1.3 to 2.3 fluorescence units, and comparable to the

http://www.models.kvl.dk/algorithms
http://www.models.kvl.dk/algorithms
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instrumental noise level (the latter was assessed by replicate blank
measurements). It is important to note that the interferent profiles
retrieved by U-PLS/RQL for a single RQL component are physically in-
terpretable, as is shown in Fig. 2, where the profiles match those cor-
responding to the pure interferent. For additional RQL components,
however, this qualitative information is partially lost.

It may be noted that carbaryl and its hydrolysis product 1-naphthol
are mutually correlated, yet during the application of U-PLS/RQL the
analyte prediction is made directly from the calibration model, with-
out any algorithmic modification with respect to cases where the re-
sponsive constituents are uncorrelated. Table 1 also shows the U-
PLS/RQL analytical results and statistical indicators for the set of test
samples. Good analyte predictions are obtained, which can be attrib-
uted to the flexibility of each of the two latent-structured strategies in-
volved in U-PLS/RQL, when handling data which are not quadrilinear.
Moreover, the relative error of prediction (REP=4.7%, Table 1) is con-
siderably lower than that achieved in a previous third-order multivar-
iate calibration for the same analyte (ca. 10%), which was carried out
at a fixed pH value [22]. This indicates that a significant improvement
in prediction performance is obtained by the present methodology.

4.3. PARAFAC Results

When processing five-way data for a set composed of signals for a
group of samples, a requirement for a successful PARAFAC decompo-
sition is that the data follow the quadrilinear condition, meaning that
the profiles in all modes are independent of each other, and common
to all samples for a given component. In principle, the excitation and
emission profiles comply with this condition. However, the pH and
time profiles are mutually dependent, since the kinetics of carbaryl
hydrolysis is known to depend on the solution pH [43], which make
the data non quadrilinear. In addition, the time profiles may intro-
duce an additional source of quadrilinearity loss, as the practical re-
cording of a complete EEM is a 36-second process, which takes
place while the chemical reaction proceeds and modifies the constit-
uent concentrations.

Nevertheless, a first attempt was made to process a five-way data
set only containing the calibration samples, using a two-component
PARAFAC model, in order to test the severity of the experimental
loss of quadrilinearity. Initialization was made with the default SVD
profiles included in the PARAFAC package, with no specific restric-
tions during the least-squares fitting phase. The results were success-
ful in terms of excitation and emission profiles for the analyte and
also for the reaction product 1-naphthol (see Fig. 3A and B). However,
Table 1
Prediction results for the test sample set.a

Sample Nominal
carbarylb

U-PLS/RQLc Four-way PARAFACd

Predicted carbaryl NRQL Predicted carbaryl N

1 100 95 1 98 3
2 125 123 1 112 3
3 150 144 2 153 3
4 200 199 1 190 3
5 250 240 2 231 3
6 100 87 1 95 3
7 100 95 1 92 3
8 200 207 2 201 3
9 250 244 1 243 3
RMSE/μg L−1 7.0 9.3
REP/ % 4.7 6.2

a All concentrations in μg L−1. RMSE=root mean square error, REP=relative error
of prediction.

b Besides the analyte carbaryl, samples 1–5 contained thiabendazole 25 μg L−1, and
samples 6–9 contained fuberidazole 125 μg L−1.

c The number of RQL components is denoted as NRQL.
d The number of PARAFAC components used to build the model is denoted as N.
the retrieved time profiles are identical for all pH values, which is not
the experimentally observed kinetic behavior. This should in princi-
ple lead to a lower modeling power of five-way PARAFAC towards
the present data.

In order to successfully reproduce the kinetic and pH profiles
using PARAFAC, it is necessary to reduce the dimensions of the five-
way data set to four-way, unfolding the data by combining the pH
and time modes into a single one. When this is done, and the calibra-
tion data set is processed by four-way PARAFAC, the excitation and
emission profiles for the reagent (carbaryl) and for the reaction prod-
uct (1-naphthol) are correctly retrieved (Fig. 3A and B). Moreover,
the combined pH-time mode shows the expected increase in reaction
rate in going to higher pH values. Fig. 3C shows the obtained profiles
in this combined mode in comparison with those obtained by five-
Fig. 2. Profiles recovered by the employed algorithms after processing five-way data
composed of data for calibration and the test sample No. 4 containing the interferent
fuberidazole. A) Excitation mode. B) Emission mode. C) Combined pH and reaction
time mode. In all graphs, profiles obtained by four-way PARAFAC decomposition are
as follows: green solid line, carbaryl, red solid line, 1-naphthol, black solid line, inter-
ferent (in this case matching the profiles for fuberidazole). The blue circles indicate
the profiles obtained by U-PLS/RQL for the interferent, i.e., the Tucker3 loadings
obtained during the RQL procedure (in plot C the pH and time profiles were
concatenated for comparison with PARAFAC). All profiles are normalized to unit length,
with the vertical axis in arbitrary units.



Fig. 4. Logarithmic plot of the pseudo first-order kinetic constant (k) for the hydrolysis
of carbaryl as a function of pH. Black circles, this work, white circles, Ref. [43]. The solid
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way PARAFAC (the latter were plotted by first concatenating the sep-
arate pH and time PARAFAC profiles into a single one).

It should be noticed that the SSE parameter in Eq. (2) for five-way
PARAFAC (original data) was ca. 6×106 squared fluorescence, signif-
icantly larger than that computed for four-way PARAFAC unfolding
the pH and time modes, which was about 3×106 squared units.
This latter value corresponds to a residual fit of 1.6–1.9 fluorescence
units, which is similar to the instrumental noise level, confirming
that better modeling is obtained on lowering the number of dimen-
sions to get a multi-linear data array.

From the individual time profiles at each pH value which are
shown in Fig. 3C for the four-way PARAFAC decomposition, it is pos-
sible to estimate the hydrolytic first-order rate constant k at each pH.
The corresponding values are linearly related to the pH, as can be ob-
served in Fig. 4. This latter figure does also show the values of the rate
line is for visually appreciating the correlation.

Fig. 3. Profiles recovered for the analyte carbaryl after four- and five-way PARAFAC de-
composition of the calibration data set. A) Excitation mode. B) Emission mode. C) Com-
bined pH-reaction time mode. Solid lines correspond to the four-way PARAFAC
decomposition of a four-way data set obtained by combining the temporal and pH
modes: black solid lines, reagent carbaryl, red solid lines, reaction product 1-naphthol.
The symbols correspond to the five-way PARAFAC decomposition of the complete five-
way data set (in plot C the pH and time profiles were concatenated for comparison):
black circles, reagent carbaryl, red triangles, reaction product 1-naphthol. All profiles
are normalized to unit length, with the vertical axis in arbitrary units.
constants which were previously estimated at lower pH values [43]. A
satisfactory correlation is obtained between the present results and
those previously obtained (Fig. 4).

Since the best PARAFAC model is the one corresponding to the
four-way array, this was applied to the analyte prediction in the test
set of samples. Hence, third-order data for each test sample (obtained
by concatenating the pH and time dimensions of the original fourth-
order data) were joined in turn with those for the calibration samples,
and the four-way arrays were submitted to PARAFAC decomposition
and analyte prediction as explained above. In these cases the models
were built with three components, i.e., one component in addition to
the two required for the calibration samples (Table 1). The profiles for
the additional component were successfully recovered by PARAFAC
as corresponding to the interferent (either thiabendazole or fuberida-
zole). Fig. 2 shows the excitation, emission, and combined time-pH
profiles recovered for the sample No. 4, where the interferent is cor-
rectly identified as the fungicide fuberidazole. Similarly satisfactory
results were obtained for the remaining test samples.

As explained above, in analytical systems like the presently dis-
cussed one, two separate pseudo-univariate PARAFAC calibration
graphs are possible for quantitating the analyte, i.e., one for carbaryl
scores and the other one for 1-naphthol scores. This latter component
displays a more intense fluorescence emission, which is less over-
lapped with the interferents, and hence 1-naphthol scores were se-
lected for calibration, because they provided better sensitivity. The
analytical results, in terms of recovery of the analyte concentration
in the test samples and statistical indicators, are collected in Table 1.
Although satisfactory results were obtained, the predictive ability of
the new U-PLS/RQL model is better in this regard.

It should be noticed in this context that previous theoretical works
indicate a lower statistical efficiency of multi-way decomposition
when data sets are unfolded into arrays of lower dimensions [44].
This lower efficiency is expected to be translated into lower predic-
tive ability towards the analyte. Hence in the present case the appli-
cation of PARAFAC is limited by a trade-off between the need of
fulfilling the quadrilinearity condition, which is achieved in four-
way data sets, and the advantage of improving the predictive perfor-
mance, which is possible in five-way data sets.

5. Conclusions

Fourth-order excitation-emission-kinetic-pH data have been ap-
plied for the first time for a practical analytical application: the deter-
mination of carbaryl in water samples containing other fluorescent
pesticides as potential interferents. The kinetic transformation of car-
baryl to 1-naphtol has been followed by recording the EEMs of the
samples as a function of the reaction time and at different pH values.
To process the five-way data, the classical PARAFAC model and a new
algorithm developed for this purpose and introduced for the first time

image of Fig.�4
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in the present report, U-PLS/RQL, have been used and compared. The
newly developed algorithm seems to achieve a superior performance
towards the studied five-way data set in terms of predictive ability,
because of its inherent latent-structured flexibility, which allows the
handling of data that are not quadrilinear, as in the present case.
The use of higher-order data, as the presently reported fourth-order
data, opens new analytical strategies for resolving analytical situations
in complex samples. The complete characterization of the advantages
of using higher-order data is still necessary for awidespread populariza-
tion of this kind of data, whose detailed analytical properties are still dif-
ficult to grasp.
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