SOLUTIONS OF THE BRAID EQUATION AND ORDERS

JORGE A. GUCCIONE, JUAN J. GUCCIONE, AND CHRISTIAN VALQUI

ABSTRACT. We introduce the notion of non-degenerate solution of the braid
equation on the incidence coalgebra of a locally finite order. Each one of
these solutions induces by restriction a non-degenerate set-theoretic solution
over the underlying set. So, it makes sense to ask if a non-degenerate set-
theoretic solution on the underlying set of a locally finite order extends to a
non-degenerate solution on its incidence coalgebra. In this paper we begin the
study of this problem.
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Introduction

Let V be a vector space over a field K. One of the more basic equations of
mathematical physics is the quantum Yang-Baxter equation

R12 o R13 o R23 = R23 o R13 o R12 in Aut(V QK V)

where R: V @ V — V ®g V is a bijective linear operator and R;; denotes R
acting on the i-th and j-th coordinates. Let 7 € Aut(V @k V') be the flip. Then R
satisfies the quantum Yang-Baxter equation if and only if r := 7 o R satisfies the
braid equation

12 0723 0T12 = 123 0 T12 O T23. (0.1)
So, both equations are equivalent and working with one or the other is a matter of
taste. In the present paper we consider the second one. Since the eighties many
solutions of the braid equation have been found, many of them being deformations
of the flip. It is interesting to obtain solutions that are not of this type, and in [4],
Drinfeld proposed to study the most simple of them, namely, the set-theoretic ones,
i.e. pairs (X, r), where X is a set and

r: X xX —XxX

is an invertible map satisfying (0.1). Each one of these solutions yields in an evident
way a linear solution on the vector space with basis X. From a structural point
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of view this approach was considered first by Etingof, Schedler and Soloviev [14]
and Gateva-Ivanova and Van den Bergh [7] for involutive solutions, and then by Lu,
Yan and Zhu [10] and Soloviev [12] for non-degenerate not necessarily involutive
solutions. In the last two decades the theory has developed rapidly, and now it is
known that it has connections with bijective 1-cocycles, Bierbach groups and groups
of I-type, involutive Yang-Baxter groups, Garside structures, biracks, cyclic sets,
braces, Hopf algebras, matched pairs, left symmetric algebras, etcetera (see, for
instance [1], [5], [2], [6], [3], [8], [11], [13]).

In [9], the authors began the study of set-type solutions of the braid equation in
the context of symmetric tensor categories. The underlying idea is simple: replace
the sets by cocommutative coalgebras. The central result of that paper was the
existence of the universal solutions in this setting (this generalizes the main result
of [10]), and the main technical tool was the generalization of the concept of a non-
degenerate map. But this definition makes sense for non-cocommutative coalgebras
in symmetric tensor categories, and in a forthcoming paper we will investigate the
non-cocommutative versions of the theoretic results established in [14], [10] and [12].
In the present paper we are interested in another type of problems, involving an
important particular case, and related with the search of non-degenerate solutions
on the incidence coalgebra D of a locally finite poset (X, <) (for the definitions see
Subsection 1.2). Each non-degenerate coalgebra automorphism

rDRx D —D®gD
induces by restriction a non-degenerate bijection
rpp X x X — X x X.

Moreover, if 7 is a solution of the braid equation, then r| is a solution of the set-
theoretic braid equation. So, it makes sense to study the following problems: given
a linear automorphism

r: Dk D —D®g D
such that r| is a non-degenerate bijection:

i) Find necessary and sufficient conditions for r to be a non-degenerate coalge-
bra automorphism.

ii) Assuming that 7| is a solution of the set-theoretic braid equation, find
necessary and sufficient conditions for r to be a non-degenerate solution of
the braid equation.

In Sections 2 and 3 we solve completely the first problem (Section 1 is devoted
to the preliminaries). The main result is Theorem 3.4. In Sections 4, 5 and 6 we
consider the second problem. In Proposition 4.3 we encode in a system of (nonlinear)
equations the conditions for r to be a non-degenerate solution of the braid equation.
Then, in Proposition 4.3, we analyze the meaning of these equations when the sum
of the lengths of the involved intervals [a, b], [c,d] and [e, f] is less than or equal
to 1. This allows us to solve them in Proposition 4.5, under fairly general conditions.
In Theorem 5.4, given p < ¢ in X, we determine all the solutions of the equations
determined by subintervals of [p, g], under the hypothesis that r induces the flip on
{p,q} x {p, q}. Using this, in Corollary 5.5 we find all the non-degenerate solutions
of the braid equation associated with the poset ({p, ¢}, <), where p < ¢. Finally, in
Section 6 we give the solution of the same problem for the configuration o < ¢ > p,
under the hypothesis that r| is the permutation of {o,q,p} x {0,q,p} given by
r(z,y) = (o(y), #(x)), where ¢ is the permutation of {0, p,q} that interchanges o
and p.
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1 Preliminaries

In this paper we work in the category of vector spaces over a field K, all the maps
between vector spaces are K-linear maps, and given vector spaces V and W, we let
V ® W denote the tensor product V @x W and we set V2 =V @ V.

1.1 Braided sets

Let C be a coalgebra. Let r be a coalgebra automorphism of C? and let
c=(C®eor and 7:=(e®C)or.

Then r = (0 ® 7) o Ag2. Moreover ¢ and 7 are the unique coalgebra morphisms
with this property.

Definition 1.1. A pair (C,r), where r is coalgebra automorphism of C2, is called
a braided set if r satisfies the braid equation

T12 0T3O T2 = T'a3 O T'12 © T'23, (1.1)

where 112 =1 C and ro3 = C ®r, and it is called non-degenerate if there exist
maps : C? — C and 7: C? — C such that

Go(C®0)o(A®C)=00(CR7)0(ARC)=cxC (1.2)
and

To(TRC)o(CRA)=70(TRC)o(CRA)=C®e. (1.3)
If (C,r) is a non-degenerate pair, then we say that r is non-degenerate.

A direct computation shows that r is non-degenerate if and only if the maps
(C®o)o(A®C) and (71 ® C) o (C ® A) are isomorphisms. Moreover, their
compositional inverses are the maps (C ® 7)o (A® C) and (T® C) o (C @ A),
respectively. This implies that ¢ and T are coalgebra morphisms.

1.2 Posets

A partially ordered set or poset is a pair (X, <) consisting of a set X endowed with
a binary relation <, called an order, that is reflexive, antisymmetric and transitive.
For the sake of brevity from now one we will say that X is a poset, without explicit
mention of the order. As usual, for a,b € X we write a < b to mean that a < b
and a # b. Two elements a,b of X are comparable if a < b or b < a. Otherwise they
are incomparable. A poset X is a totally ordered set if each pair of elements of X is
comparable. A connected component of X is an equivalence class of the equivalence
relation generated by the relation x ~ y if x and y are comparable. Let X be a
poset. Each subset Y of X becomes a poset simply by restricting the order relation
of X to Y2. A subset Y of X is a chain of X if it is a totally ordered set. The
height of a finite chain ag < -+ < a, is n. The height h(X) of a finite poset X is
the height of its largest chain. Let a,b € X. The closed interval [a, b] is the set of
all the elements ¢ of X such that a < ¢ < b. We say that b covers a, and we write
a<b(orb>a),if [a,b = {a,b}. A poset X is locally finite if [a,b] is finite for all
a,be X.

1.2.1 The incidence coalgebra of a locally finite poset

Let (X, <) be a locally finite poset. Set Y := {(a,b) € X x X : a < b}. It is well
known that D := KY is a coalgebra, called the incidence coalgebra of X, via

Afa,b) = > (a,c) @ (c,b).

c€la,b)
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Consider K X endowed with the coalgebra structure determined by requiring that
each x € X is a group like element. The K-linear map ¢: KX — D defined by
t(z) = (x,x) is an injective coalgebra morphism, whose image is the subcoalgebra
of D spanned by its group like elements.

Let r: D® D — D ® D be a K-linear map and let

()\elflg\h)
aldlcld /(a,b),(c,d),(e,f),(g,h)EY

be the family of scalars defined by
e h
r((a,b) ® =D X e N @ (g.h). (1.4)
e<f
g<h

From now on we assume that r is invertible.

Remark 1.2. Let T := (a,b) ® (¢, d). Since

B elelg]
(6 X 6)(T> - 5ab56d7 (6 ® 6 Z )\a‘bl‘g:‘g’

Apzor(T Z Z )‘Z||£\|f\‘d (e;9) ® (g 72)®(y7f)®(z,h)
e<fy€
9<hz€[g h]

and

(rem)oAp(@) =Y S S AL ey o0 W, fe @, h),

pElab] e<y o' <f
a€le,d] 952 2/ <h

the map r is a coalgebra automorphism if and only if the following facts hold:

- fora < bandc<d,

SN = 6016 (15)
- foreach a <b,¢<d,e< fand g <h,
elylglz yylflzlh _ yelflglh
Do Nopiclaiblald = Nalbicld (1.6)

(p,q)€la,b]x[c,d]
for all y and z such that e <y < fand g < 2z < h,
- Foreach a <b,¢c<d,e< fand g <h,

elylglzyy'Ifl2"|h _
) Aalplelg plblala = 05 (1.7)
(p,9)€la,b]x[c,d]

forall y < f, e <y, 2z’ <hand g < z such that (y,z) # (v, 2).
Remark 1.3. By the very definitions of o and 7, it is clear that

o((a,b) ® Z,\jlg‘lgllg and 7((a,b) ® ZAZ‘\IJE:Z oh

e<f

2 Non-degenerate incidence coalgebra automorphisms

In this section we establish the main properties of the coefficients A “£||g| , and

the maps %(—) and (—)¢ determined by a non-degenerate coalgebra automorphism
of D® D (for the definition of these maps see Notation 2.2).
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Remark 2.1. Let r: D® D — D ® D be a non-degenerate coalgebra automorphism.
Since 7 maps group like elements to group like elements, for all a,c € X there exist
e,g € X such that

A =1 and AL =0 forall (¢, ¢, g") # (e,€,9,9)-

So, r induces a map r;: X x X — X x X. The same argument applied to r—1

shows that r| is a bijection. Moreover, since & and 7 map group like elements to
group like elements, r| is non-degenerate.

Notation 2.2. In the sequel if r|(a,c) = (e, g) we write °c = e and a° = g.

For the rest of the section we fix a non-degenerate coalgebra automorphism r of

Z‘li‘lfllg and the maps %(—)

and (—)°. Note that r| being non-degenerate means that the maps %(—) and (—)°
are bijections.

D ® D and we determine properties of the coefficients A

Proposition 2.3. Let a,c,d € X. If d covers ¢, then a° = a2, % covers % and
there exists « € K* and 8 € K such that

r((a,a) @ (¢,d)) = a(%, d) @ (a°, a®) + (%, %) @ (a°, a°) — B(%d, “d) @ (a, a).

Proof. Under the hypothesis, equality (1.6) says that for each e <y < f and each
g<z<h,
AelFlglh _ yelvlalzyylfl2[n y yelylglz yulf|z|R (2.1)

alalcld — “Calalc|ealalc|d alalc|d” alald|d "

If e < f and g < h, then taking y = f and z = g, we obtain that )\Z‘Izl‘i‘ls = 0.
A similar argument proves that if e = f and there exists z such that ¢ < z < h,
then also )\Zl‘i ‘IZ I‘Z = 0. Furthermore, by symmetry the same occurs if ¢ = h and

elflglh
alalc|d

there exists y such that e < y < f. So, if A
possibilities:

# 0, then we have the following

a) e = f and h covers g b) g = h and f covers e c)e=fandh=yg
Next we consider each of these cases separately:
a) Taking y = e and z = ¢ in equality (2.1), we obtain that

elelglh _ yelelglg yelelglh elelglg yelelglh _ yelelglg yelelg|h
>\a|a|c\d - )\a\a|c|c)\a|a|c|d + >\a|a|c\d>\a|a|d|d - )\a|a\c\c)\a\a\c|d7

while taking y = e and z = h in equality (2.1), we obtain that

elelglh _ yelelg|h yelelhlh elelglh yelelhlh _ yelelg|h yele|hlh
)\a\a\c|d - /\a|a\c\c/\a|a|c\d + /\a|a|c\d/\a|a|d|d - /\a\a\c|d/\a|a\d|d'

Therefore, if /\Z“Zl‘gc ||Z # 0, then e = % = %, which is impossible, since %—) is
a bijection.
b) Taking y = e and z = ¢ in equality (2.1), we obtain that

Aelflgla _ yelelalayelflglg  yelelglg yelflalg _ yelelglg yelflalg

alalc|d alalclc alalc|d alalc|d” ala|d|d alalc|c alalc|d?
while taking y = f and z = ¢ in equality (2.1), we obtain that
NelFlgla _ yelflalay1flala o yelflglgyFIflglg _ yelflala yfIflglg

alalc|d alalclc “alalc|d alalc|dalald|d alalc|dalald|d"
Therefore, if /\Z‘Izl‘i‘lg #0, then (f,g) = (%d,a?) and (e, g) = (%, a°).

¢) Taking y = e and z = ¢ in equality (2.1), we obtain that
Aelelalg _ yelelglg yelelglg | yelelglg yelelglg (}\elem\g + )\e\elglg))\elemlg

alalc|d alalclc alalc|d alalc|d”alald|d — \"alalc|c alal|d|d’ " ala|c|d’

which implies that (e, g) = (%, a®) or (e,g) = (%, a?), when \¢lelgla £0.

alalc|d
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Thus,
“c|%dla’|a® ja_ a c ¢ “|%|a|a® ja . a c c
r((a,a) @ (c,d)) = Ah 1 (¢, %) @ (af, a) + A1 (%, ) @ (o, )
aqiaq ad ad a1 a
A dagea (%) ® (o, ).

"c\ad|a°|a“

Since r and 7| are bijective, a :== X # 0, and then a¢ = a and % covers “.

alalc|d
Also notice that a1 d
. el%lala® _ _ y"d|%d|a%|a?
B=Xaleld = Pajaleld
because (e ® €) o 7((a,a) ® (c,d)) = 0. =

Proposition 2.4. Let a,b,c € X. If b covers a, then V¢ covers a°, % = % and there
exists « € K* and 8 € K such that

r((a,b) @ (¢, c)) = a(%, %) @ (a°,b°) + B(%, %) @ (a, a®) — B(%, %) @ (b°,°).
Proof. Apply Proposition 2.3 to 7 o r o 7, where 7 is the flip. O

Corollary 2.5. For each a € X the maps (—) and (—)* are automorphisms of
orders. Moreover, if a and b are comparable or, more generally, if a and b belong to
the same component of X, then (—) =%~) and (—)* = (—)°.

Notations 2.6. We let %(—) and (—)* denote the inverse maps of (—) and (—)*,
respectively. Note that here a is not an element of X.

Lemma 2.7. Let a,c,d,e, f,g,h € X such that c <d, e < f and g <h. If g # a°
or h # af, then Alflalh — g,

alalc|d

Proof. By Remark 2.1 and Proposition 2.3 we know that the statement is true when
hle,d] < 1. Assume that it is true when hlc,d] < n and that hlc,d] = n + 1. If

g # a, then
elflglh _ elelglg yelflglh _
Nofaldd = D Mejalta alalgla = 0
q€[c,d]
because )‘leéllzllg = 0, since g # a? = a°, while /\Z‘Izl‘gcl‘z = 0 when ¢ < d, by the

inductive hypothesis; while if h # a°, then

elflglh _ elelglh yelflh|h _
)\a|a\c\d - Z )‘a|a|c|q)\a|a|q|d =0,
]

q€le.d
because )\Z“Zl‘illﬁ = 0, since h # a¢, while )\Zl‘i‘lh‘h = 0 when ¢ > ¢, by the inductive
qld
hypothesis, since a? = a® # h. O

Proposition 2.8. Leta <b, c<d,e< f and g < h. If >‘Zl|£\|g||g # 0, then it is
true that a° < g < h < and %c<e < f <.

Proof. By symmetry it is sufficient to prove that if a© < g < h < ¢ is false, then
Aszﬂg = 0. By Lemma 2.7 this is true when a = b. Assume that it is true when
hla,b] = m and that hla,b] = m + 1. On one hand, if a° £ g, then

elflglh _ elelglg yelflglh
Nabidd = 2o Aaplda b
(p,q)€la,b] x[c,d]

_ elelglg yelflglh elelglg yelflglh
= D AbldeMibiald T Do Ml Mivlgla
(p.q)€la.b)x [e,d] q€lc,d]
=0
because

- )\qug‘gz =0 by Lemma 2.7, since by Corollary 2.5, we have b = 1 £ g,
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- /\Zl‘zl‘gc ||Z = 0 when p < b, by the inductive hypothesis.
On the other hand, if h £ b°, then
elflglh _ elelg|h ye|f|h|h
Nawdd = Do Aalpida Miblald
(p,q)€la,b]x[c,d]
_ elelg|h yelf|hlh elelg|h yelf|hlh
= D NplelaMiblald + 2 AalalelaNaiblala
(p,9)€(a,b]x[c,d] q€[c,d]
=0
because
- )‘Zl\il‘;g = 0 when p > a, by the inductive hypothesis, since by Corollary 2.5,

we have h £ b7 = IF,

- /\Zl‘zl‘gc ||Z =0 by Lemma 2.7, since by Corollary 2.5, we have h £ a°.
This finishes the proof. U

Corollary 2.9. The following formula holds:

r(@h)e(ed)= > A () @ @0, y).
{(z,y):a<e<y<b}
{(w,2):e<w<z<d}

Proof. 1t follows immediately from Proposition 2.8 and Corollary 2.5. (|

Proposition 2.10. Let a < b, c < de < f and g < h such that a® < g < h <
and %c < e < f <. For each y,z € X such thate <y < f and g < z < h, the
following equality holds:

elflglh _ yelylglz yylflz|h
Aalbleld = Aal:lefoyN=cblayla- (2:2)

Proof. By Proposition 2.8 and Corollary 2.5, if )\Zl‘zl‘i:;)\z‘lg‘;ﬂf # 0, then

e<e<y<Y Y<y<f<Ud o <g<z<pt and p"<z<h <
So, ¢ = %, p = 2°, and the result follows from equality (1.6). O
Examples 2.11. Let a < b and ¢ < d. From the previous proposition it follows
that:
1) for each e,g € X such that a¢ < g <V and % < e <,

elelglg _ yelelglg yelelglg
Aalpleld = Aalge|cloege ble] d

2) for each e, f,g € X such that a® < g < b and %c<e < f <4,

elflglg _ yelelglg ~elflglg __ yelflglg flflglg
Aalbleld = Aalg|eloe g |blaeld = Nalgt|elar Vg lbar|d:

3) for each e, g,h € X such that %c <e <% and a® < g < h <1°,

elelglh _ yelelglg yelelglh __ yelelglh yele|h|h
/\a\b|c\d - /\a|g5|c\ae>\g5\b|ae|d - /\a\h5|c|ae)\h5\b|ae|d'
Notations 2.12. For p,q,m,n € Wy, we let .A}" denote the restriction of the
family
()\elflg\h)
aldlcld /(a,b),(c,d),(e,f),(g:h)EY

to the set of indices {((a7 b), (¢, d), (e, f), (g, h))} such that
bla,b] = p, ble,d] = q, ble, f] =m, blg,h] =n, [g,h] C [a°,b] and [e, f] C [, “d].
Moreover, we set

AL= AR

ptag=u
m4+n=v
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and we denote by Ex(,A%) the restriction of A% to the set

{((a,0).(c,d), (e,¢),(9.9))) = (e,9) = (%c,a°) or (e.g) = ("d. 1)}
Note that Ex(,A9) =AY and Ex(,AY) = .AY.

Proposition 2.13. Let7: D ® D — D ® D be a non-degenerate coalgebra auto-
morphism. Then 7 = r if and only if

Ex(7A%) = Ex(,AY)  for alln and A = AL (2.3)

Proof. Clearly the conditions are necessary. So, we only need to prove that they
are sufficient. For the sake of brevity we write

Ye h
el = A ((a.b). (c.d). (e ). (9. 1)
For each e, g € X such that a® < g < b° and % < e < %, we have

elelglg _ yelelglg yelelglg __ TFelelglg Felelglg __ Telelglg
Aalbleld = Aalgelelae gz [blaeld = Aalg?|c|ie A bJaeld = Aalbeld

where the first and the last equality hold by item 1) of Examples 2.11, and the
second equality holds since

elelglg  yelelglg 0
Nlatleloer N eeta € \J Ex(AL).
u€lNg
So, A% = zAY for all w.
Next we prove by induction on u that AL = Al for all u. For u = 0 this is
true, since A} = A} = (), and for u = 1 this is true by hypothesis. Take u > 1 and

assume that AL, = AL, for all v/ < u. Consider )\Z‘Ii‘lgllg with

bla,b] + ble,d] = w, ble, f] + blg, Al =1, & < g < h <t and e < e < f <
Assume first that g = h. If ¢° > a or % > ¢, then taking y = e in (2.2), we obtain

elflglg __ yelelglg yelflglg __ Felelglg Telflglg __ Yelflglg
Aalbleld = Aalglelie A lblaeld = Aalgt|clae gF [blaeld = Malpleld

since hlg°, b] + b[%, d] < b[a,b] + blc,d] = u. Else, taking y = f, we obtain

elflglg _ yelflglg flflglg _ Yelflglg Yflflalg _ TYelflglg
Aafbleld = Aalgelelaf Mg lplafla = Xalgelelar Agelplafla = Aafbeld
because b > ¢¢ or d > f, since otherwise u = bla, b] + bc, d] = bla,a] + ble, f] = 1.

elelglh _ Jelelg|h

albleld = Nalble|d for g < h and concludes the proof

A similar argument yields A
that AL = AL
Finally we prove using induction on v, that ,AY = zA? for all v > 1 and all u.

Take v > 1 and assume that ,A? = ;AY for all v/ < v. Consider

)\Z‘li‘lfllg with ble, f]+ blg,h] =v, a* <g<h <V and c<e< f <.

If e < f and g < h, then we take y = f and z = g in (2.2) and we obtain

elflglh _ yelflglg fIflglh  _ Telflglg SfIflglh  _ Felflglh
Aalbleld = Nalgelelar AgFipiafla = Aalelelaf Mg blarla = Aafbleld

since ble, f] 4 blg, g] < v and b[f, f] + blg, h] <v.
Else g = h or e = f. In the first case there exists y with e < y < f, and so,

by (2.2) we obtain

elflglg _ velylglg \vlflglg _ Telvlgla Julflglg _ Yelflglg
Aalbleld = Aalglelay g blyld = Aalglelay N lblagld = Aalbleld

since ble,y] + blg, 9] < v and by, f] + blg, g] < v. A similar argument proves the
case e = f. By Proposition 2.8 this concludes the proof. U
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Definition 2.14. Let e < f and g < h, and let
e=y<--<yy=f and g=2<---<z=h

be mazimal chains. A configuration for the two given chains is a family (a;)i=o,... j+&
with a; = (Oéi,ﬁi) € IN% such that ag — (0,0), ajH; = (], k’), Q5 S a4 1, 62 S Bi+1
and oviyq1 — o + Biv1 — Bi=1 fori=0,...,7+k—1.

Proposition 2.15. Lete < f, g < h, a <b and ¢ < d, such that a®* < g < h <°
and ‘c<e< f<U Lete=y<---<yj=fandg=2 <z <--- <z, =hbe
mazimal chains and let (a;)i=o,... j+k be a configuration for the two given chains.
Then

ki

cflalh _ yelelala \Afne TT _ \Veralvaglea 2,
Aafpleld = Aalglcloe Mnebla|d ] 1% where X=X, ez e, |,
1=

Proof. We proceed by induction on k + j. If k4 j = 0, then, by Example 2.11(1),

ele ele ele
Nilolda = Aulelec e ieda
Assume k + j > 0 and that the proposition holds for all pair of chains with the
sum of the lengths smaller than k + j. Necessarily zr4;-1 < h and yp4,;—1 = f or
Zitj—1 = h and yr4;—1 < f. In the first case (a;)i=o,... k+j—1 is a configuration for
e=yo<--<y;=fand g=2) < z1 <--- < 2,1 and so by inductive hypothesis

ktj—1
€|f|g‘zk71 _ e\e|g|g f‘f|zk71|zk—1 yai,fl‘yuilzﬁifllzﬁi
A Srolir = Aot | olae E zlaf|a A |y Cla ay ot
al|z—1%|c|of alg®|c|%e 2 18|z —1C]of |2f 28, _1°128,%1a;_1 |y
=1
. 2k — Zk—
Since )\flfl k—1l2k—1 1,

2p—1Clzp—aflof|of

elflglh _ yelflglzo—s FIflzslh Aflzealh  \Flflzeoalh \SIFIRlR
Aalpleld = Aafzxrelelaf Az sepplagla A0 AL Sagia = Az enelariar Anebjagias

the result is true in this case. If z ;1 = h and yr4,;-1 < f, a similar argument
proves the formula and concludes the proof. O

Corollary 2.16. Lete < f, g < h,a <b and c <d, such that a° < g < h < b and
“c<e< f<%. The product

k+j
celsla T TT )
AalglelzeMneolaria 1] A

=1

in Proposition 2.15 does not depend neither on the mazimal chains nor on the chosen
configuration.

3 Construction of non-degenerate automorphisms

In Section 2 we proved that each non-degenerate coalgebra automorphism r of
D ® D induces by restriction a non-degenerate bijection

r‘:XxX—>X><X

and fulfills condition (1.5) and the statements of Corollary 2.5 and Propositions 2.8
and 2.10. In other words r satisfies (1.5) and, for all a,b,¢,d, e, f,g,h € X,
1) the maps “(—) and (—)°, defined by (b, a’) := r|(a,b), are automorphisms
of orders;

2) if a and b belong to the same component of X, then —) = %) and

() = (=)
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3) ifagb,cgd,eSf,g§hand/\z“gllfllgyéo,thenacSgghgb“and
e<e< f<4;

) ifa<be<de<f,g<h,a<g<h<Vand%c<e<f<%, then

elflglh _ yelylglz yylflzlh
Aalpleld = Aalz2lelayezbloy|d

for each y,z € X such that e <y < fand g < z < h;

In this section we fix a linear automorphism r of D® D, and we prove that, conversely,
if  induces by restriction a non-degenerate bijection

m:XxX—}XXX

and satisfies condition (1.5) and items 1) — 4), then r is a non-degenerate coalgebra
automorphism.

Remark 3.1. Let Fy C Fy C Fy C ... be the filtration of D ® D defined setting F; as
the K-subspace of D® D generated by the tensors (a, b)®(c, d) with ba, b]+b[e, d] < i.
It is clear that a linear map r: D ® D — D ® D that satisfies item 3) preserves
this filtration. Assume that r induces a non-degenerate permutation 7 on X x X.

We claim that 7 is bijective if and only if /\:C‘Lnli‘lgc‘bc € K* for all (a,b),(c,d) € Y.
In fact, in order to prove this it is sufficient to show that the last condition holds
if and only if the graded morphism r; induced by 7 is bijective. Now using again
item 3) we obtain that
ri(a,0) ® (e,d)) = Afyeja (e, ) @ (a, ).

Consequently the condition is clearly necessary. The converse follows easily using
that if (e,g) = 7(a,c) = (%,a), then ((a,h%), (c,%f)), is the unique element of
Y x Y such that 7((a, h°) @ (¢,%f)) is a multiple of (e, f) ® (g,h) by a non-zero
scalar.

Lemma 3.2. Leta,c, f,h € X. If f > e =%, h > g:=a° and ble, f] +b[g, h] > 0,

then lelglg  FIfIRIA
elelglg _
Z Agé\p\ae\q/\plhéwaf =0.
(p,q) Elg°,h7] x e, f]
Proof. For the sake of brevity we let S denote the sum at the left hand of the above
equality. We will proceed by induction on N := fle, f] + b[g, h]. So assume that the

assertion holds when ble, f] + b[g, h] < N. By Remark 2.1

_ \¢lelglg FIfIh|A elelglg yfIfInlh
§= )\gé\hé\aelaf + )‘gEIhEIEEIEf T Z o AHEIPIEEIQ/\p\hEIqlaf'
(p,a)€lg",h°]x[%, ]

(0. #{(9°,%),(h","F)}
But, by condition (1.5) and Statement 3), we have

clelgls _ _ ililjls ffmn Kkl
Agelpleelq = Do ke and A, = Do Nlweialar
(i,5)€le,“q] x [g.0°] (k1) e[, f1x[p°,h]
(0.0)2(en9) ()% ,h)
and so
_ \elelalg F1fIhlA ililjli kIRl
8= Ageinejacjap T Age|pejacjap T > Agelplicla plnelgrers (31

1,5,p,q,k,lEA
(1,5)#(e.9),(k,1)#(f,h)

where A == {i,j,p, ¢,k : g <j<p°<l<hande<i<%<k<f}. Onthe
other hand

elelglg fIfIh|h “ql%q|p°[p° | “ql“qlp®|p° _
A ap A o + > A A =0, (32

g°|he| %] g°|he|%] L TgCIpl%elq Tplh®lqlof
(P,a)Elg”,h°]x[%, f]

(0. #{(9°,%),(h*,"F)}
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since by condition (1.5) and statements 3) and 4),
“ql%qlp”Ip® \ “alqlp°Ip” _ \ “al®alp®|p° “q|"qlp®|p® _
Aflpiiela Apiiclalar = Aty 20d >0 AG AR =0,
{p:g"<p<h®}
{a:"e<q<f}

Combining equalities (3.1) and (3.2), we obtain
_ ililils ykIK[L]
§= > A plela™plhelalos
,J,p,q,k,l€A

(i,5)#(e,9),(k,1)#(f,h)
b[é,k]+b[4,11>0

_ ililjli  yk|k[L]l
- Z Z /\gélplaelq)‘p\hEItIIaf'
{3.l:g<i<I<h}  pelf©,17]
{i,k:e<i<k<f} q€[%, %]
(i,9)7#(e,9),(k,1)#(f,h)
bli,k]+b[5,1]>0
But, since (i, /) # (e,g) and (k,1) # (f, h) imply
bli, k] + 65,1 <ble, f] +blg, h] = N,

by the inductive hypothesis S = 0, as desired. O

Lemma 3.3. The map r satisfies condition (1.7).

Proof. By conditions 2) and 3) we know that if )\Z‘él‘i:;)\z‘/i{(m'g # 0, then

c<e<y<%<y <f< and a*<g<z<p<F <g<I

So, we are reduced to prove that for each a,b,c,d, e, f,g,h,y,9’, 2,2’ € X such that
c<e<y<y <f<U a<g<z<2 <g<band(y,2)# (Y, 7).

elylglzyy'If12"|h _
> AalplelaMpiplala = 0-
(p.q) €[22 x [y, ']
But by condition 4), we have

elylglz _ yelylglz yylylz|=
alplclq alz¢|e|% 7 2%|p|%lq

and therefore it suffices to check that

ylylzlz yy'ly'[2"[2" _
Z Ayl plzrelgny = O
(p,q)€[2°,2"¢] x [y, %y’]

’ 7 h ’ ’ ’ ’ ’ ’ h
and  AYIIEIE 0l 1

plblgld pl='¢[q|%’ " 2'¢[b| %y’ |d

which is true by Lemma 3.2. O

Theorem 3.4. Letr: D® D — D® D be a linear map that induces by restriction
a non-degenerate bijection rj: X x X — X x X. Let
elflglh
(Nafpicld ) (a0 (e 1), (ome
be as in the discussion above Remark 1.2, and for each a,c € X let “(—) and (—)°
be the maps introduced in Notation 2.2. If r satisfies items 1) — 4) at the beginning

of the section, condition (1.5) and /\:c‘zi};c‘bc € K* for all (a,b),(c,d) €Y, then r

is a mon-degenerate coalgebra automorphism.

Proof. By Remark 3.1 we know that the map r is bijective. By hypothesis r satisfies
condition (1.5), and using items 2), 3) and 4), and arguing as in the proof of
Proposition 2.10, we obtain that r satisfies condition (1.6). Moreover by Lemma 3.3
we know that r also satisfies condition (1.7). Hence r is a coalgebra automorphism
and so it only remains to check that it is non-degenerate. Let (G; be the graded
map induced by (D ® o) o (A ® D). In order to prove that (D ® o) o (A ® D) is
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invertible it suffices to show that so is G;. Let a,b,¢,d € x with a < band ¢ < d. A
direct computation (using item 3)) shows that

Gi((a,b) ® (¢, d)) = Ay ey ¥ (a,0) @ (%, “d).

So G is invertible, because )\ZTll,Tg“dbclbc # 0 by hypothesis. A similar computation

shows that the map (7 ® D) o (D ® A) is also bijective and finishes the proof. O

4 Non-degenerate solutions on incidence coalgebras

In this section we assume that r: D ® D — D ® D is a non-degenerate coalgebra
automorphism that induces a non-degenerate solution 7: X x X — X x X of the
braid equation, and we determine necessary and sufficient conditions for r to be a
solution of the braid equation. We also study these conditions when the sum of the
lengths of the involved intervals is smaller than or equal to 1.

Notations 4.1. For all a,b,c € X, in this section we set a*® = (a’)¢, %c := (%),
e .= ("), g'¢ i= (") “babc = (ab)((ab)c) and cbab“ = (c(ba))(ba).

Remark 4.2. Tt is well known and easy to check that a permutation (a,b) ~ (%, a®)
of X x X is a solution of the braid equation if and only if

ab % a? be beb® (Lbc c a “bc
c = c, a“=aFf and b= ¢ forall a,b,ce X.

Proposition 4.3. The map r is a solution of the braid equation if and only if for
each family of six closed intervals [a,b], [c,d], e, f1, [g,h], [i,7] and [k, 1], with

l9.h] € la,b], [i,j] € [e,d] and [k,1] C [e, f],
the following equality holds:

J
Z Z Z A wlﬂz‘ajcluc I u‘z UIqCCIhCCAaCk‘aCl‘Q Claja e
alblc|d xc|y le| f aq|az|Cy|=y

z€[a,g] we|c,i] u€le,k]
ye[h,b] z€[j,d] ve[l,f]

c e|ye | acglacy ul, u a ‘e i€l Je ce | pee
R D DD D A WA AR A A S
cldlelf a\ [“ul v [y Jwe| 2
z€la,g] we(c,i] u€le,k]
y€[h,b] z€[5,d] veE[L,f]

(4.1)

Proof. A direct computation using that 7 induces a solution r| of the set-theoretic
braid equation on X x X, Proposition 2.8 and Corollary 2.5, shows that

(reD)o(D®r)o(r®D)((a,b)® (c,d) @ (e, f))

= > BRI @ D)o (D @) ((w,%) @ (2,57) © (e. /)

[z,y]Cla,b]
[w,z]C[ec,d]
w] %]z u|"v|go¢ | hee a, . a ¢ z€ ce 1ce

= Z Z )\a|b“c‘lj ‘y mc‘:‘yc‘elff | (’]"®D)(( w, Z)@( u, 7_)) (29 (g ,h ))

[z,y]C[a,b] [g,h]C[x,y]

[w 2]Cle,d] [uvv]g[e7f]
- R N T e N et TR
a Z Z Z )\a‘b|c‘d $C|y lelf )\“wlazlwcu\zcu

a,b] [g,h]Clz,y] [i,7]Clw,2]
[“’ Z]C[ d] [u,v]Cle, f] [k,1]C[u,v]

2C c

™ (“war:“k,7 “wa:“l) ® (ai u7ajz u) ® (gce’ hce)
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and
(D®@r)o(re@D)o(D®r)((a,b) @ (c,d)® (e, f))
= > andyF(Der) o (reD)((ab) ® (u,v) ® (uf, %))
[w,z]Cle,d]
[u,v]Ce, f]
CulColwe | 2€  *Ck| 2] zcu Cu a c c,
= XX AT e n (R ) @ () @ (uf )
[w,z]Cle,d] [z,y]Ca,b]
[u,v]Cle, f] [k, 1]C[u,v]
_ “ulufue |2 K| ] g
SEED DD DI DR W e W S
[w,2]Cle,d] [z,y]C[a,b] [g,h]C[z,y]
~ (ack7acl) ® (z‘“ie,z"‘je) ® (gcuu;e7 hcuwe’).

[u,w]Cle, f] [k, Cw,v] [6,5]1C[w,2]

Since, by Corollary 2.5 and Remark 4.2
a, .c a, c a© al e ‘u c, e c, e
U}ﬂ’,‘k: CO‘]C:(LCk7 al u:al P:a 26:33 Ze, gce:gec :guw ,
a. ¢ < ol Je cy o e o e
ca ac a; u a; e a € xr € ce ec uw
l="1, % "=%°“=";7=%74° h*=hr"" =h"",
O

"waty _
the result follows immediately from the above equalities.

4.1 Small intervals
Next we analyze exhaustively the meaning of equations (4.1) when the sum of the

lengths of the intervals [a,b], [¢,d] and [e, f] is smaller than or equal to 1:

1) When a = b, ¢ = d and e = f this equation reduces to

c c
Aac‘ac‘ac‘aCAaCelacelaCC‘aCC AQCE‘ECE‘Q ECE‘CL eCC
alalcle ac|ac|ele ac|ac|a®e|a®e

‘e|%|c?|¢
c|clele

This is true since the expressions at the both sides of the equal sign are 1.

e acelace‘acelace )\acece acecelace‘ace
Celacelce‘ce

alal%|e

2) Whena=g=h<b, c=dand e = f, it reduces to

c|%|ac|a® 9| %] a®|b° acelacelace‘ace
)\a|b\c\c + )\a\b|c\c )\a°|b6\e|e
. )\ace‘a’ce‘acelace n )\acelacela”elb“e )\a,cecela,cecelace‘ace
— “‘alb|e|°e a|b|ce|ce ae|b|ce|ce

(LcelauelacelbcﬁAﬂ, eCEIL‘L ecelaue‘bce

3) Whena =g <h=>5b,c=d and e = f, it reduces to
ae|b|ce|ce

AQC‘QC‘GC‘bCAaCe‘aCe‘aCE|b(_'€ o
alb|c|c aclbclele alb|ce|ce

4) Whena < g=h=>5b,c=dand e = f, it reduces to

ac|%e|be [b° ac|%| a® | b° acelacelbce‘bce
A + )\a|b|c|c >\a°|bc\e|e
ecelbcelbce

alb|c|c
=A

aCelaCelbceleE + G,Celﬂ,(‘,elacelbce A{LCGCE‘O,C
alb|e|°e ae|be|ce|ce

alb|ce|<e

)

which is equivalent to the condition obtained in item 2), because r satisfies
condition (1.5) and the condition required in item 3) at the beginning of

Section 3 is fulfilled.
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When a =b, c=1i=j <dand e = f, it reduces to

a.|a. c|.c ajag|cl.c acjac,ja eja e
)\c\c\a\a /\c|d\a\a>\ e|"e|% °|%

alalc|d alalc|d aclad|ae|a“e
acecc Iacece |aCC ‘a
acelacelce‘de

_ )\Ce|ce|cﬁ\cc + Ace\ce|cﬁ\dc/\

c|d|ele c|dlele
When a =b, c=1i < j=dand e = f, it reduces to

ace|ace‘ac‘7‘ce|ad”’de aceceladede‘acelace

acl(ld‘all‘ac o Ce‘celce‘de
)\a|a\c\d )\ac|“d\ace|ace - >\c|d|e\e Aac‘3|acﬁ\cﬁ\dﬁ

When a =b, ¢ <i=j=dand e=f, it reduces to
{ld (ld
adlad‘ac‘ac aclad‘aclac uce‘ace‘ad 8|ad e
)\a|a|c|d + )\a\a|c|d )\ac|ad|ace\ace
de d
_\ %e|%|d?|a° %|%|c|d® \* d°|* df|a®®|a
- >\c|d|e\e + /\c\d\e|e )\ac‘i\ci.Ce|cE\d‘3

ce

ce

)

which is equivalent to the condition obtained in item 5), by the same

argument as in item 4).

When a =b,c=dand e =k =1 < f, it reduces to
(lc (lC ce ce O,C O,C ce ce ac, ac, arCE € (lce (=3
A e|" ela®|a A el fla®®|a’ A e|*e|* ¢°|* ¢
aclacle|f aclacle| f aclecleCele f

. )\Ce|ce|ce\ce

clefelf T Aclcielf  Aalaleele

Ce‘cflcelcﬂ ﬂ,Ce‘{J,Ce‘aCEIG‘CF‘

When a =b, c=dand e =k <[ = f, it reduces to
e
)\acelacflaue‘ace acela(;fla ece‘a ece . Acelcf‘ce‘CeAacelacflacelace
aclaclelf aclec|eela®f — Tclefelf alalee|f )
When a =b,c=dand e < k=1= f, it reduces to
c c c c Ce CE
a fl(l flace‘ace A(l el(l flace‘ace Cerfl(le‘a Cel(l c€
aclaclel f ac|aclelf aclac|ee|a®f
= N TIFIEles |y el [t “°f|*fla’®|a’®
 Tefclelf clelel f alale|f ’

which is equivalent to the condition obtained in item 8), by the same

argument as in item 4).

In the sequel for v = (v1,v2) and w = (w1, ws) in K? we say that v and w are
aligned and we write v ~ w if det( ! +2) = 0.

Example 4.4. Let X, C X be the set {a,b,c,d,e, f,g,h}. Assume that r| is the
flip on X p x Xopn. Then items 3), 6) and 9) are automatically fulfilled; whereas
items 2), 5) and 8) say that when a <b, c=d and e = f,

)\c|c\a\a +)\c|c|a|b/\e\e|a|a o )\e|e\a\a +)\e|e|a\b)\c|c|a|a

alb|c|c alblc|c alblele T “alblele alblele” alblc|c?

that when a =b, c <d and e = f,

)\c|c\a\a + )\c\d\a\a)\e\dc\c _ )\e|e|c\c + /\e\e|c|d)\c|c\a\a

alalc|d alalc|d” cld|e|e cld|ele c|dlele alalc|d’

and that when a =0b, c=d and e < f,

elejala € alane|e|c|c e|lejcic € cicyeleja|la
yelelal [Flala yelelele _ yelele] [flele yelelal

alalelf T AalaleliAclelelf = Aclelelf T Aclelel f Aalalel -

Equality (4.2) says that

()\e|e\a\a )\e|e\a\b o 1) -~ ()\c|c|a\a )\c|c|a\b . 1)’

alblele’ “alblele alblc|c? Talblc|e

equality (4.3) says that

(}\e|e\c|c )\e|e\c|d . 1) ~ (}\c\c|a|a )\c|d|a|a 1)

cldlele’ “c|d|e|e alale|d’ “alalcld

(4.2)
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and equality (4.4) says that
(>\e|e\c|c )\e|f|c|c 1) -~ (}\e|e\a|a )\e|f\a\a 1)

clelelf> “elelelf alale| f> “alalelf

Let r: D®D — D®D be a non-degenerate coalgebra automorphism that induces
a non-degenerate solution r: X x X — X x X of the set-theoretic braid equation.
Assume that there exist two commuting order automorphisms ¢,, ¢;: X — X such
that ¢, = *(—) and ¢, = (=) for all z,y € X. For all s,a,b € X with a < b and
i € 7, we will write

s = ¢l (s), Ws == ¢i(s), (4.5)
[COINTESINPHERITNEN) [COINTCOINPHESIPNED!
an(8)(@,0) = Ak T Ba(s) @ b) = A, (46)

COMTCOININEOINED! [ESPRTCOIINCOINES!
a(s)(a,b) = A 00,1 B b) = A, @)

For the sake of brevity in the following result we write
oW (s) = a,(sD)(a?, ) and al(i)(s) = ay(Vs)(Da, Dp), (4.8)

and we define ,Bﬁi)(s) and ﬂl(i)(s) in a similar way. The following proposition
generalizes the result obtained in the previous example.

Proposition 4.5. Let n € IN. Assume that ¢ = ¢} = id and that each element
of K* has n distinct nth roots, and fix a primitive nth root of unity w. The following
facts hold:

1) Item 3) of Subsection 4.1 is satisfied if and only if for all a < b in X there
exists a constant Cy(a,b) € K* such that

ay')(s)

. (s)

2) Item 9) of Subsection 4.1 is satisfied if and only if for all a < b in X there
exists a constant Cy(a,b) € K* such that

1
af'(s)
a(s)

3) Assume that the conditions in item 1) are fulfilled. Then item 2) of Subsec-
tion 4.1 is satisfied if and only if for all s € X and a < b in X

ﬂr(s) = ﬂr((l)s(l))7

and for all a,b,s,t € X with a < b and each 0 <i<n

n—1 n—1
(w(s) S pjw"jﬂfﬂ‘)(s)) - (wr(w S pjw%ﬁ”(t)),
j=0 j=0

= Cp(a,b) and a,(s) = a, (Vs foralls € X.

= Ci(a,b) and ay(s) = ay(WsV) for all s € X.

where
n—2
- . 15 a fized nth root of H Cp(a® plw)yn—u=t,
u=0
= j—2 .
- Pj = = H Cy(a™ b)) H Cy(a™, p))i—u-1,
Yo =0 u=0

4) Assume that the conditions in item 2) are fulfilled. Then item 8) of Subsec-
tion 4.1 is satisfied if and only if for all s € X and a < b in X

Bi(s) = Bu(Msh),
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andforallabsteX with a < b and each 0 <1 <n

(’Ylal Ze w”ﬂ(]) > <’Ylal ot ZE wzjﬂ(]) ))

where

n—2
- v s a fized nth root of H Cl((“)a,(“)b)"_“_l,
u=0

-l = ,Y]+1 HCl ((Wa, ®p) Hcl (g, (Wp)i—u-1
l u=0 u=0

Proof. Assume that the equality in item 3) of Subsection 4.1 holds. By Remark 3.1
all terms in that equality are non-zero. Replacing e by s(!) in it, we obtain

ai’(€) _ _ai(s) _ ar(s)
(@)~ a(Ds0) " a(s)
where the last equality follows from the first one taking ¢ = s. From this it follows

immediately that there exists C,(a,b) € K* such that the equalities in item 1) are
true. The converse is straightforward. A similarly argument proves item 2).

forall ¢,s € X,

Assume now that the conditions in item 1) are fulfilled and that the equality
in item 2) of Subsection 4.1 holds. By Remark 3.1, setting (a,b) :== (a=",b(-1)
and ¢ := Me the equality yields BT( ) = B (We) for all e € X. Using the same
equality with ¢ := 5%, (a,b) == (a?,b®) and e =t where i € {0,...,n — 1},
we obtain

B(s) + o ()80 (1) = B () + P (£) BV (s)

BN (s) + a) ()82 (1) = BM (1) + oD (1) B (s)
(4.9)

5D (s) + a"D(s)50(0) = B0 (1) + oV (05O ()

where in the last equation we have used that 5£n) = ﬂ,go). For each j € INy, let

j—1
) = H Cr(a™ b)),

Using that p;C(j) = vrpj+1 and @, = po we obtain that

n—1

Zw”p C(7)BY N (@ Zw Y1 B9 (@) = 12 Zw% B (), (4.10)

7=0

for all z € X and i € {0,...,n —1}. Adding the first equahty in (4.9) multiplied by
9o to the second one multiplied by wgp;, and so on until we add the last equality

multiplied by w*™ =Y, _;, and using that ot (s) = a,(s)C(j), we obtain

n—1
D w ;B9 (s) + (s Zw% )BYTI(2)

Jj=0 j=0
n—1

=Y wp;B0 (1) + ap(t Zw”@ 7)BY D (s),
j=0

for i € {0,...,n — 1}. Hence, by (4.10),
SO () + an(s) =50 (£) = SD(8) + () 5D (s), (4.12)
w w

(4.11)
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where S,Ei)(x) = Z;:Ol wijpjﬁﬁj)(aﬁ) for z € X, and so, for 0 < i < n, we have
(yr(s) — w', SO (s)) ~ (yran(t) — w', SO (t)) for all s,t € X, (4.13)
as desired.
Conversely assume that £,(e) = 3,((Ve) for all e € X, and that (4.13) holds,
which means that (4.12) holds. By (4.10) the systems (4.12) and (4.11) are equivalent.

We claim that the systems (4.11) and (4.9) are also equivalent. Indeed, this follows
easily from the fact that all the p;’s are non-zero and that the matrix

1 1 1
1 w wn!
i w”._1 w("._l)2

is invertible, because it is the Vandermonde matrix associated with the elements
L, w,w?,...,w"" !, which are all different. Item 2) of Subsection 4.1 follows im-
mediately from the first equality in (4.9) with s replaced by ¢ and ¢ replaced by
We, using that £,(MeM)(a™, b)) = g,.(e)(a™,bV)). A similar argument proves
item (4). O

Let ¢, ¢y, a,@, al(i), Bﬁi) and 51(1.) be as in the discussion above Proposition 4.5.
Proposition 4.6. Let n € IN. Assume that ¢, = ¢, that ¢) = id and that each

element of K™ has n distinct n-roots and fix a primitive n-root of unity w. Then
equality (4.1) is satisfied for all the intervals [a,b], [¢,d], le, f], [g,h], [4, j] and [k,]
such that
l9:h] € la,b], [i,5] S [e,d] and [k,1] C [e, f],
and bla,b] + ble,d] + ble, f] = 1, if and only if the following facts hold:
1) For all a < b in X there exists a constant C(a,b) € K*, such that
O(éigs) = OEI)(S) =C(a,b), forallse X.
a;’(s)  ar’(s)
2) For alla <b and s in X, it is true that
ar(s) = an(s?), ar(s) = an(s®), Br(s) = B.(s®), Bils) = Bu(s?).
3) For alla < b in X and each 0 < i < n, there exists a one dimensional
vector subspace of K x K, which contains all the vectors

n—1 n—1
(vaT(s) —w', Z pjwijﬁﬁj)(s)) and <7al(s) —w', Z @»111"]'6[(]')(:3))7
j=0 =0

where v == 7, = v and p; = {; are as in Proposition 4.5.

Proof. We know that if h[a,b] + b[c, d] + ble, f] = 1, then equality (4.1) is equivalent
to items 2), 3), 5), 6), 8) and 9) of Subsection 4.1. Moreover item 6) of Subsection 4.1
is satisfied if and only if for all @ < b in X there exists C(a,b) € K* such that
1 1) 501 1 1), (1
au(s)(@®), b0) = a,(Vs)(Ma, ) =C(a,b) forall se X.
ai(s)(a,b) ar(s)(a,b)
On the other hand Proposition 4.5 gives necessary and sufficient conditions in order
that items 2), 3), 8) and 9) of Subsection 4.1 are satisfied. Since ¢, = ¢;, we have
s = s for all s € X and all i € Z, and C,.(a,b) = C(a,b) = Cy(a,b) for all a < b
in X. Consequently 7, and 7; are nth roots of the same element, and so we can
choose v, = ;. It follows that p; = ¢; for 0 < j < n and that the conditions in
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Proposition 4.5 are equivalent to items 1) and 2) together with the fact that there
exist two one dimensional vector subspaces of K x K that contain all the vectors

n—1 n—1
(ms) Y @jw”ﬂﬁﬂ(s)) and (ms) —wh Y pjwijﬁl(J)(s)),
Jj=0 j=0
respectively. Assume now that item 5) of Subsection 4.1 is satisfied. Since ¢, = ¢,

using the equality in that item with ¢ := s, (a,b) = (a”, b)) and e := (), where
i runs on {0,...,n — 1}, we obtain

—

O(t)5M (s)
V()53 (s)

B7() +ai” ()80 (1) = B (1) + @
A7 (3) +af ()32 (1) = 0 (1) + o

S =

(4.14)

B () + " ()80 () = BV (@) + ol D (1) (s),

where in the last equation we have used that Bﬁn) = BEO) and ﬂl(n) = ﬂl(o). Mimicking
the proof of item 3) of Proposition 4.5 we obtain that the equalities in (4.14) hold if
and only if for 0 <i<n

vy (s —wi,S(i) $)) ~ (v (t) — w', S (¢ for all s,t € X, 4.15
l r
where Sl(i)(x) = Z"_Ol w? pjﬁl(j)(x) and Sﬁi)(x) is as in the proof of Proposition 4.5.

Jj=
So item 3) is true. We leave the proof of the converse to the reader. O

5 The configuration p < g when 7| is the flip

Let (X, <) and D be as in Section 2, let (D, ) be a non-degenerate braided set and
let p,q € X be such that p < ¢. In this section we determine all the possibilities
ag\b3|a4|b4

for the coefficients )‘al\bllazlbz

that

with a;,b; € {p,q} and a; < b;, under the assumption

r(pp) = (p,p), 1) =(¢p), 7(e:p)=/Pq and r(qq9) = (g9):-

As a corollary we obtain all the non-degenerate braided sets (D, r) such that D is
the incidence coalgebra of the linearly ordered set with two elements.
Let f(p,p) =0, f(p,q) =1 and f(q,q) = 2. We can codify the 81 coefficients

az|bs|as|bs

ar|by|as|bs 1 2 9 x 9 matrix M, setting

. yas|bslaalbs if i = 3f(a37b3) + f(a47b4) +1
Mi; = )‘al\lnlazlbz and j = 3f(a1,b1) + f(az,ba) +1 (5.1)

Remark 5.1. By Proposition 2.8 and equality (1.5),

1 B 0 B I'' 0 0 0 0
0 0 0 a By 0O O 0 O
0 0 0 =By T9 0 1 B4 0
0 a0 0 0 By O O O O
M=|10 0 0 0 A 0O o0 0 0],
0 0 0 0 By 0 0 o4 O
0 - 1 0 TIs B3 0 0 0
0 0 0 0 B4 Q3 0 0 0
0 0 0 0 T4 —B3 0 —B4 1
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where

.— \Plalplp

plapi, )\p\p\p\q

plalplp’ = X

plalale’ = Xl

«
1 qlalplg’

g = Qa3 (%]

By = \Plplplp By 1= A\Plplplp By = \dlalplp By = \Plplala

plplpla’ plalplp’ plalala’ alalplg’
A = )\Plalpla
plalplg’
B, = )\plplplq’ By = )\p\qm\p’ By = )\plq\q\q’ B, = )\qlq\p\q’
plalplg plalplg plalplq plalplq
Iy = )\plznlznlzn7 Iy = )\plznlqlq7 Iy = )\qlqlznlp7 Iy = \dlalala
plalpla plalplq plalpla plalplg

Remark 5.2. By Proposition 2.10 and equality (1.5) we know that

A =13 = agay, (5.2)
By =a3Bs, Bz=oa1f3, Bsz=-aufz, Bi=-—azp, (5.3)
Py =—0281 and T'3=—p10%s, (5.4)
and by equality (1.5) and Proposition 2.8 we know that
Iy = —(0y +Ts+1y). (5.5)

We will use these equalities (which in particular show that M depends exclusively
on Iy, a1, as, ag, ay, B, B2, B3 and f4), in order to determine M in all the cases.
Moreover, by Remark 3.1, since r is an isomorphism, «; # 0 for all i.

Remark 5.3. If some f3; # 0, then by equalities (4.2), (4.3) and (4.4) there exists an
element C' € K such that

a;—1=0Cp;, fori=1,2,3,4. (5.6)

Theorem 5.4. For the matrix M given by (5.1) necessarily one of the following
eight cases occur:

1) If ; =0 fori=1,2,3,4, and 'y =0, then M belongs to the family

10 0 O 0 0 0 0 O
0 0 0 o 0 0 0 0 O
0 0 0 0 0 0 1 0 0
0 ag 0 O 0 0O 0 0 0
0 0 0 0 a3z O O O Of,
0 0 0 O 0 0 0 o4 O
0 0 1 0 0 0 0 0 O
0 0 0 O 0 as 0 0 O
0 0 0 0 0 0 0 0 1

[0}

where oy = 13‘3 , parameterized by aq, s, a3 € K*.

[e3

2) If B; =0 fori=1,2,3,4 and Ty # 0, then M belongs to the family

1 0 0 0 Iy 0O 0 0 O
0 0 0 m 0 0O 0 0 O
0 0 0 O 0 0 1 0 0
0 o 0 O 0 0 0 0 O
0 0 0 0 a3z O 0O 0O Of,
0 0 0 O 0 0 0 a3 O
0 0 1 0 0 0O 0 0 O
0 0 0 O 0 as 0 0 O
o o o O -In 0 0 o0 1

parameterized by oy = +1, ag = +1 and I'y € K*.
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3) If there exists i such that B; #0 and C =0 (see equality (5.6)), then either
B3 =Pz and By=p1, or  Pa=—P3, Po=—P1 and Pz # —Pr.
In the first case M belongs to the family

1 B 0 B r, 0 0 0 0
0O 0 0 1 051 0O 0 0 O
0 0 0 —p —B152 0 1 B 0
0 1 0 0 B2 o 0 0 ©O
0O 0 0 O 1 0o 0 0 0],
0O 0 0 O —[2 0O 0 1 O
0 - 1 0 —B1B2 B2 0 0 O
0O 0 0 O -6 1 0 0 0
0 0 0 0 288-T1 =B 0 —p1 1
parameterized by Ty, B, Ba € K with (81, f2) # (0,0); while, in the second

case 'y = 183 and M belongs to the family

1 B 0 =B BBz 0 0 0 0
0 0 0 1 — 3 0 0 0 0
0 0 0 B —HAps 0 1 =B 0
0 1 0 0 3 0O 0O 0 0
0O 0 O 0 1 o o o0 o0f,
0O 0 O 0 51 0 O 1 0
0 - 1 0 —ppBs Bz 0 0 O
0 0 0 0 — 01 1 0 0 0
0 0 0 0 f1B3 —Bs 0 Bz 1

parameterized by By, B3 € K with $1 + B3 # 0.
4) If By = 0, some B; # 0, C # 0 and T'1C = a9y, then M belongs to the

Sfamily
1 00 B azfs 0 0 0 0
00 0 a 2B 0 0 0 0
0 0 0 —p —B2B4 0 1 B2 O
010 0 s 0 0 0 0
000 0 e 0o 0 0 0],
000 0 —ayfs 0 0 as O
001 0 0 Bs 0 0 O
000 0 0 as 0 0 0
000 0 PBofs—22 B3 0 —p; 1

where a; = 1+ CB; and B3 = P2 + asfs, parameterized by C' € K* and
B2, fa € K with (B2, 84) # (0,0) such that CB; # —1 for all i.

5) If 51 =0, some 3; #0, C # 0 and T'1C # azf34, then CPBy = =2, S =0,
B3 = B4 and M belongs to the family

1000 I 0 0 0 0
0001 B 0 0 0 0
0000 0 0 1 Bs 0
0100 B 0 0 0 0
0000-1 0 0 0 o0,
0000 0O 0 0-1 0
0010 0 B 0 0 0
0000 0 -1 0 0 0
0000 -Ty =B 0 B4 1



SOLUTIONS OF THE BRAID EQUATION AND ORDERS

parameterized by T'y € K\ {—£%/2} and B4 € K*.

6) If B #0, ay = —1, C # 0 and aB4C — C*T'y = —2, then C = —2/3; and
M belongs to the family

a3y
—B24
—f3
Qo iy
—y /3o
—B183
2033 — 1

381(2B3 — B1 + B1)

I B 0 B
0 0 0 ao
0 0 0 —ps
0 -1 0 0
O 0 0 0
0O 0 0 O
0 —p1 1 O
0 0 0 O
0O 0 0 O
where B3 = 2824

1

and 52,54 c K \ {61/2}

) If B1 # 0, a; = —1, C # 0 and aBsC — C?T'y # —2, then as = —1,
B = Ps, C = —2/51 and either

+061—0B2—pP4 and a; = 1— 2,8611

$(BE — B1Ba + 2B2P4)

0
0
0
0
0
0
Bs
a3
—PBs

OO DODDOD OO R OO

4

0
0
5
0
0
iy
0
0

|
=

4

SO OO O OO

[t

21

, parameterized by B € K*

In the first case a; = —1 and B; = 1 for all i and M belongs to the family

1

SO O OO OO

0

oo oo+ OoOOo

o

0
0
A
0
0
—1
0
0

P

— OO OO OoO0o oo

parameterized by B1 € K* and T'y € K \ {B?}; while in the second case

Ps=p1  or  P3=0.
i 0 B I 0
0 0 -1 -5 0
0 0 —p - 67 0
-1 0 0 —p1 0
0 0 O 1 0
0 0 O b1 0
-/ 10 =B B
0 0 O b1 -1
0 0 0 28-Ty -p
az =ay =1 and M belongs to the family
1 5 0 B I'y 00
0 0 0 -1 0 0 0
0 0 0 -4 0 01
0 -1 0 0 0 0 0
0 0 0 O -1 0 0
0 0 0 0 =5 00
0 —p1 1 0 0 0 0
0 0 0 0 =B 1 0
0o 0 0 o -I't 00

parameterized by 1 € K* and Ty € K \ {8%/2}.
8) If f1 #0, a1 # —1 and C # 0, then M belongs to the family

—_

S OO OO O OO

A
0
0
a1
0
0
A
0
0

[N el =l =Rololel]

P2

(&%)

—f2

0

0
0
0
0
0

Bsa1—p2
C

a3y
—B204
133
(eI %)
—au 3o
—B183

—as

BaCB2+B2—PB3
C

OO O R OO OO

o

[l eoNeleaNeoBel "

—H OO OO oo

0
0

Ba

H O OO OO o oOo
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where o; = £;C + 1 for all i and By = (B1 — P2+ B3 + B183C) /(1 + 52C),
parameterized by C € K*, 1 € K*\ {=1/C} and p2,83 € K \ {—1/C}.
Proof. 1) This follows immediately from Remark 5.2.

Before considering the other cases we derive equalities (5.7) to (5.12). Using
equality (4.1) witha=b=c=e=g=h=i=j=k=l=pandd=f=gq, we
obtain

Z \Plzlplp y\plvlplp yplplPIP Z A\PlvIplz yplplplp y plplplp-

plplple p\plplq pl [plv plalplg plplplv plplplz*
2,v€[p,q] 2,v€[p,q]

Combining this with the fact that A = ajagz, By = as84 and By = a1 33, we obtain
B1P1 + Brai1fi + a1Bife + araily =T + (a1 83) 1 + (a2B4) f1 + (aqaz) 5151,

which we can write as

Ti(af = 1) = Bi(a1fBs + azBs + arasB — i — 11 — a1 Ba). (5.7)
Equality (4.1) witha=c=d=e=g=h=i=j=k=1l=pand b= f =g, gives

§ : APlpIply \Plvlplp yplPIPID 2 : N\Plvlplp yplplply y plPIPID
plalplp " plylple plplplv plplpla " plalplv " plylplp
y,0€[p,q] y,vE[p,q]

Combining this with the fact that By = as84 and Bs = a1 83, we obtain
B2B1 + Baa1fr + aol'y + az(a1fs)Br = Bifa + a1l + fras Bz + ai(aefs) B2,

which simplifies to

a1(B1B2 —T1) = aa(B1f2 — 1 + a1 (Befs — B153))- (5.8)
Similarly, using equality (4.1) witha=b=d=f=g=h=i=j=k=1=gqand
c = e = p, we obtain

Ty(af — 1) = Ba(azPi + asfo + arasBs — Ba — By — aufBs); (5.9)

using equality (4.1) withb=c=d=f=g=h=i=j=k=I1l=qanda=e=p,
we obtain

a3(f3fs —Ty) = as(Bsfs — Ta + a3(B2Bs — S153)); (5.10)
using equality (4.1) witha=c=e=f=g=h=i=j=k=Il=pandb=d =g,
we can see that

Ti(a3 — 1) = Bo(aaBs + 0185 + arasfe — B2 — azfa — azfB); (5.11)
while using equality (4.1) withb=d=e=f=g=h=i=j=k=1=qand
a = ¢ = p, we can see that

Ty(e3 — 1) = Bs(asBi + aufa + arasfs — B3 — asfs — asB). (5.12)
2) Since 1 = B2 = 0 and T’y # 0, from equalities (5.4) and (5.5) we obtain that
'y =T3 =0and I'y = —T'; # 0, from equality (5.7) we obtain that o = 1, and
from equality (5.8) we obtain that oy = . Similarly, by equalities (5.9) and (5.10)

we have af = 1 and a3 = ay. Using now equalities (5.2) and (5.3) we obtain that
M belongs to the family in item 2).

3) Since C' = 0, from equalities 5.6 it follows that «; = 1 for all j. Furthermore
equalities (5.7), (5.8), (5.9), (5.11) and (5.12) yield

Bi(Bs + 4 — P1 — B2) =0 for all i, and Bafs — 183 = 0.

Since at least one f3; is non-zero, from these facts it follows that

Bz —B1=pP2—Bs and [i1f3 = [afs. (5.13)

Hence

B3 = B2 and B4 = B, or  fBo=-p1, PBa=—P3 and B3 # —Bi.
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In the first case we obtain for M the first family in item 3). In the second case
equality (4.1) witha=c=e=g=h=i=j=k=Il=pandb=d= f = ¢, gives

Z N\Plzlply yplvlplp yplPIPID Z NPlvlplz yplplply yplplplp
plalpla“plylpla” plz|p|v plalpla " plalplv” plylp|z"
v,Y,2€[p,q] v,y,2€[p,q]
Combining this with the fact that A = aja3, By = asfy, Bo = a183, a; = 1 for
all i, o = —p1 and 4 = —f3, we obtain

T181 — B3B1 — BsBi + B3Iy = —T'1 By + B361 + Bafi — BTy,

which can be written as

2(81 + B3)(B18s — I'1) = 0.
Since fB3 # —f1, we conclude that I'; = 5183 and we obtain for M the second family
in item 3).
Before considering the remaining cases we obtain some equalities which are valid
under the assumption that C' # 0. By equalities (5.2) and (5.6), we have
042—1 041—1 044—1 043—1

c T o T*®T¢ c

=P+ azfi —axfs+ B3 = — =0. (5.14)

So, by equality (5.9) and (5.2),
F4CBs(ay + 1) = Ba(asfa + azfi + azoufy — Ps — cufs — auf3)
= Ba((ca +1)B2 + (g + )Py — (g +1)Bs — (g + 1)f33)
= Ba(as + 1) (B2 + a2fs — Ba — P3)
= Ba(as +1)(a3fr — Ba),
which implies
Balo + 1) (azfi — B4 — I'4C) = 0. (5.15)
Arguing in a similar way we can prove that
—Bs+azfs—azfr+P2=0 and Bi(ar +1)(azfs —p1 —11C) =0. (5.16)

Moreover we also have
oy — g — g + 1 araz —ap —ag +1
aofly — 1 = =

C = C =aifls — f2.  (5.17)

4) and 5) Since 1 = 0, equality (5.6) implies a7 = 1. Thus equality (5.8) reduces
to —=T'1 = aa(—T'1 + f204) and by equality (5.14) we have 85 = 3 + af4. Using
the first equality and again (5.6), we conclude that

B2(CT1 — agfly) = B2O0T1 + 'y — ael’y = 0.
When I''C' = a4, we obtain for M the family in item 4). Otherwise f2 = 0, which
by (5.2) and (5.6) implies aa = 1, a3 = ay and B3 = Sy (so B4 # 0 because at least
one of the f;’s is non-zero). By equalities (5.4) and (5.5), we have I's = I's = 0 and
'y = —T'y. Thus, from (5.15) we obtain

Ba(ag + 1)(I'1C — By) = 0.

Since I''C' — B4 # 0 and 4 # 0, we conclude that oy = —1. Thus, by (5.6) we have
B4C = gy — 1 = =2, and by (5.2) and (5.3) we obtain for M the family in item 5).
6) and 7) Since oy = —1, by equality (5.6) we have $,C = —2 (consequently C' # 0,
B1 # 0 and §; # 1/2 for all i), and by equality (5.2) we have ag = —asay. Thus,
again by equality (5.6),

B2Bs — B1B3 = %((az —1)(ag — 1) = 2(azas + 1)) = —%(ag + 1) (o +1).
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Therefore equality (5.8) reads

1
0= (OQ + ]_) (ﬂlﬂg — Fl =+ @O&Q(O@ + 1)) . (518)
Moreover, again by equality (5.6),

C?B1By = —2CPs = —2(ag — 1) = 200 +2 and ay+1=CpBy+2,
and so

C?B1B2 + aa(ay + 1) = =205 + 2 4+ az(CBy + 2) = a2C By + 2,

Hence, equality (5.18) implies that

0= (ag +1)(2 + aBsC — C°T). (5.19)
If as34,C — C?Ty = —2, then using that C' = —2/; and equality (5.6) we obtain
2 aw—1. B 1
I = ror QC B+ 64 = 5(5? — B1B4 + 2B24),

while using that C'= —2/4; and equalities (5.16) and (5.6), we obtain

B3 = azfy — azfi + o = <1 - 252) By — (1 - 253) B+ B2,
b1 B1

which implies

2
B3 = %ﬂLﬂl — P2 — Pa.
B
So, we obtain for M the family in item 6). On the other hand, if ap3,C —C?Ty # —2,
then (5.19) implies as = a3 = —1, and so, by equality (5.2) we have as = ay.

Consequently, equality (5.6) implies that f2 = 1 and 4 = S3. Replacing these
values in (5.9) yields

Tu(e3 — 1) = B3(2a301 — 333 — fB3).
Combining this with the fact that, by equalities (5.6), (5.5) and (5.4),

a3=1+063=1—2% and Ty = —Ty + faBa+ B3 = —T'1 + 2816,

we obtain

Bs Bs\ _ P8 B B
—2F4E (2 - 251) = f33 ((1 251) (281 — 303) ﬁ3> ;

which implies
(B1 — B3)B3(BT + B1Bs — 2I'1) = 0.

Since

2
BY + 1Bz — 2y = %(@2540 - C’T'1 +2) #£0,

we conclude that either 83 = 31 or 3 = 0. In the first case we obtain the first

family in item 7) and, in the second case, we obtain the second family in item 7).

8) Since 1 # 0 and ag + 1 # 0, from equalities (5.16) and (5.17), it follows that

CT1 = o183 — P2. Moreover, by equality (5.6) we know that o; = 5;C' + 1 for all 4,

and by equalities (5.16) and (5.6) we have

(14 B20)Bs = B3 — Po + (a3 — 1)1 + B1 = B3 — 2 + CB3f1 + .
So, we obtain for M the family in item 8). O
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Corollary 5.5. Let X be the poset ({p,q}, <), where p < q, let D be the incidence
coalgebra of X and let r: D@ D — D ® D be a map. If (D, ) is a non-degenerate
braided set, then r| is the flip and the matriz M associated with r via (5.1) belongs
to one of the families in the previous theorem. On the other hand each member M
of the families yields a solution of the Yang-Baxter equation.

Proof. The first assertion follows immediately from Corollary 2.5, the second one is
a corollary of Theorem 5.4, and the third one follows by a direct computation, that
can be done with the aid of a Computer Algebra System (set My :=idp @ M and
MQ =M ® idD, and verify that M1M2M1 - M2M1M2 = 0) O

6 A case of the configuration o < q > p

Let (X, <) and D be as in Section 1, let (D, r) be a non-degenerate braided set
and let 0,p,q € X be such that o < ¢ > p. Let ¢ be the permutation of {o,p, ¢}
that interchanges o and p. In this section we determine all the possibilities for the
coefficients )\Z‘I’}Z?}Z;‘IZ:, with a;,b; € {0,p,q} and a; < b;, under the assumptions
that the characteristic of K is different than 2 and that %c) = (c)® = ¢(c) for
all a,b,¢ € {o,p,q}. Let f(o,0) :=0, f(o,q) =1, f(¢g,q9) =2, f(p,q) = 3 and
f(p,p) = 4. We can codify the 625 coefficients AZ?}I;?IZZIZ; in a 25 x 25 matrix M,
setting

if i .= 5f(asz,b3) + flag,bs) + 1
and ] = 5f(a1, bl) +f(a2, bg) +1.

We begin by showing that M only depends on the entries

. yas|bs|aa|bs
M; ;= )‘al\b1|a2|b2

(6.1)

oy = XS aum XL g = AR

o=, By N gy XS B = ol
R T O RS A e i
o= G o= N = XL e = A
R AP M TR i O

and two parameters C, C; € K*. For this we first note that by Proposition 2.8, the
matrix M has the shape showed in Figure 6.1, where I'y, I'7, T'1q, I'16, @1, aq4, ag,
B1,..., 012 are as above, and

plplple qalalple olo|plq
Qg = A az = A as = A
2 olqlolo’ 3 olqlqlq’ 5 olqlp|p’
olglplp plplolq olalqlq
a7 = A\ ag =\ ag = A\
7 olo|plq’ 8 plalofo’ 9 dlalple®
. \dalalola ._ yolololq . \Olalolo
a1p = A a1 = A Q1o = A
10 plalglg’ 11 plalplp’ 12 plplplg’
o o o o
A = )\plqlplq7 Ay = A Iqlplq, Ay = A\Plal \q7 Ay =\ lal Iq’
olqlolq olg|plq plalolq plalple
B, = \dlalela — p . yplddle - po . ypladple - p . yplpIPlg
1 olqlolq’ 2 olqlolq’ 3 olqlolq’ 4 olqlolq’
0|0 o o
Bs = \ | |10|f17 Bg = A Iq\q\q’ B, = \ \q\p\q, Bg = )\qlqlznlq7
olalplg olglplq olqlplg olalplg
Bo = \dldlela g . yplalolo . yplalala  p . yplplolq
9 plalolg’ 10 plalolg’ 1 plalolg’ 12 plalolg’
Bia = /\0‘0‘0|q Bis = )\0|Q|0|0 Bqs = /\0|Q|Q\q Bin = )\Q\LI‘OW
13 plalplgr P14 plalplg 15 plalplgr 16 plalplg’
o|0
Iy = )\qlqlplp7 [y = )\p\p\q\q7 Iy = )\plplplp’ T = A \ \qlq’
olq|olq olqlolq olqlolq olalplq
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T = )elolplp e = \dlalplp To = )dlalolo Ty = \Plplolo
6 = Aolalplar 18 = Aojgipler 19 = Apjglolgr 111 3= Apjgiolg-
.__ \Plplale .__ yolololo .__Ololala .__ 4lglole
ISES )‘p\q\OIq’ Iz = )‘plqlplq’ Fig = )‘p\qwq’ I'i5 = /\plqlplq'

A direct computation using item 1) of Proposition 4.6 proves that there exists
C € K* such that
an — 13—k
NG

for k=7,...,12. (6.2)

For example, since a2 = oy (p)(p, q) = ozl(l)(o)(o, q), we have

ﬂ _ al(o)(o,q) _ Oll(O)(O, q) _ C(O q) —C.

a2 a(p)(p,q) al(l) (0)(0,q)

Moreover, by Proposition 2.10 and equality (1.5) we know that

Al = ajog = asoy, Ay = azar = asag,
(6.3)
Az = ayag = agano, Ay = agay = o2,
By = —asfh, By = —ay B, B3 = 33, By = apfa,
Bs = a3, Bg = —agfs, B; = arfs, Bg = —a3fr, (6.4)
By = —a1006, By = asBio, Bi1 = —aufs, Bis = agfa, ’
Big = o119, B4 = 12810, Bis = —agfi1, Big = —a10f12
and
Iy = —515s, I's = — (204, I's = —B5 09, I's = —B70s, (6.5)
'y = —pBs B0, o = —pBsfa, 'y = —B11Po, I'is = —Biob2, ’
and by equality (1.5) and Proposition 2.8, we know that
[y =—(T1+ T2+ 1T3), I'e = -5 +I'7 +Ts), (6.6)

I'i=—Tyg+T1o+T12), 'z =—T14+Ti5 +Te).

Equalities (62)*(66) 1mply that Fl, F7, Flo, Flﬁ, ap,...,06, ﬂl; .. .,612 and C
determine M. A direct computation using equalities (6.3) and (6.4) proves that
there exists C7 € K* such that

Qo = Cloq, Q3 = Cla4 and a5 = C’la@u (67)

So, M only depends of 'y, I'7, I'1q, I'16, @1, 4, ag, B, ..., B12, C and Cq, as desired.

In the sequel we will provide without proofs analogous results to Theorem 5.4 and
Corollary 5.5, for the configuration that we are considering. Similar arguments as
in the proof of Theorem 5.4 show that M necessarily belongs to one of the families
listed in the Table 6.1. In the fourth case we add a new parameter Cy € K*,
which satisfies C3 = 1/C and comes from Proposition 4.6. We also add two new
parameters C3 and C4 and expressions Fj, j =1,...,12 and G1,..., G4 given by

F; = ajC4;O?’ — 0322204 forj=1,...,6,
Cs+C Cs;—C
3+ 4+ 3 4

2 2

Fj = 0413ij2

for j=7,...,12,
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1
G = @ (2(01 + 1)0304 (1 — (1101401022)
— (01 - 1)0%(0&402(0(10102 + Cq + 1) + 1)
— (Cl — 1)02((1402(01((1102 — 1) — 1) + 1) + 401F16)
1
Gy = E (C’g(—(oa;Cg(a(;Cng +C1 + 1) + 1)) + 2044(01 — 1)020304

+ Cz(o{402(0{60102 — Cl — 1) + 1))

1
G3 = 1(20304 (a1a401C’22 — 1) + Cg(OQ;CQ(ClelCQ + 01 + ].) + 1)

+ Cf(a402(a10102 — Cl — 1) + 1))

Gy = CT'p + 10, Cs (1 — C’l)(a4 + 046) (Ci — C?%)
and
o] —
Gy = (8176) (al(cg + Cy)? 4 ay(Cy — C4)(Cs(aa(Cy +1)Cy + 1)
[e5ge]

+ Cu(aa(Cr +1)Cy — 1))).

We use the parameters C's and Cy merely by convenience. For instance, if o;Cy # £1
for some j, then from the equalities 5; = F}; and B13_; = Fi3_;, we obtain that

BiCo — B13—; BjC2 + Bi3—;
Pita = Pussj g o, = P2t Pisoy
Oéj02+1 an 4 7043'024*1 ’

which implies that C's and C4 can be replaced by §; and Bi3—;.

Cy =

Remark 6.1. Let X be the poset ({o,p,q},0 < g > p), let D be the incidence
coalgebra of X and let

rD®D—D®D
be a map. By the same argument as in the proof of Corollary 5.5, if (D,r) is a
non-degenerate braided set such that 7| is not the flip, then the matrix M associated
with r via (6.1) belongs to one of the families in Table 6.1. On the other hand each
member M of the families yields a solution of the Yang-Baxter equation.

Table 6.1: Families for M

” Dependent values Dependent values p ¢
in each family in subfamilies arameters
1. Br=-=p12=0 o, ay, 06 € KX
I =I7=Tip=I16=0 C,C, e K%
2. pr=-=P12=0 T16=0 C,I'; € KX
't = araglis C, e {:tl}
Iy =Cil'7 a1, ay, ag € KX such that
a?=al=at=0CC
g = Q1 C,T'g € K*
I're K
C, e {:tl}

ap, a4 € K* such that
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# in cach family in subfamilies Parameters
a? =ai=0CC
3. ag=ag = Po=-=Ps=p1 I, I'oe K
C=a7 Br == P11 = P2 B1, B2 € K*
Ci=1 'z =T ay € {£61/P12}
Iy =188 /6%
ay = 20 Iy,Typ € K
11— Bz
B3 = Bs = P2 B1, B2 € K, B1# B2
Ba=Bs =P P11, P12 € K, P11 # P12
Br = Bo = P12
Bs = Bio = P11

'y = B12B2—PB11B1+T10
6 = B11b12 + 7“_6@152

041:—5% B, P11 € K*
B3 = 32 B2, 86 € K
Bs =P Be # 1
Bs = B1+ B2 — Be
Br = 32
P12 = %52
Bs = B11 + B2 — Br
Bo = P12
Bro = P11
I'y = p15B2
['7 = B5512
[0 = BsS11
I'16 = B11P12
4. Forj=1,...,12 I'7 =Gq a1, ay, a5 € K*

8, = F, Tho=Tr+asCsCa(1-Cy) Cy,Cy € KX
I'ieg = Gs 03704 e K

T =a T =Gy Oy € {+1}
e = G5 Cye K~

C3,C4,P10 e K
i, ay, ag € K* such that

2 2 2 2
ag :044:046201/02
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Bin 0 0 0 Bio 1
0
0

I3

aq1

Bis

0

Iig =B

0 0 P

0
0

I's —Bs

By

0
0

Qs

Bs

Is

0

0 Q12

0

0

By

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0—Bs 1 P12
0
0
0
0
1

Bis
0
0

I'i5

B

I's
0
0
0
0
0
0
0
0
0
0

B1o
10
I'o —Bio

0
0
0
Iy
By
0
0
Bio
As
0 By
0
0
'y
Bio
ISP

0 0 a9 O O
0 0 0
0 0 0
O 0 0 0 O
0o 0 0 0 O
0—-B4 1-B9 0 O
0 0 0
0 0O 0 O
0 0O 0 O
0 0 0
ags 0 0 O
0 0 0
0 0 O
0 0 Bs
0 0 ag
Ba 0 0 0—ps

0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

Bg
Ay
By
0
0
Iy
Bs
I's
0
0
0
0
0
0
0
0

0
0
0
0
0
Iy —B3
Qa3
B3
0
0
0
0
0
0
0
0

B,y
)
0
0
B,
Ay
Bs
0
0
I's

0 0
0 0
(674 0
0 0
0 0
0 0

0
1 -8, 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
—f2

0
0
0
0
0
0
0
0 —p1
0
0
0
0
o
0
0
0

oy By

0

FIGURE 6.1. The matrix M
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