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Abstract

We study the pairs of projections

PIf = χIf, QJf =
(

χJ f̂
)

,̌ f ∈ L2(Rn),

where I, J ⊂ R
n are sets of finite Lebesgue measure, χI , χJ denote the corresponding char-

acteristic functions and ,̂ˇ denote the Fourier-Plancherel transformation L2(Rn) → L2(Rn)
and its inverse. These pairs of projections have been widely studied by several authors in
connection with the mathematical formulation of Heisenberg’s uncertainty principle. Our
study is done from a differential geometric point of view. We apply known results on the
Finsler geometry of the Grassmann manifold P(H) of a Hilbert space H to establish that
there exists a unique minimal geodesic of P(H), which is a curve of the form

δ(t) = eitXI,JPIe
−itXI,J

which joins PI and QJ and has length π/2. As a consequence we obtain that if H is the
logarithm of the Fourier-Plancherel map, then

‖[H,PI ]‖ ≥ π/2.

The spectrum of XI,J is denumerable and symmetric with respect to the origin, it has a
smallest positive eigenvalue γ(XI,J) which satisfies

cos(γ(XI,J)) = ‖PIQJ‖.

2010 MSC: 58B20, 47B15, 42A38, 47A63.
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1 Introduction

Consider the following example:

Example 1.1. Let I, J ⊂ R
n be Lebesgue-measurable sets of finite measure. Let PI , QJ be the

projections in L2(Rn, dx) given by

PIf = χIf and QJf =
(

χJ f̂
)

,̌
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where χL denotes the characteristic function of the set L. Equivalently, denoting by UF the
Fourier transformation regarded as a unitary operator acting in L2(Rn, dx) and by Mϕ the
multiplication by ϕ, then

PI = MχI
and QJ = U∗

FPJUF .

The operator PIQJ is Hilbert-Schmidt (see for instance [11], Lemma 2).

An intuitive formulation of Heisenberg’s uncertainty principle says that a nonzero function
and its Fourier transform cannot be (simultaneously) sharply localized (see [13], page 207). We
give more precision to this statement below ( see for instance [11], page 906).

According to Folland and Sitaram [13], the idea of using projections PI and QJ to obtain a
form of the uncertainty principle is due to Fuchs [14], and it was developed later in a series of
papers by Landau, Pollack and Slepian [20], [21], [25]. See the survey by Folland and Sitaram
[13].

Donoho and Stark [11] proved that if I, J ⊂ R
n with finite Lebesgue measure and f ∈ L2(Rn)

with ‖f‖2 = 1 satisfy that

∫

Rn−I
|f(t)|2dt < ǫI and

∫

Rn−J
|f̂(w)|2dw < ǫJ

then
|I||J | ≥ (1− (ǫI + ǫJ))

2.

Donoho and Stark showed several applications of these ideas to signal processing (and the
obstruction to the existence of an instantaneous frequency). Smith [26] generalized these results
to a locally compact abelian group G where I ⊂ G and J ⊂ Ĝ, the dual group of G. The
books by Havin and Jöricke [17], Hogan and Lakey [18], and Gröchenig [15] among many others,
contain further applications, generalizations and history of the different uncertainty principles.

By an elementary computation using Fubini’s theorem, Donoho and Stark prove that

‖PIQJ‖HS =
√

|I||J |,

where ‖ ‖HS is Hilbert-Schmidt norm. Next they prove that

‖PIQJ‖ ≥ 1− ǫI − ǫJ .

The fact that ‖PIQJ‖ ≤ ‖PIQJ‖HS is well known.
They argue that any bound c such that

‖PIQJ‖ ≤ c < 1

is an expression of the uncertainty principle ([11], page 912).
Denote by P(H) the set of orthogonal projections of the Hilbert space H, also called the

Grassmann manifold of H. It is indeed a differentiable manifold of B(H) (also in the infinite
dimensional setting), with rich geometric structure (see for instance [24] or [7]). The pairs
(PI , QJ) might be put in the broader context of the sets

C = {(P,Q) : P,Q are orthogonal projections and PQ is compact}.

This set is a C∞-submanifold of P(H)× P(H).
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An application of these geometrical results facts is a form of the uncertainty principle (see
Theorem 3.6 below).

Let us describe the content of the paper.
In Section 2 we recall the known facts on the geometry of P(H). In section 3 we apply known

results [24], [7], [2] on the Finsler geometry of the Grassmann manifold of H to the special case of
pairs PI , QJ . We prove that there exists a unique minimal geodesic of the Grassmann manifold
of length π/2 which joins PI and QJ . That is, there exists a unique selfadjoint operator XI,J of
norm π/2, which is co-diagonal with respect both to PI and QJ , such that

eiXI,JPIe
−iXI,J = QJ .

The spectrum of the operator XI,J is denumerable and symmetric with respect to the origin.
The smallest positive eigenvalue γ(XI,J) verifies

cos(γ(XI,J)) = ‖PIQJ‖.

As a consequence from the fact that the minimal geodesic has length π/2, we prove that if
H is the logarithm of the Fourier transform in L2(Rn), and I ⊂ R

n is a set of finite Lebesgue
measure, then

‖[H,PI ]‖ = ‖[H,QI ]‖ ≥ π/2.

In Section 4 we show that for any pair of sets I, J ⊂ R
n of finite measure, one has

N(PI) +N(QJ) = L2(Rn),

where the sum is non-direct (the subspaces have infinite dimensional intersection).

2 Basic properties

2.1 Halmos decomposition

Let H be a Hilbert space, B(H) the algebra of bounded linear operators in H, K(H) the ideal
of compact operators and P(H) the set of selfadjoint (orthogonal) projections, and P∞(H) the
subset of projections whose nullspaces and ranges have infinite dimension.

A tool that will be useful in the study of the pairs PI , QJ is Halmos decomposition [16],
which is the following orthogonal decomposition of H: given a pair of projections P and Q,
consider

H11 = R(P ) ∩R(Q) , H00 = N(P ) ∩N(Q) , H10 = R(P ) ∩N(Q) , H01 = N(P ) ∩R(Q)

and H0 the orthogonal complement of the sum of the above. This last subspace is usually called
the generic part of the pair P,Q. Note also that

N(P −Q) = H11 ⊕H00 , N(P −Q− 1) = H10 and N(P −Q+ 1) = H01,

so that the generic part depends in fact of the difference P −Q.
Halmos proved that there is an isometric isomorphism between H0 and a product Hilbert

space L×L such that in the above decomposition (putting L×L in place of H0), the projections
are

P = 1⊕ 0⊕ 1⊕ 0⊕
(

1 0
0 0

)
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and

Q = 1⊕ 0⊕ 0⊕ 1⊕
(

C2 CS
CS S2

)

,

where C = cos(X) and S = sin(X) for some operator 0 < X ≤ π/2 in L with trivial nullspace.
Aparently, the pair (P,Q) belongs to C if and only ifH11 is finite dimensional and C = cos(X)

is compact.

Remark 2.1. If (P,Q) ∈ C, then the spectral resolution of X can be easily described. Since
0 < cos(X) is compact, it follows that

X =
∑

n

γnPn +
π

2
E,

where 0 < γn < π/2 is an increasing (finite or infinite) sequence. For all n, dimR(Pn) < ∞, and

R(E)⊕ (⊕n≥1R(Pn)) = L.

2.2 Finsler geometry of the Grassmann manifold of H
Let us recall some basic facts on the differential geometry of the set P(H) (see for instance [7],
[24], [2]).

1. The space P(H) is a homogeneous space under the action of the unitary group U(H) by
inner conjugation: if U ∈ U(H) and P ∈ P(H), the action is given by

U · P = UPU∗.

This action is locally transitive: it is well known that two projections P1, P2 such that
‖P1 − P2‖ < 1, are conjugate. Therefore, since the unitary group U(H) is connected,
the orbits of the action coincide with the connected components of P(H), which are: for
n ∈ N, Pn,∞(H) (projections of nullity n), P∞,n(H) (projections of rank n) and P∞(H)
(projections of infinite rank and nullity). These components are C∞-submanifolds of B(H).

2. There is a natural linear connection in P(H). If dimH < ∞, it is the Levi-Civita connec-
tion of the Riemannian metric which consists of considering the Frobenius inner product
at every tangent space. It is based on the diagonal / co-diagonal decomposition of B(H).
To be more specific, given P0 ∈ P(H), the tangent space of P(H) at P0 consists of all self-
adjoint co-diagonal matrices (in terms of P0). The linear connection in P(H) is induced
by a reductive structure, where the horizontal elements at P0 (in the Lie algebra of U(H):
the space of antihermitian elements of B(H)) are the co-diagonal antihermitian operators.
The geodesics of P which start at P0 are curves of the form

δ(t) = eitXP0e
−itX , (1)

with X∗ = X co-diagonal with respect to P0. Observe that X is co-diagonal with respect
to every Pt = δ(t). It was proved in [24] that if P0, P1 ∈ P(H) satisfy ‖P0 −P1‖ < 1, then
there exists a unique geodesic (up to reparametrization) joining P0 and P1. This condition
is not necessary for the existence of a unique geodesic.
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3. There exists a unique geodesic joining two projections P and Q if and only if

R(P ) ∩N(Q) = N(P ) ∩R(Q) = {0},

(see [2]).

4. If H is infinite dimensional, the Frobenius metric is not available. However, if one endows
each tangent space of P(H) with the usual norm of B(H), one obtains a continuous (non
regular) Finsler metric,

d(P0, P1) = inf{ℓ(γ) : γ a continuous piecewise smooth curve in P(H) joining P0 and P1}

where ℓ(γ) denotes the length of γ (parametized in the interval I):

ℓ(γ) =

∫

I
‖γ̇(t)‖dt.

In [24] it was shown that the geodesics (1) remain minimal among their endpoints for all
t such that

|t| ≤ π

2‖X‖ .

It can be shown that d(P0, P1) < π/2 if and only if ‖P0 − P1‖ < 1. In other words,
‖P0 − P1‖ = 1 if and only if d(P0, P1) = π/2.

3 Geometry of the pairs PI , QJ

Lenard proved in [22] that the projections PI , QJ ∈ P(L2(Rn, dx)) defined in Example (1.1),
satisfy

R(PI) ∩N(QJ) = R(QJ) ∩N(PI) = {0}. (2)

Moreover, ‖PI −QJ‖ = 1.
Therefore one obtains the following:

Theorem 3.1. Let I, J be measurable subsets of Rn of finite measure, and PI , QJ the above
projections. Then there exists a unique selfadjoint operator XI,J satisfying:

1. ‖XI,J‖ = π/2.

2. XI,J is PI and QJ co-diagonal. In other words, XI,J maps functions in L2(Rn, dx) with

support in I to functions with support in R
n− I, and functions such that f̂ has support in

J to functions such that the Fourier transform has support in R
n − J .

3. eiXI,JPIe
−iXI,J = QJ .

4. If P (t), t ∈ [0, 1] is a smooth curve in P(H) with P (0) = PI and P (1) = QJ , then

ℓ(P ) =

∫ 1

0
‖Ṗ (t)‖dt ≥ π/2.
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Proof. By the condition (2) above ([22]), it follows from [2] that there exists a unique minimal
geodesic of P(H), of the form

δI,J(t) = eitXI,JPIe
itXI,J

with X∗
I,J = XI,J co-doagonal with respect to PI (and QJ) such that

δI,J(1) = QJ .

Condition 4. above is the minimality property of δI,J . Finally, the fact that ‖PI − QJ‖ = 1
means that ‖XI,J‖ = π/2.

Remark 3.2. It is known [13] that λ1 = ‖PIQJPI‖ = ‖PIQJ‖2 < 1, and moreover
√
λ1 equals

the cosine of the angle between the subspaces R(PI) and R(QJ).
One can also relate this number λ1 with the operator XI,J . Using Halmos decomposition

(recall that it consists only of H00 and the generic part H0 in this case),

PIQJPI = 0⊕
(

C2 0
0 0

)

and thus λ1 = ‖cos(X)‖2. We shall see below that the spectrum of X is a strictly increasing
sequence of positive eigenvalues γn → π/2, with finite multiplicity. Moreover, since PIQJPI

belongs to B1(H), it follows that C ∈ B2(L). Thus

{cos(γn)} ∈ ℓ2.

For a given P ∈ P(H), let AP be

AP = {X ∈ B(H) : [X,P ] is compact}.

Apparently AP is a C∗-algebra.

Theorem 3.3. Let I, J be measurable subsets of Rn of finite Lebesgue measure.

1. The selfadjoint operator XI,J has closed infinite dimensional range, in particular it is not
compact.

2. Let I0 be another measurable set with finite measure such that |I∩I0| = 0, and let P0 = PI0 .
Then, the commutant [XI,J , P0] is compact.

Proof. Easy matrix computations ([2]) show that, in the decomposition H = H00 ⊕ (L × L),
XI,J is of the form

XI,J = 0⊕
(

0 −iX
iX 0

)

.

Note that the spectrum of this operator is symmetric with respect to the origin. Indeed, if V
equals the symmetry

V = 1⊕
(

0 1
1 0

)

,

then apparently V XI,JV = −XI,J . Also note that

X2
I,J = 0⊕

(

X2 0
0 X2

)

.

6



Therefore the spectrum of XI,J is

σ(XI,J) = {0} ∪ {γn : n ≥ 1} ∪ {−γn : n ≥ 1},

with 0 of infinite multiplicity, and the multiplicity of γn equal to the multiplicity of −γn, and
finite. What matters here, is that the set {γn : n ≥ 1} is infinite, and is therefore an increasing
sequence converging to π/2. This holds because otherwise, the operator C would have finite
rank, and therefore PIQJPI would be of finite rank, which is not the case (see [22]). Thus XI,J

has closed range. of infinite dimension.
Note that PI and QJ satisfy that PIP0 = 0 and QJP0 = QJPI0 is compact, and therefore

PI , QJ ∈ AP0
. Thus the symmetries SPI

, SQJ
belong to aP0

. Since SQJ
= ei2XI,JSPI

, this implies
that

ei2XI,J ∈ AP0
.

By the spectral picture of XI,J it is clear that XI,J can be obtained as an holomorphic function
of ei2XI,J . Since AP0

is a C∗-algebra, this implies that XI,J ∈ AP0
.

Let us relate the operator XI,J with the mathematical version of the uncertainty principle,
according to [11] and [13].

Let A ∈ B(H) be an operator with closed range, the reduced minimum modulus γA of A is
the positive number

γA = min{‖Aξ‖ : ξ ∈ N(A)⊥, ‖ξ‖ = 1} = min{|λ| : λ ∈ σ(A), λ 6= 0}.

Donoho and Stark [11] underline the role of the number ‖QJPI‖ and consider any constant c
such that ‖QJPI‖ ≤ c a manifestation of the (mathematical) uncertainty principle. By the
above Remark, we have:

Corollary 3.4. With the current notations,

‖QJPI‖ = cos(γXI.J
).

Proof. Indeed, in the above description of the spectrum of XI,J , the reduced minimum modulus
γXI.J

of XI,J coincides with γ1.

Let X0
I,J be the restriction of XI,J to the generic part of PI and QJ , i.e., its restriction to

N(XI,J)
⊥. In Halmos decomposition

X0
I,J =

(

0 −iX
iX 0

)

.

Recall the formula by Donoho and Stark [11]

‖PIQJ‖HS = |I|1/2|J |1/2.

From the preceeding facts, it also follows:

Corollary 3.5. With the current notations

|I|1/2|J |1/2 = ‖ cos(X)‖HS =
1√
2
‖cos(X0

I,J )‖HS = {
∞
∑

n=1

1

2
cos(γn)

2}1/2.
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Proof.

|I||J | = ‖PIQJ‖2HS = Tr(PIQJPI) = Tr(C2) =
1

2
Tr

(

C2 0
0 C2

)

=
1

2
Tr(cos(X0

I,J)
2).

This co-diagonal exponent XI,J (with respect both to PI and QJ) has interesting features
when I = J and |I| < ∞. In this case denote by XI = XI,I ; then, we have two unitary operators
intertwining PI and QI . Namely, the Fourier transform UF and the exponential eiXI ,

U∗
FPIUF = QI = eiXIPIe

−iXI .

Let H = H∗ be the natural logarithm of the Fourier transform, eiH = UF . Namely, writing E1,
E−1, Ei and E−i the eigenprojections of UF ,

H = −πE−1 +
π

2
Ei −

π

2
E−i.

Note that ‖H‖ = π. Thus, one obtains a smooth path joining PI and QI :

ϕ(t) = e−itHPIe
itH .

and, apparently, ϕ(1) = QI .
Since the Fourier transform intertwines PI and QJ , the norm of its commutant with either

of these projections can be regarded as a measure of non commutativity between PI and QJ :

Theorem 3.6. For any Lebesgue measurable set I ⊂ R
n with |I| < ∞, one has

‖[H,PI ]‖ = ‖[H,QI ]‖ ≥ π/2.

Proof. The geodesic δI with exponent XI is the shortest curve in P(H) joining PI and QI . Its
length is π/2. Then

π/2 ≤ ℓ(ϕ) =

∫ 1

0
‖ϕ̇(t)‖dt =

∫ 1

0
‖eitH [H,PI ]e

−itH‖dt = ‖[H,PI ]‖.

Note that
U∗
F [H,PI ]UF = [H,U∗

FPIUF ] = [H,QI ]

because UF and H commute.

Remark 3.7.

1. We may write H in terms of UF using the well known formulas

E−1 =
1

4
(1−UF +U2

F −U3
F), Ei =

1

4
(1− iUF −U2

F + iU3
F ), E−i =

1

4
(1+ iUF −U2

F − iU3
F ),

and thus
H =

π

4
{−1 + (1 + i)UF − U2

F + (1 + i)U3
F}.

Then
[H,PI ] =

π

4
{(1 + i)[UF , PI ]− [U2

F , PI ] + (1 + i)[U3
F , PI ]}.

The inequality in Corollary 3.6 can be written

‖(1 + i)[UF , PI ]− [U2
F , PI ] + (1 + i)[U3

F , PI ]‖ ≥ 2.
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2. In the special case when the set I is (essentially) symmetric with respect to the origin, PI

commutes with U2
F , so that

[U2
F , PI ] = 0 and [U3

F , PI ] = [UF , PI ]U
2
F = U2

F [UF , PI ]

one has

[H,PI ] =
(1 + i)π

4
[UF , PI ](1 + U2

F ).

The operator U2
Ff(x) = f(−x) is a symmetry, then 1

2 (1+U2
F ) is the orthogonal projection

Ee onto the the subspace of essentially even functions (f(x) = f(−x) a.e.). Then one can
write

[H,PI ] =
(1 + i)π

2
[UF , PI ]Ee =

(1 + i)π

2
Ee[UF , PI ].

Corollary 3.8. Suppose that I is essentially symmetric, with finite measure.

1.

‖Ee[UF , PI ]‖ = ‖Ee[UF , PI ]Ee‖ ≥ 1√
2
.

2.

‖EePI − EeQI‖ ≥ 1√
2
,

where EePI = PIEe and EeQI = QIEe are orthogonal projections.

Proof. Recall that Ee and UF commute. Then

Ee[UF , PI ]Ee = Ee(UFPI − PIUF )Ee = UFEe(PI − U∗
FPIUF )Ee

= UFEe(PI −QI)Ee.

where Ee, as well as UF , and thus also QI = U∗
FPIUF commute with Ee.

The ranges of these two orthogonal projections EePI and EeQI consist of the elements of
L2 which are essentially even and vanish (essentially) outside I, and the analogous subspace for
the Fourier transform.

4 Spatial properties of PI and QJ

Let us return to the general setting (I not necessarily equal to J). The ranges and nullspaces
of PI and QJ have several interesting properties. First we need the following lemma:

Lemma 4.1. Let P,Q be orthogonal projections such that ‖P − Q‖ = 1. Then one and only
one of the following conditions hold:

1. N(P ) + R(Q) = H, with non direct sum (and this is equivalent to R(P ) + N(Q) being a
direct sum and a closed proper subspace of H).

2. R(P ) +N(Q) = H, with non direct sum (and this is equivalent to N(P ) + R(Q) being a
direct sum and a closed proper subspace of H).
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3. R(P ) +N(Q) is non closed (and this is equivalent to N(P ) +R(Q) being non closed).

Proof. By the Krein-Krasnoselskii-Milman formula (see for instance [19])

‖P −Q‖ = max{‖P (1 −Q)‖, ‖Q(1 − P )‖},

we have that one and only one of the following hold:

1. ‖P (1 −Q)‖ < 1 and ‖Q(1− P )‖ = 1,

2. ‖P (1 −Q)‖ = 1 and ‖Q(1− P )‖ < 1, or

3. ‖P (1 −Q)‖ = 1 and ‖Q(1− P )‖ = 1.

This alternative corresponds precisely with the three conditions in the Lemma. It is known [9]
that for two orthogonal projections E and F , ‖EF‖ < 1 holds if and only if R(E)∩R(F ) = {0}
and R(E) + R(F ) closed. The sum M + N of two subspaces is closed if and only if the sum
M⊥ +N⊥ is closed (see [9]). Therefore, ‖EF‖ < 1 is also equivalent to N(E) +N(F ) = H.

If we apply these facts to E = P and F = 1 − Q, we obtain that the first alternative is
equivalent to R(P ) ∩N(Q) = {0} and R(P ) +N(Q) closed, or to N(P ) +R(Q) = H.

Analogously, the second alternative is equivalent to R(Q) ∩N(P ) = {0} and R(Q) +N(P )
closed, or to N(Q) +R(P ) = H.

Note that in the first case, R(P ) + N(Q) is proper, otherwise its orthogonal complement
would be N(P ) ∩ R(Q) = {0}, which together with the fact that N(P ) + R(Q) = H (closed!),
would lead us to the second alternative.

Analogously in the second alternative, N(P ) +R(Q) is proper.
If neither of these two happen, it is clear that neither R(P ) + N(Q) nor (equivalently) the

sum of the orthogonals N(P ) +R(Q) is closed.

We have the following:

Theorem 4.2. Let I, J ⊂ R
n with finite Lebesgue measure. Then

1. R(PI)+R(QJ) is a closed proper subset of L2(Rn), with infinite codimension. The sum is
direct (R(PI) ∩R(QJ) = {0}).

2. N(PI) + N(QJ) = L2(Rn), and the sum is not direct (N(PI) ∩N(QJ ) is infinite dimen-
sional).

3. R(PI) +N(QJ) and N(PI) + R(QJ) are proper dense subspaces of L2(Rn), and R(PI) ∩
N(QJ) = N(PI) ∩R(QJ) = {0}.

Proof. By the cited result [9], two projections P,Q, satisfy that R(P ) + R(Q) is closed and
R(P )∩R(Q) = {0} if and only if ‖PQ‖ < 1. It is also known (see above, [13]) that ‖PIQJ‖ < 1.
The intersection of these spaces is, in our case (using the notation of the Halmos decomposition)

R(PI) ∩R(QJ) = H11 = {0}.

As remarked above, Lenard proved thatH11 = H10 = H01 = {0}, andH00 is infinite dimensional.
The orthogonal complement of this sum is

(R(PI) +R(QJ))
⊥ = N(PI) ∩N(QJ) = H00.
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Thus the first assertion follows.
In our case ‖PI −QJ‖ = 1 ([13], [22]) thus we may apply the above Lemma.
The first condition cannot happen:

(N(PI) +R(QJ))
⊥ = R(PI) ∩N(QJ) = H10 = {0}.

By a similar argument, neither the second condition can happen. Thus R(PI) + R(QJ) is non
closed, and its orthogonal complement is trivial. Thus the second and third assertions follow.

Remark 4.3. It is known (see for instance [12]), that if P,Q are projections with PQ compact
and R(P ) ∩R(Q) = {0}, then

‖PQ‖ < 1.

In [6], the second named author and A. Maestripieri studied the set of operators T ∈ B(H)
which are of the form T = PQ. Among other properties, they proved that T may have many
factorizations, but there is a minimal factorization (called canonical factorization of T ), namely

T = P
R(T )

PN(T )⊥ ,

which satisfies that if T = PQ, then R(T ) ⊂ R(P ) and N(T )⊥ ⊂ R(Q) (or equivalently
N(Q) ⊂ N(T )). Following this notation,

Proposition 4.4. The factorization PIQJ is canonical.

Proof. Put T = PIQJ . Using Halmos decomposition in this particular case (H = H00⊕(L×L)),
apparently

PIQJPI = 0⊕
(

C 0
0 0

)

,

and thus R(PIQJPI) = 0 ⊕ (R(C) × 0). Recall that C2 > 0, and thus C2 has dense range. It
follows that

R(T ) = R(PIQJ) = R(PIQJPI) = 0⊕ (L × 0),

which is precisely the range of PI : R(T ) = R(PI). Note the following elementary fact:

N(PQ) = N(Q)⊕ (R(Q) ∩N(P )).

For the factorization T = PIQJ it is known ([22]) that R(QJ) ∩N(PI) = 0. Thus

N(T ) = N(PIQJ) = N(QJ)

and the proof follows.

In [6] it is proven that if T = PQ = P0Q0, and the latter is the canonical factorization, then

‖P0f −Q0f‖ ≤ ‖Pf −Qf‖

for any f ∈ L(
R
n). In particular ‖P0 −Q0‖ ≤ ‖P −Q‖. In our case we get the following result

Corollary 4.5. Let P,Q projections in L2(Rn) such that PQ = PIQJ . Then for any f ∈ L2(Rn)
one has

‖PIf −QJf‖2 ≤ ‖Pf −Qf‖2.
In particular, ‖PI −QJ‖ ≤ ‖P −Q‖.

11



References

[1] Amrein, W. O.; Sinha, K. B. On pairs of projections in a Hilbert space. Linear Algebra
Appl. 208/209 (1994), 425–435.

[2] Andruchow, E.; Operators which are the difference of two projections. J. Math. Anal.
Appl. 420 (2014), no. 2, 1634-1653.

[3] Arias, A.; Gudder, S. Almost sharp quantum effects. J. Math. Phys. 45 (2004), no. 11,
4196–4206.

[4] Berthier, A. M.; Jauch, J. M. A theorem on the support of functions in L2(R) and of their
Fourier transforms. Lett. Math. Phys. 1 (1975/76), no. 2, 93–97.
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[17] Havin, V.; Jöricke, B. The uncertainty principle in harmonic analysis, Springer-Verlag,
Berlin, 1994.

[18] Hogan, J. A.; Lakey, J. D. Time-frequency and time-scale methods. Adaptive decomposi-
tions, uncertainty principles, and sampling, Birkhäuser, Boston, 2005.
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