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Highlights 

 Pharmacological doses of progesterone and estradiol results in an inhibition of 

hypothalamic GnRH expression. 

 Physiological doses of progesterone and estradiol showed a differential effect over 

GnRH pulsatile delivery frequency or genomic GnRH expression.  

 The modulation of GnRH delivery and expression would be subjected to different 

levels of action of steroid hormones.  
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 A short-term effect of E2 would modulate the frequency of GnRH delivery pattern 

whereas a long-term effect of E2 would modify the GnRH mRNA expression 

 The fine action of E2 and P4 constitute the key factor to enable the hypothalamic 

activity during the pregnancy of this mammal. 

 

Abstract 

The South American plains vizcacha, Lagostomus maximus, is the only mammal described so 

far that shows expression of estrogen receptors (ERs) and progesterone receptors (PRs) in 

gonadotropin-releasing hormone (GnRH) neurons. This animal therefore constitutes an 

exceptional model for the study of the effect of steroid hormones on the modulation of the 

hypothalamic-pituitary-ovarian (HPO) axis. By using both in vivo and ex vivo approaches, we 

have found that pharmacological doses of progesterone (P4) and estradiol (E2) produced an 

inhibition in the expression of hypothalamic GnRH, while physiological doses produced a 

differential effect on the pulsatile release frequency or genomic expression of GnRH. Our ex 

vivo experiment indicates that a short-term effect of E2 modulates the frequency of GnRH 

release pattern that would be associated with membrane ERs. On the other hand, our in vivo 

approach suggests that a long-term effect of E2, acting through the classical nuclear ERs-PRs 

pathway, would produce the modification of GnRH mRNA expression during the GnRH pre-

ovulatory surge. Particularly, P4 induced a rise in GnRH mRNA expression and protein release 

with a decrease in its release frequency. These results suggest different levels of action of 

steroid hormones on GnRH modulation. We conclude that the fine action of E2 and P4 

constitute the key factor to enable the hypothalamic activity during the pregnancy of this 

mammal. 

Abbreviations 

ANOVA one-way analysis of variance 

ARC arcuate nucleus 

BSA bovine serum albumin 

E2 

ECAS 

ERs 

estradiol 

Estación de Cría de Animales Silvestres 

estrogen receptors 
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ERα 

FSH 

GAPDH 

GnRH 

hCG 

HP 

HPO 

KRB 

LH 

NP 

OVX 

P4 

PFA 

PMSG 

POA 

PRs 

RIA 

SD 

SHAM 

SNP 

SON 

VMN 

estrogen receptor alpha 

follicle-stimulating hormone 

glyceraldehyde 3-phosphate dehydrogenase 

gonadotropin-releasing hormone 

human chorionic gonadotropin 

hypothalamic-pituitary 

hypothalamic-pituitary-ovarian 

Krebs Ringer buffer 

luteinizing hormone 

non-pregnant 

ovariectomized 

progesterone 

neutral-buffered paraformaldehyde 

pregnant mare’s serum gonadotropin 

preoptic area 

progesterone receptors 

radioimmunoassay 

standard deviation 

surgery simulated non-pregnant 

stimulated non-pregnant 

supraoptic nucleus 

ventromedial nucleus 
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1. Introduction 

Pubertal development and adult reproductive function depend on the activation of the 

hypothalamic-pituitary-ovarian (HPO) axis. In most species, gonadotropin-releasing hormone 

(GnRH), a decapeptide involved in the modulation of the HPO axis, is synthesized in the 

hypothalamus by a discrete specialized group of neurons scattered throughout the preoptic area 

(POA), the ventromedial nucleus (VMN) and the arcuate nucleus (ARC) (Urbanski et al. 1991, 

Urbanski et al.1992, Silverman & Witkin 1994). The majority of GnRH neurons project their 

processes towards the median eminence (ME), releasing GnRH into the hypothalamic-pituitary 

portal circulation, that transports the hormone to the anterior pituitary gland where it binds to its 

specific receptor and modulates gonadotropin synthesis and delivery (Krey & Silverman 1978, 

Silverman et al. 1987, Silverman & Witkin 1994, Witkin et al. 1995, Yin et al. 2009a, Yin et al. 

2009b). As the central regulator of fertility in mammals, GnRH is released in discrete pulses 

separated by periods of little to no secretion, from puberty up to menopause, except during 

pregnancy (Belchetz et al. 1978). This mode of secretion sensitizes the pituitary gonadotrophs 

to GnRH stimulation and regulates gonadotropin gene expression (Wetsel et al. 1992).Variations 

in the pulsatile pattern of GnRH release differentially modulates the synthesis and secretion of 

the two pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone 

(FSH), that influence gonadal gametogenesis, folliculogenesis and steroidogenesis (Wildt et al. 

1981, Marshall & Griffin 1993). Low GnRH pulse frequency favors FSH release whereas high 

pulse frequency stimulates the release of LH (Wildt et al. 1981, Gharib et al. 1990, Burger et al. 

2008, Ciccone et al. 2010). Although the pulsatile secretion of GnRH is an intrinsic property of 

hypothalamic GnRH neurons, attributed to specific mechanisms of spontaneous electrical 

activity, its pulsatile delivery frequency and amplitude is under modulation of a complex 

network of molecules (Krsmanovic et al. 2009). One of the classical pathways of GnRH 

modulation includes the feedback produced by the gonadal steroid hormones progesterone (P4) 

and estradiol (E2) (Yen et al. 1975, Goodman & Karsch 1980, Knobil 1980, White et al. 2007, 

Thackray et al. 2009, Yin et al. 2009a, Yin et al. 2009b). 

Although most mammals show inhibition of the HPO axis during gestation, we have recently 

described that the South American plains vizcacha (Lagostomus maximus), a hystricognathe 

caviomorph rodent inhabiting the southern area of the Neotropical region, especially the 

Pampean region of Argentina (Jackson et al. 1996), displays reactivation of the reproductive 
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axis at mid-gestation (Dorfman et al. 2013, Fraunhoffer et al. 2017, Inserra et al. 2017) among 

other exceptional reproductive traits such as the highest ovulation rate, so far recorded for a 

mammal, up to 800 oocytes per estrous cycle (Weir 1971a, Weir 1971b), natural selective and 

sequential resorption of the anteriorly implanted fetuses (Weir 1971a), and suppression of 

apoptosis-dependent follicular atresia driven through an over-expression of the anti-apoptotic 

BCL2 gene and a basal or absent expression of pro-apoptotic BAX gene, both in the developing 

and adult ovary (Jensen et al. 2006, Leopardo et al. 2011, Inserra et al. 2014). We hypothesized 

that the reactivation of the HPO axis during gestation is enabled by a fine equilibrium in the 

neuroendocrine environment of the pregnant vizcacha that makes possible follicular maturation 

and development of a new set of secondary corpora lutea that provides the hormonal boost 

necessary to get pregnancy to term. This event correlates with an increased expression of 

hypothalamic GnRH, estrogen receptor alpha (ERα) and progesterone receptors (PRs), despite 

increased and sustained levels of serum P4, E2 and LH (Dorfman et al. 2013, Fraunhoffer et al. 

2017, Inserra et al. 2017, Proietto et al. 2019). Finally, we have also shown that GnRH neurons 

of POA and supraoptic nucleus (SON) express ERα and PRs, suggesting a direct action of E2 

and P4 to assure GnRH synthesis and delivery during pregnancy (Dorfman et al. 2013, Inserra 

et al. 2017). 

The aim of this study was to evaluate the involvement of E2 and P4 in the modulation of 

hypothalamic GnRH synthesis and release in this species with this particular reproductive 

strategy. In order to elucidate this matter, we employed both in vivo and ex vivo approaches, 

exposing the hypothalamus to physiological and pharmacological doses of E2 and P4, and 

agonists and antagonists of their specific receptors. 

 

2. Materials and methods 

 

2.1 Ethics 

All experimental protocols concerning animal handling were conducted in accordance with the 

guidelines published in the National Institutes of Health (NIH) guide for the care and use of 

laboratory animals (National Research Council 2011), and were reviewed and approved by the 

Institutional Committee on Use and Care of Experimental Animals (CICUAE) from 

Universidad Maimónides, Argentina (Resolution Nº 16/14).  
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2.2 Animals 

Adult non-pregnant (NP) female plains vizcachas (n=80) were captured from a resident natural 

population at the Estación de Cría de Animales Silvestres (ECAS), Villa Elisa, Buenos Aires, 

Argentina, using live-traps located at the entrance of burrows. Appropriate procedures were 

performed to minimize the number of animals used. Captures were planned according to the 

natural reproductive cycle, as described by Llanos & Crespo (1952), and our own expertise in 

the field (Jensen et al. 2006, Jensen et al. 2008, Dorfman et al. 2011, Espinosa et al. 2011, 

Leopardo et al. 2011, Dorfman et al. 2013, Halperin et al. 2013, Inserra et al. 2014, Charif et al. 

2016, Dorfman et al. 2016, Charif et al. 2017, Fraunhoffer et al. 2017, Inserra et al. 2017, 

Leopardo & Vitullo 2017, Giacchino et al. 2018, Leopardo et al. 2018, Proietto et al. 2018, 

Gariboldi et al. 2019, Proietto et al. 2019, Schmidt et al. 2019). All animals ranged from 2.5 to 

3.5 years old as determined by the dry lens weight, according to Jackson (1986). Animals were 

housed under a 12:12 hour low-light cycle to simulate their natural light exposure (low light of 

12W followed by moon light) at 22 ± 2°C constant room temperature, with food and tap water 

ad libitum. 

 

2.3 Experiment 1: GnRH expression during the activation of hypothalamic-pituitary axis 

In order to obtain animals with active hypothalamic-pituitary (HP) axis, 15 NP females were 

anaesthetized by intramuscular injection of 6.66mg/kg body weight ketamine chlorhydrate 

(Holliday Scott S.A., Buenos Aires, Argentina) and 0.3mg/kg body weight xylazine 

chlorhydrate (Richmond Laboratories, Veterinary Division, Buenos Aires, Argentina), and 

bilaterally ovariectomized (OVX) through a single dorsal incision. Tramadol (1mg/kg, Algen 

20, Laboratorios Richmond S.A., Argentina) was administered for pain management and 

penicillin G (10,000IU/kg procaine benzyl penicillin + 10,000IU/kg benzathine benzyl 

penicillin + 16,000IU/kg dihydro-streptomycin sulfate, Fort-E-Pen, Laboratorios Brouwer S.A, 

Argentina) to prevent infections. 

OVX females were randomly divided into three groups. The fifth day post-surgery, females 

were treated with intramuscular pharmacological doses of E2 (OVX+E2; n=5, 1mg/kg/day, 

Laboratorios Burnet S.A., Argentina), P4 (OVX+P4; n=5, 5mg/kg/day, Laboratorios Burnet 

S.A., Argentina) or vehicle (OVX; n=5, 1ml/kg/day) during five consecutive days. Five SHAM 

surgery animals were used as control group. Females were sacrificed the day followed to the last 

injection (Figure 1A). The pharmacological doses of E2 and P4 employed were calculated in 

order to produce a serum concentration of at least ten times higher than normal serum 

concentration of non-pregnant vizcachas, as previously described (Dorfman et al. 2013, 

Fraunhoffer et al. 2017).  
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2.4 Experiment 2: GnRH expression during induced luteal phase 

In order to study hypothalamic activity during the luteal phase, 15NP females were 

synchronized (SNP) by inducing ovulation, as previously described (Charif et al. 2016, Proietto 

et al. 2019). Briefly, females were injected intramuscularly with pregnant mare’s serum 

gonadotropin (PMSG) (250IU/day, Novormon 5000, Syntex, Argentina) during three 

consecutive days, followed by an intramuscular administration of human chorionic 

gonadotropin (hCG) (1000IU, Ovusyn 5000, Syntex, Argentina) at the fourth day. Five 

additional NP females were injected with vehicle and used as control group. 

SNP females were randomly divided into three groups and treated with pharmacological doses 

of E2 (SNP+E2; n=5; 1mg/kg/day, Laboratorios Burnet S.A., Argentina), P4 (SNP+P4; n=5; 

5mg/kg/day, Laboratorios Burnet S.A., Argentina) or vehicle (SNP; n=5) during five 

consecutive days. Females were sacrificed 14 days after the first injection of PMSG (Figure 

1B). The presence of ovulatory stigmata at sacrifice was considered as inclusion criteria. 

Ovaries of all females were removed and fixed in cold 4% neutral-buffered paraformaldehyde 

(PFA) (Sigma Aldrich Inc., St. Louis, Missouri, USA) for histological inspection of the 

ovulatory status (corpora lutea and follicle development) by hematoxylin-eosin staining (Figure 

2). 

  

 

2.5 Experiment 3: GnRH expression and pulsatile delivery 

In order to analyze the involvement of E2 and P4 in GnRH pulsatility, 40 NP females were 

synchronized by PMSG and hCG treatment, as described above. Animals were sacrificed 14 

days after the first PMSG injection (Figure 1C). Hypothalamic explants were incubated during 6 

hours with different combinations of E2, P4, and ER and PR agonists and antagonists (Table 1), 

at concentrations selected from previous reports in rats, mice, ewes and cancer cell lines 

(Kraichely et al. 2000, Mattheus et al. 2006, Arreguin-Arevalo et al. 2007, Hu et al. 2008, Ng et 

al. 2009, Serova et al. 2010, Clipperton-Allen et al. 2011, Kuo et al.2011, Lattrich et al. 2014). 

GnRH released to the incubation medium was measured by radioimmuneassay (RIA). 

 

2.6 Tissue collection 
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Animals were anaesthetized by the intramuscular injection of 13.5mg/kg body weight ketamine 

chlorhydrate (Holliday Scott S.A., Buenos Aires, Argentina) and 0.6mg/kg body weight 

xylazine chlorhydrate (Richmond Laboratories, Veterinary Division, Buenos Aires, Argentina). 

Blood samples were taken by puncture in the inferior vena cava. After bleeding, animals were 

sacrificed by an intracardiac injection of 0.5ml/kg body weight of EuthanylTM (Sodic 

Pentobarbital, Sodic Diphenilhidanthoine, Brouwer S.A., Buenos Aires, Argentina). Brains were 

rapidly removed and the whole hypothalamus was dissected out following the anterior and 

lateral borders of the optic chiasm, the anterior border of the mammillary bodies and 

approximately 4mm depth, as previously described (Dorfman et al. 2103, Charif et al. 2016, 

Charif et al. 2017, Inserra et al. 2017). The right halves of the hypothalami were used to 

evaluate specific mRNA content whereas the left halves were used to evaluate protein GnRH 

content. Both left and right halves were immediately frozen in dry ice and stored at -80°C for 

RNA and protein analysis. In order to analyze GnRH pulsatile release, whole hypothalami were 

placed in gelatin pre-coated tubes with 500µl of Krebs-Ringer buffer (KRB) (115mM NaCl, 

4.7mM KCl, 1.2mMKH2PO4, 1.2mM MgSO4, 2.56mM CaCl2 and 20mM NaHCO3; pH 7.4) 

supplemented with 0.1% bovine serum albumin (BSA), 25mM glucose and 16mM HEPES, as 

previously described (Charif et al. 2016). Surgeries were developed in coordination with others 

members of our group who use other organs of reproductive relevance such as mammary 

glands, pituitary glands, adrenal glands, pineal glands, as well as muscle, liver and kidney. 

 

2.7 Serum progesterone and estradiol determination 

Serum E2 and P4 content was determined by ELISA, as previously described (Dorfman et al. 

2013, Charif et al. 2017, Inserra et al. 2017). Briefly, blood samples were centrifuged for 15 

minutes at 3,000rpm; serum fractions were aliquoted and stored at -80ºC. Estradiol ELISA Kit 

(EIA-2693, DRG Int., Germany) or the Progesterone ELISA Kit (EIA-1561, DRG Int., 

Germany) were used to determine E2 and P4 serum levels, respectively, according to the 

manufacturer's instructions. Direct solid phase enzyme immunoassays that detect a range of 16-

2000pg/ml of E2 or 0.18-40ng/ml of P4 were developed. Intra- and inter-assays coefficients of 

variation were 6.8% and 10.3%, respectively for E2 and 7.1% and 10.7% for P4. The 

absorbance of the solutions, measured at 450nm (µQuant Microplate Spectophotometer, Bio-tek 

Instruments Inc., Winooski, Vermont, USA), was inversely related to the concentration of E2 or 

P4 in the sample. E2 and P4 content was referred to the respective calibration curves.  

 

2.8 RIA for serum LH detection 
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Serum LH content was determined by RIA with kits from the National Hormone and Pituitary 

Program, National Institute of Diabetes, Digestive and Kidney Diseases, USA, as previously 

described (Dorfman et al. 2013, Inserra et al. 2017, Proietto et al. 2019). Results were expressed 

in relation to rat LH standards using: r-LH-I10, reference preparation rat LH-RP-3 (AFP7187B) 

and anti-rat LH-S11 (AFPC697071P) (Catalano et al. 2010). Assay sensitivity was 0.31ng/ml. 

Intra- and inter-assay coefficients of variation were 7.0% and 11.2%, respectively. A pool of 

pituitaries of high LH content was serially diluted to prepare the vizcacha curve. Its parallelism 

with the rat standard curve was confirmed.  

 

2.9 RNA isolation and quantitative polymerase chain reaction (qPCR) 

In order to extract total hypothalamic RNA, tissues were homogenized with TRIzol (Invitrogen, 

California, USA), according to the manufacturer’s instructions, as previously described (Charif 

et al. 2017, Inserra et al. 2017). Its concentration was quantified by absorption at 260nm 

(Genequant, Amersham Biosciences, England) and its integrity confirmed in a 1% agarose 

(Genbiotech, Argentina) in Tris (0.09M), boric acid (0.045M), EDTA (0.05M) (TBE) buffer gel 

(pH 8.3) when the presence of S28 and S18 rRNA subunits were observed. Three µg of total 

RNA was treated with 1µl DNaseI (Invitrogen, California, USA) in 1µl 10X DNase Reaction 

Buffer (Invitrogen, California, USA) for 30 minutes at 37°C, and the reaction was stopped with 

1µl EDTA 50mM (Invitrogen, California, USA) for 10 minutes at 65°C. The RNA was reverse-

transcribed into first-strand cDNA using 1.5µl random hexamer primers 50µM (Applied 

Biosystems, California, USA), 200U reverse transcriptase (RevertAid™ M-MuLV, Fermentas, 

Massachusetts, USA), 4µl First Strand Buffer 5x (Fermentas, Massachusetts, USA), 2µl dNTP 

mixture 10mM (Invitrogen, California, USA) and 0.5µl RNase inhibitor (Ribolock™, 

Fermentas, Massachusetts, USA), at a 20µl final volume reaction. The reverse transcriptase was 

omitted in control reactions where the absence of PCR-amplified cDNA indicated the isolation 

of RNA free of genomic DNA. Reverse transcription reaction was carried out at 72ºC for 10 

minutes followed by 42°C for 60 minutes and stopped by heating at 70°C for 10 minutes. cDNA 

was stored at -20ºC until use. Three micrograms of cDNA was mixed with 6µl SYBR Green 

PCR Master Mix (Applied Biosystems, United Kingdom) for qPCR using 0.3µM forward and 

reverse oligonucleotide primers. Primer sequences and cycling parameters for each product are 

shown in Table 2. These primers were previously employed in vizcacha (Gonzalez et al. 2012, 

Dorfman et al. 2013, Charif et al. 2016, Charif et al. 2017, Fraunhoffer et al. 2017, Inserra et al. 

2017). Quantitative measures were performed using a Stratagene MPX500 cycler (Stratagene, 

California, USA). Data were collected from the threshold value, taken at the 72ºC extension 

phase, continuously stored during reaction and analyzed by the complementary computer 
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software (MxPro3005P v4.10 Build 389, Schema 85, Stratagene, California, USA). To confirm 

the specificity of the signal, the results were validated based on the quality of dissociation 

curves generated at the end of the qPCR runs. For each target gene, the relative quantitation of 

gene expression was normalized to that of glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) as housekeeping gene. For the assessment of quantitative differences in the cDNA 

target between samples, the mathematical model of Pfaffl (2001) was applied. An expression 

ratio was determined for each sample by calculating (Etarget)
∆Cq(target)/(EGAPDH)∆Cq(GAPDH),where E 

is the efficiency of the primer set and ∆Cq (quantification cycle) is the difference in the 

threshold cycle with ∆Cq = Cq(normalization cDNA) - Cq(experimental cDNA). The amplification efficiency of 

each primer set was calculated from the slope of a standard amplification curve of log (ng 

cDNA) per reaction vs. Cq value (E = 10-(1/slope)). Efficiencies of 2.0 ± 0.1 were considered 

optimal. Each sample was analyzed in triplicate along with non-template controls to monitor 

contaminating DNA. Purity of the amplified products was confirmed by 2% agarose gel 

electrophoresis (Biodynamics, Buenos Aires, Argentina). The presence of the amplified 

sequence was detected with an UV trans-illuminator (Labnet DyNA Light TM-26, USA). 

Corresponding gel bands were excised and purified with the Min Elute Gel Extraction kit 

(Qiagen, Hilden, Germany). To confirm GnRH, ERα, PR and GAPDH identities purified 

products were sequenced with a 3130xl Genetic Analyzer (Applied Biosystems, California, 

USA) by the Genomic Unit of the Biotechnology Institute, Instituto Nacional de Tecnología 

Agropecuaria (INTA), Buenos Aires, Argentina. Using the Bioedit software (Ibis Biosciences, 

California, USA) the obtained sequences of ERα, PR and GnRH were aligned together with the 

corresponding sequences published for other species and the percentage of homology 

determined with the DNA Single Polymorphism software (DNAsp version 5.0) (Rozas 2009); 

see Table 2. 

2.10 RIA for GnRH detection 

Hypothalamic GnRH content or GnRH delivered by hypothalamic explants was measured by 

RIAs previously described in mouse (Di Giorgio et al. 2013) and vizcacha (Dorfman et al. 

2013, Charif et al. 2016, Charif et al. 2017, Inserra et al. 2017). For hypothalamic detection of 

GnRH, tissues were homogenized in 100µl of HCl 0.1N, centrifuged for 30 minutes at 13,000g 

and supernatants recovered. All procedures were carried out at 4ºC. GnRH concentration was 

analyzed in duplicate using anti-GnRH antiserum (rabbit polyclonal HU-60 that recognizes 

GnRH1 with higher affinity than GnRH2, final dilution 1:50,000) (Mongiat et al. 2006) kindly 

provided by Dr. Urbanski (Division of Neuroscience, Oregon National Primate Research 

Center). GnRH was iodinated with 125I (NEZ 033H Iodine125, Perkin Elmer, Life and 

Analytical Science, Waltham, Massachusetts, USA) by the chloramine-T method (Greenwood et 
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al. 1963). Intra- and inter-assay coefficient of variation was 6.8% and 10.9%, respectively. 

Assay sensitivity was 1.5pg. The total protein content of each sample was determined by 

Bradford assay (Bradford 1976). Hypothalamic GnRH content was expressed as the ratio 

between the value obtained by RIA and the total protein content, while GnRH released to the 

medium in the ex vivo experiments was expressed as the ratio between the value obtained by 

RIA and the weight of each hypothalamic explant. 

 

2.11 Hypothalamic GnRH release 

GnRH pulsatility was measured ex vivo as previously described in mice (Catalano et al. 2010) 

and vizcacha (Charif et al. 2016). Briefly, hypothalami explants were pre-incubated for 30 

minutes at 37°C in 500μl of fresh KRB (control) or KRB supplemented with steroid hormones 

with or without the appropriate receptor agonist and antagonist, as described in Table 1. After 

pre-incubation, hypothalami were further incubated for 6 hours at 37°C in fresh or 

supplemented KRB (Table 1). During incubation, medium was collected at 7.5-minutes 

intervals, stored at -20°C, and replaced with fresh or supplemented KRB. In order to test tissue 

viability, a depolarizing concentration of potassium chloride (100mM) was added to the last 

tube for 30 minutes. A marked peak of GnRH release was identified. GnRH concentration was 

determined by RIA as described above. GnRH pulsatile parameters were determined using the 

computer algorithm Cluster8 developed by Veldhuis & Johnson (1986) (Pulse_XP software, 

http://mljohnson.pharm.virginia.edu/home.html). A 2x2 cluster configuration and a t-statistic of 

2 for the up stroke and down stroke, to maintain false-positive and false-negative error rates 

<10%, were used as suggested by Martinez de la Escalera et al. (1992). GnRH pulsatile 

frequency and GnRH total mass delivered were informed. 

 

2.12 Statistical analysis 

Values were expressed as mean ± standard deviation (SD). All the experiments were performed 

by duplicate. Results were evaluated using one-way analysis of variance (ANOVA). 

Comparisons among groups were made by Bonferroni post-test. Statistical analysis was 

performed using Prism 4.0 (GraphPad Software Inc., San Diego, California, USA). Differences 

were considered significant when p<0.05. 
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3. Results 

 

3.1 Experiment 1: GnRH expression during activated HP axis 

Ovariectomy significantly modified serum LH, P4 and E2 levels, confirming the activation of 

the HP axis (Figure 3A-C). OVX treatment significantly increased LH serum levels whereas 

OVX+P4 and OVX+E2 treatment reverted LH to control SHAM values (Figure 3A). In 

addition, OVX females showed a significant decrease of P4 and E2 serum levels (Figure 3B-C). 

The efficiency of the pharmacological treatment with P4 and E2 was confirmed by the detection 

of significant increased values of serum P4 and E2 in OVX+P4 and OVX+E2 animals, 

respectively (Figure 3B-C). Hypothalamic GnRH mRNA and protein content showed a pattern 

similar to that of LH, with a significant increase in OVX animals that was reverted with the 

pharmacological treatment with both P4 or E2 (Figure 3D-E).  

 

 

 

3.2 Experiment 2: GnRH expression during induced luteal phase 

PMSG and hCG treatment induced significant changes in serum LH, P4 and E2 levels (Figure 

4A-C). Accordingly, ovulatory stigmata and abundance of corpora lutea formation were 

observed in ovaries of all SNP animals, confirming the luteal phase (Figure 2). SNP females 

showed significantly increased levels of serum LH, whereas SNP animals treated with P4 or E2 

showed significantly lower LH levels, with values slightly over those of NP animals (Figure 

4A). In addition, the high levels of serum P4 and E2 detected in pharmacologically treated SNP 

animals confirmed the efficiency of the treatment (Figure 4B-C). Hypothalamic mRNA and 

protein content of GnRH decreased significantly when PMSG+hCG treatment was applied, 

regardless of P4 or E2 administration (Figure 4D-E). 

 

 

3.3 Experiment 3: ex vivo GnRH pulsatile release and mRNA expression 

In order to evaluate P4 and E2 involvement in GnRH release, hypothalamic explants of NP 

females, whose estrus cycles were synchronized by PMSG+hCG treatment, were incubated 
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with: a) P4 and/or the PR antagonist RU486, or b) E2 or combinations of ERand ER 

agonists and antagonists, as shown in Table 1. Experiment 3a showed that P4 significantly 

decreased GnRH pulsatile release frequency from 5 to 3 pulses (Figure 5A) and flattened the 

pulsatile pattern related to the other evaluated groups (Figure 5C-F). On the contrary, both P4 

and RU486 treatment significantly increased the total GnRH mass released compared to control 

hypothalamic explants (Figure 5B). On the other hand, experiment 3b depicted a significant 

induction of GnRH pulsatile frequency by E2 (Figure 6A), with no alteration of the total GnRH 

mass released (Figure 6B). However, the total GnRH mass released significantly increased 

when ER or ER were singly induced (Figure 6B) whilst, in both cases, the pulsatile patterns 

were flatter than those obtained by E2 supplement or even without any supplementation (Figure 

6C-F). In all the cases, the supplementation of the incubation media with KCl during the final 

30 minutes of the experiment showed a pronounced GnRH delivery indicating the viability of 

all the analyzed tissues throughout the experiment (Figures 5C-F and 6C-F). 

 

 

 

Finally, ER, PR and GnRH mRNA content in the hypothalamic explants was analyzed at the 

end of both experiments (Figure 7). ER mRNA content was significantly increased in relation 

to control in both E2 treatment and specific ERα and ERβ agonist treatment (Figure 7A). 

However, neither PR nor GnRH mRNA content was altered in these groups (Figure 7B-C). 

ERmRNA content did not change when hypothalamic explants were supplemented with P4 or 

RU486 (Figure 7D). Moreover, PR mRNA levels were significantly increased by P4 treatment 

in relation to control and RU486 treatment, confirming the positive feedback exerted by P4 over 

its own receptor (Figure 7E). Finally, GnRH mRNA content significantly increased only in the 

hypothalamic explants when the PR was blocked with its antagonist RU486 (Figure 7F). 

 

 

4. Discussion 

The present work shows that both E2 and P4 have a key role in modulating the synthesis and 

delivery of pituitary LH and hypothalamic GnRH in the vizcacha, a species with a peculiar 

reproductive strategy. Since previous descriptions of the reproductive anatomy, histology and 
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physiology of the vizcacha showed species-specific features that differ markedly from most 

mammalian reproductive traits established by observations of murines and a few other species, 

this work focused on evaluating pituitary and hypothalamic activity of vizcacha subjected to 

different hormonal environments. 

Our first approach consisted of studying LH and GnRH variations in a bilateral ovariectomy 

condition, with no endogenous ovarian steroid hormones. As expected, the absence of steroid 

hormones induced physiological conditions concordant with an active hypothalamus and 

pituitary gland, probably generated by the absence of the steroid negative feedback, and 

reflected in the significant rise of GnRH and LH. Similar observations were previously reported 

in other species, such as ovariectomized rats and ovariectomized or post-menopausal women 

(Bohm-Levine et al. 2019, Hussien et al. 2019). In OVX vizcachas treated during 5 consecutive 

days with E2 or P4 the overexpression of both LH and GnRH was reversed, showing lower 

levels of LH and GnRH than those of SHAM animals, confirming the strong inhibitory effect 

that these hormones exert at pituitary and hypothalamic level, as was also reported in other 

species, such as rats, mice and ewes (Sarkar & Fink 1980, Zoeller et al. 1988, Caraty et 

al. 1989, Chongthammakun & Terasawa 1993, Petersen et al. 1995, Spratt & Herbison 1997, 

Radovick et al. 2012).  

The second approach consisted of the induction of the luteal phase by the synchronization of the 

HPO axis of NP females by administration of PMSG and hCG. This treatment produced high 

levels of serum E2 and P4 together with high levels of serum LH and low levels of GnRH. This 

suggests that E2 and P4 may exert a different effect at pituitary and hypothalamic levels, 

indicating that these organs present a different sensitivity and response to steroids. The negative 

feedback of E2 and P4 at hypothalamic level has been widely reported for other species, such as 

mice, rats, ewes and rhesus monkeys (Sarkar & Fink 1980, Zoeller et al. 1988, Petersen et al. 

1995, Spratt & Herbison 1997, Caraty et al. 1989, Chongthammakun & Terasawa 1993). In 

addition, high levels of E2, P4 and LH, together with low levels of GnRH, have been previously 

reported for the luteal phase of the vizcacha (Dorfman et al. 2103, Inserra et al. 2107). 

Moreover, similarly to the results we obtained in OVX animals, the pharmacological treatment 

of non-pregnant vizcachas in early luteal phase with E2 or P4 produced a dramatic decrease in 

GnRH levels, showing the expected inhibitory effect on the hypothalamus that these steroid 

hormones exert.  

As mentioned before, female vizcachas display some unique reproductive traits that differentiate 

them from other mammalian species. Among those noteworthy reproductive features, the 

continuous formation of pre-ovulatory follicles during the 155-day lasting pregnancy, the 

reactivation of the HPO axis and the formation of numerous secondary corpora lutea with 

oocyte retention that provides a hormonal boost at mid-gestation are highlighted (Jensen et al. 

2008, Dorfman et al. 2016, Inserra et al. 2017). At the time of the HPO axis reactivation, GnRH 
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and LH expression are significantly increased, together with relatively high levels of P4 and E2 

(Dorman et al. 2013, Inserra et al. 2017, Proietto et al. 2019). Moreover, hypothalamic GnRH 

neurons co-express PRs and ERs, converting the vizcacha in a valuable model to study the 

direct regulation of E2 and P4 over GnRH expression (Dorfman et al. 2013, Inserra et al. 2017). 

This contrast with the classical model of GnRH indirect regulation by ovarian hormones. In 

order to elucidate the direct effect that steroid hormones would exert over GnRH neurons, we 

employed animals with induced luteal phase and developed an ex vivo model of hypothalamic 

explants that were treated with steroid hormones or with combinations of agonists and 

antagonists of their specific receptors. Our results showed a rise in GnRH pulsatile frequency 

induced by treatment with E2 that was counterbalanced by a decrease in the total GnRH mass 

delivered. There is wide in vitro evidence of the negative estrogen regulation of GnRH 

synthesis, both at protein and mRNA levels, employing immortalized GnRH-producing GT1-7 

hypothalamic neuron cells which express ERα and ERβ (Radovick et al. 2012, Kepa et al. 1992, 

Wierman et al. 1992, Roy et al. 1999, Otani et al. 2009). However, in our ex vivo model, no 

differences of GnRH mRNA levels were found with E2 treatment suggesting that a 6-hour 

treatment with E2 is enough to induce an increase in the release of the stocked GnRH protein 

but insufficient to produce transcriptional changes. In addition, the frequency of GnRH release 

induced by E2, but not when ER or ERwere separately activated, suggests the possible 

involvement of another class of ERs in this mechanism. In this way, the activation of membrane 

ERs, which are usually responsible for rapid and short term non-genomic modulation, such as 

GPR30 or nuclear ER that translocates to the cell membrane after cleavage and associates with 

metabotropic glutamate receptors (mGluRs), should be considered in future experiments in 

order to fully understand the mechanisms of GnRH delivery induction (Takeo & Sakuma 1995, 

Kim et al. 2011a, Kim et al. 2011b, Levin 2011, Prossnitz & Barton 2011, Zárate et al. 2012, 

Wong et al. 2019). 

Surprisingly, both ex vivo treatments used to evaluate ER or ER involvement in GnRH 

release (the treatment combining ERα agonist with ERβ antagonist vs. the treatment combining 

ERα antagonist with ERβ agonist) showed a similar behavior. Previous reports suggested that 

ERα is crucial for the differential modulation of the positive and negative feedback loop exerted 

by E2, with no involvement of ERβ. Employing knockout mice for ERα and ERβ, it was 

demonstrated that ERα-knockout mice presented high LH levels and no ability to generate the 

pre-ovulatory LH surge, necessary to induce ovulation (Herbison 1998, Couse & Korach 1999, 

Wintermantel et al. 2006). Concordantly, in a previous work we showed a positive correlation 

between ERα protein and mRNA levels and E2 and LH serum levels throughout gestation in the 

vizcacha, while ERprotein and mRNA levels remained constant (Inserra et al. 2017). 

Jo
ur

na
l P

re
-p

ro
of



16 

However, the present results show that both ERα and ERβ variants may participate in the 

modulation of GnRH delivery. 

On the other hand, P4 produced a decrease in GnRH pulsatile frequency and this effect was 

reverted when PR was blocked by its specific receptor antagonist RU486. However, a rise in the 

total GnRH mass delivered was registered by P4 treatment. In a previous report we described a 

correlation between GnRH, P4 and PR levels and the presence of accessory corpora lutea at 

mid-gestation suggesting a possible role of PR in the reactivation of the HPO axis (Dorfman et 

al. 2013). Despite that P4 treatment was able to induce PR mRNA expression, it failed to induce 

GnRH mRNA expression, probably because a 6-hour treatment was not enough to produce 

genomic effects. The induction of PRs is necessary for the successful release of GnRH. This 

was proved in PR gene knock-out (PRKO) mice treated with E2, where GnRH and LH surges 

were absent (Chappell et al. 1997, Chappell et al. 1999), and in rats treated with PR antagonist 

or with intracerebroventricular injection of PR antisense oligonucleotides (Chappell & Levine 

2000). All these data suggest a genomic key role for PR in the preovulatory GnRH surge. 

Considering that E2 induces expression of PR, and that this event is obligatory for GnRH self-

priming (Chappell & Levine 2000), the unchanged levels of PR mRNA in E2-induced 

hypothalamic explants clearly explain that 6 hours of estrogens were not enough to induce PR 

genomic changes and consequently GnRH mRNA variations.  

 

5. Conclusions 

The combined results of the three experiments performed in this study suggest different levels in 

the modulation of steroid hormones over GnRH delivery. Based on our results, we propose a 

short-term effect of E2 that modulates the frequency of GnRH release pattern, as shown in the 

6-hour ex vivo experiments, probably associated with membrane ERs; and a long-term effect of 

E2 acting through the classical nuclear ERs-PRs pathway that produces the modification of 

GnRH mRNA synthesis, as found in the NPS and OVX in vivo experiments. The rise in GnRH 

mRNA expression and total protein release induced by P4, with low frequency of GnRH release, 

would confirm the different actions of E2, with a) genomic effects through ER-PR acting as 

transcription factors at the GnRH pre-ovulatory surge, and b) rapid effects over the frequency of 

GnRH release that selects between the expression of LH or FSH. In addition, the present results 

provide the opportunity to design future studies to elucidate the modulation of rapid changes of 

GnRH delivery frequency which plays a key role in the reactivation of the reproductive axis 

during the pregnancy of this species.  
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Figure 1. Layout of experimental treatments. (A) Experiment 1: non-pregnant females were 

bilaterally ovariectomized and treated, from the fifth day after surgery, by daily intramuscular 

administration of pharmacological doses of estradiol (E2) (1mg/kg/day), progesterone (P4) 

(5mg/kg/day) or vehicle during five consecutive days. Females were sacrificed the day after the 

last injection. (B) Experiment 2: non-pregnant females were injected intramuscularly with 

pregnant mare’s serum gonadotropin (PMSG) (250IU/day) during three consecutive days, 

followed by an intramuscular administration of human chorionic gonadotropin (hCG) (1000IU) 

24 hours later. After a five-day resting period, females were treated daily with pharmacological 

doses of E2 (1mg/kg/day), or P4 (5mg/kg/day) or vehicle during five consecutive days. Females 

were sacrificed fourteen days after the first injection of PMSG. (C) Experiment 3: non-pregnant 

females were injected intramuscularly with PMSG (250IU/day) during three consecutive days, 

followed by an intramuscular administration of hCG (1000IU) 24 hours later, and left to rest for 

ten consecutive days before euthanasia. 
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Figure 2. Luteal phase ovary. (A) Representative macroscopic image of the reproductive tract 

of a synchronized non-pregnant (SNP) female. Ovulatory stigmata scattered throughout the 

surface of both ovaries can be observed. (B) Representative histological image of an ovary of a 

SNP female with high abundance of corpora lutea; stained by Hematoxilin & Eosin. Scale bars: 

A) 1cm; B) 200µm.  
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Figure 3. Serum and hypothalamic hormone levels in vizcachas with activation of 

hypothalamic-pituitary axis. (A) LH serum levels; (B) progesterone (P4) serum levels; (C) 

estradiol (E2) serum levels; (D) hypothalamic GnRH mRNA levels; and (E) hypothalamic 

GnRH protein content levels. Different letters indicate significant differences among groups 

with p<0.05. Data are plotted as mean ± SD. Five animals were evaluated per group. SHAM: 

surgery simulated non-pregnant females; OVX: ovariectomized non-pregnant females; 

OVX+P4: ovariectomized non-pregnant females treated in vivo with pharmacological doses of 

progesterone; OVX+E2: ovariectomized non-pregnant females treated in vivo with 

pharmacological doses of estradiol. 
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Figure 4. Serum and hypothalamic hormone levels in vizcachas during induced luteal 

phase. (A) LH serum levels; (B) progesterone (P4) serum levels; (C) estradiol (E2) serum 

levels; (D) hypothalamic GnRH mRNA levels; and (E) hypothalamic GnRH protein content 

levels. Different letters indicate significant differences among groups with p<0.05. Data are 

plotted as mean±SD. Five animals were evaluated per group. NP: non-pregnant females; SNP: 

synchronized non-pregnant females; SNP+P4: synchronized non-pregnant females treated in 

vivo with pharmacological doses of progesterone; SNP+E2: synchronized non-pregnant females 

treated in vivo with pharmacological doses of estradiol. 

 

Figure 5. Hypothalamic progesterone effect on GnRH pulsatile release in vizcachas during 

induced luteal phase. (A) GnRH pulsatile release frequency; (B) GnRH total mass released 

during the 6-hour experiment; representative graphs of GnRH secretion (pg) in (C) control 

hypothalami (KRB); (D) hypothalami treated ex vivo with progesterone (P4); (E) hypothalami 

treated ex vivo with progesterone receptors antagonist (RU486); and (F) hypothalami treated ex 
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vivo with P4 and RU486. GnRH pulses are shadowed in grey. Final GnRH peak induced by KCl 

is shadowed in red. Different letters indicate significant differences among groups with p<0.05. 

Data are plotted as mean ± SD. Five animals were evaluated per group. KRB: Krebs-Ringer 

buffer. 

 

Figure 6. Hypothalamic estrogen effect on GnRH pulsatile release in vizcachas during 

induced luteal phase. (A) GnRH pulsatile release frequency; (B) GnRH total mass released 

during the 6-hour experiment; representative graphs of GnRH secretion (pg) in (C) control 

hypothalami (KRB); (D) hypothalami treated ex vivo with estradiol (E2); (E) hypothalami 

treated ex vivo with an estrogen receptor α (ERα) agonist (PPT) and with an estrogen receptor β 

(ERβ) antagonist (CY); and (F) hypothalami treated ex vivo with an estrogen receptor α (ERα) 

antagonist (MPP) and with an estrogen receptor β (ERβ) agonist (WAY). GnRH pulses are 

shadowed in grey. Final GnRH peak induced by KCl is shadowed in red. Different letters 

indicate significant differences among groups with p<0.05. Data are plotted as mean ± SD. Five 

animals were evaluated per group. KRB: Krebs-Ringer buffer. 
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Figure 7. Hypothalamic genomic effect of progesterone and estrogen in vizcachas during 

induced luteal phase. Relative expression of (A & D) estrogen receptor α (ERα); (B & E) 

progesterone receptor (PR); and (C & F) GnRH mRNA levels determined by quantitative PCR 

(qPCR). (A-C) Hypothalami treated ex vivo with estradiol (E2), or with an estrogen receptor α 

(ERα) agonist (PPT) and an estrogen receptor β (ERβ) antagonist (CY), or with an estrogen 

receptor α (ERα) antagonist (MPP) and an estrogen receptor β (ERβ) agonist (WAY), 

respectively. (D-F) Hypothalami treated ex vivo with progesterone (P4), or with a progesterone 

receptor antagonist (RU486), or with P4 and RU486, respectively. Different letters indicate 

significant differences among groups with p < 0.05. Data are plotted as mean ± SD. Five 

animals were evaluated per group. KRB: Krebs Ringer buffer; GAPDH: glyceraldehyde 3-

phosphate dehydrogenase. 

 

 

Table 1. Experimental treatments for the analysis of ex vivo GnRH release. 
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Group Treatment Product data 

P4 - Progesterone (P4, 1μM) 
- Sigma-Aldrich S.A. (N° 

P8783) 

RU486 
- Mifepristone (RU486, 10μM) - specific progesterone 
receptor antagonist 

- Sigma-Aldrich S.A. (N° 
M8046) 

P4+RU486 
- P4 (1μM) 

- RU486 (1μM) 
----- 

E2 - 17β-estradiol (E2, 1nM) 
- Sigma-Aldrich S.A. (N° 

E2758) 

PPT+CY 

- 1,3,5-Tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole 

(PPT, 10μM) - specific estrogen receptor α agonist 

- Cyclofenil (CY, 10μM) - specific estrogen receptor β 
antagonist 

- Sigma-Aldrich S.A. (N° 

H6036) 

- Sigma-Aldrich S.A. (N° 
C3490) 

MPP+WAY 

- Methyl-piperidino-pyrazole hydrate (MPP, 10μM) - 

specific estrogen receptor α antagonist 

- WAY-200070 (WAY, 10μM) - specific estrogen receptor 

β agonist 

- Sigma-Aldrich S.A. (N° 

M7068) 

- Sigma-Aldrich S.A. (N° 

W1520) 

 

 

Table 2. Primers and quantitative PCR cycling parameters. 
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F: forward; R: reverse; min: minutes; sec: seconds. Primers were previously employed in 

vizcacha. 
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