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Abstract: We propose a video summarization method based on visual and categorical diversity by transfer learning. Our method
extracts visual and categorical features from a pre-trained deep convolutional network (DCN) and a pre-trained word embedding
matrix. Using visual and categorical information we obtain video diversity, which it is used as an importance score to select
segments from the input video that best describes it. Our method also allows to perform queries during the search process, in this
way personalizing the resulting video summaries according to the particular intended purposes. The performance of the method
is evaluated using different pre-trained DCN models in order to select the architecture with the best throughput. We then compare
it with other state-of-art proposals in video summarization using a data-driven approach with the public dataset SumMe, which
contains annotated videos with per-fragment importance. The results show that our method outperforms other proposals in most
of the examples. As an additional advantage our method requires a simple and direct implementation that does not require a
training stage.

1 Introduction and Previous Work

Digital video is a widespread medium in several contexts and
applications. The generation and availability of digital video from
different sources is growing at an exponential rate. This poses sev-
eral challenges for users that require to retrieve information in vast
collections of videos. One major way to simplify and accelerate
the access to a particular information item in a video sequence
is to provide abridged (albeit complete in some sense) representa-
tions of the whole content. This significantly reduces the burden of
having to watch complete videos to decide whether and where the
required information is present. Video summarization (VSUM) aims
to provide these condensed versions in a consistent and predictable
way.

Summarization techniques must produce an intelligible output
that can be useful to human users. There are multiple aspects to con-
sider in such kind of management of digital video. On one hand, any
processing task must consider the capture, encoding, and compres-
sion techniques that are applied in digital media. On the other hand,
semantic and psychological features should be taken into account
for an adequate processing and manipulation. Semantics is mainly
expressed in words [1], for which it is necessary to represent video
contents both regarding visual and linguistic information. However,
simple language-based techniques as tagging and string search are
too superficial to provide useful results. Even more, in query-based
VSUM, when users request to recall whether and where a given
object or action is present in a video set, it is necessary to take
into account deeper linguistic information, i.e., queries and their
linguistic space must be somehow combined with visual informa-
tion to make sense. Thus, multi-modal information representation
techniques are indispensable for query-based VSUM.

VSUM is commonly treated as a regression or ranking problem
where some features are extracted from video-frames and used as
inputs, and a set of key-frames or user-annotated scores [2–7] as
outputs. Earlier approaches focused exclusively in supervised visual
features extracted from video [6, 8, 9] as SIFT, HoG or optical flow,
among others. Lee et. al. in [10] used features as eye fixation, object
frequency and interaction to predict scene importance. Depending

of the nature of the video or the search task, domain-specific fea-
tures may be an aid in VSUM. For example, game-specific rules
for sport video analysis was proposed by Shih et. al. in [11], actor
recognition [12], and subtitle analysis [13] for movie summariza-
tion. Egocentric video analysis lately emerged as another significant
VSUM context, because of its characteristic high volume and diver-
sity, which has motivated researchers to propose general VSUM
methods that could complement visual information with associated
annotations and meta-data. For instance, SumMe [2] and TVSUM [14]
are two widely used VSUM datasets with egocentric videos, both
with human-annotated score of importance per video segment.

Recently, deep learning has been applied to VSUM from multiple
approaches. Otani et al. [5] proposed a method to train a coordinated
representation space from a video-to-text (VTT) dataset and poste-
riorly used it to generate a regression model for VSUM. Temporal
analysis using long-short term memory networks (LSTM) and trans-
fer learning from DCN (Deep Convolutional Network) was used
in [15]. Generative adversarial networks (GANs) was used in [16]
to formulate the VSUM problem as a generator/discriminator chal-
lenge, where generator select best frames (summary) from input
video and reconstruct it from those video-frames, then discrimina-
tor compares input-video and reconstructed video as a classification
problem. For this purpose, an architecture based on DCN and LSTM
was constructed.

It is possible to approximate frame importance by the unique-
ness or diversity of a group of frames. Uniqueness is related with
the dissimilarity or difference of descriptors for consecutive frames
[17]. Classical approaches consider a processing pipeline where
video frames are first pre-processed to improve quality, after which
they are represented using a static set of descriptors [18]. These
descriptors are mainly low-level visual features, i.e., color, tex-
tures, histograms, among others. Finally, a supervised criterion is
designed using specific descriptors to estimate an importance score
that allows selecting frames for the resulting summarized video. This
approximation has some limitations that impairs the possibility of
using multi-modal information. In particular, the use of hand-crafted
descriptors, and also the importance criterion, have a high impact in
the resulting summary, due to their ad-hoc nature.
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Human attention is another information source closely related
to diversity and commonly used for video summarization. Visual-
auditive saliency and attention have been explored for VSUM task in
[19, 20]. Varini et. al. in [21], used a combination of HMM and diver-
sity from Bag of Words difference between consecutive segments to
create a video summary. Gygli et. al. in [2] represented attention for
video summarization as a nonlinear combination of spatial features
and temporal saliency expressed as temporal differences.

Nevertheless, many claim that frame importance cannot be done
entirely without previously known context information, including
recording purpose, user preferences, and overall history contained
in the video, among other things [2]. Personalization is one the most
recent topics of interest in video summarization because different
users will summarize a video differently based on their specific
interests. Initial approximations explored this venue by capturing
more inputs from the user while doing this task, for example, gaze-
tracking [22], BCI devices [23, 24] or states of attention [21]. These
works have the limitation that user intention is not known previous
to the video summarization task, and also require extra equipment.

Recent work focused on introducing queries in natural languages
during the VSUM process, as a means to specify a specific purpose.
These queries may be expressed either as a vector of words of inter-
est, which can be a sentence in natural language [25] or as a set
of categorical terms (objects of interest) [26–28]. The first approxi-
mation requires NLP techniques to transform an arbitrary sentence
into a manageable structure. The second approximation represent
queries as a vector of words related to the objects of interest for the
user. However, as far as a thorough exploration of recent advances
in VSUM may reveal, diversity from combined deep visual and cat-
egorical features has not been previously used. Also, the possibility
to deliver personalized video summary guided by user query is an
important feature that is certainly sought for in popular video reposi-
tories like YouTube and others. For these reasons we propose a novel
VSUM method based on a categorical diversity estimation found
combining both visual features and semantic categories inferred by
user queries. The direct nature of our method without the require-
ment of a training stage allows rapid adoption and implementation
for industrial and commercial applications.

2 Materials and Methods

Our method uses a pre-trained DCN architecture as a general visual
descriptor for frames in V , extracting deep-features from internal
layers [29]. Then, using the last layer of the DCN we can obtain
a word set related to detected categories that appear in each video
frame Vi. We generate a categorical representation of this word
set using a pre-trained word embedding. Finally, a linear criteria
of mutual penalization of visual and categorical representation is
constructed. A schema of the proposed method is shown in Fig. 1.

Fig. 1: Schema of the proposed method.

2.1 Visual Representation

As mentioned in [29], using the right set of features, almost any AI
problem can be solved. In particular, visual data representation is a
complex problem due to the non-structured high-dimensional nature
of images. In this context, Deep learning may be used not only as a
black box that maps input (stimulus) to output (response), but also
to discover the best input representation, a task called representation
learning or deep features, which basically consists in using a hidden
layer of a pre-trained network model M as a general representation
or descriptor of an input data.

Fig. 2: VGG16 architecture. We compute the M [nl−1] activation as
a descriptor of input frames Vi.

For visual data representation, it is common to use DCN archi-
tectures previously trained for a classification task. The main idea
behind this approach is that it is possible to transfer learned knowl-
edge from a previous task to accelerate training for a new task. We
use a pre-trained DCN model M using image-net dataset [30], as
feature extractor for frames Vi. For example, VGG-16 [31] model
has 16 layers and approximately 130 M parameters. The penultimate
layer, M [nl−1], i.e., the layer before softmax 1000-dimensional
probabilities of image-net categories, is 4096-dimensional. Then, we
describe every frame Vi of input video V as follows:

V ′i = M [nl−1](Vi)

That is, we compute penultimate layer activation for a DCN
modelM with nl layers, given a video-frame Vi. For this, we remove
the layer of DCN model and compute a feed-forward propagation
through the network. A graphical depiction of this representation
scheme is shown in Fig.2.

2.2 Categorical representation

The complete forward propagation of a pre-trained DCN model gen-
erates an activation from the last layer M [nl](Vi) given an input
video frame Vi. This activation consists of a 1000-dimensional
vector with the probabilities (softmax output) for every ImageNet
category to appear in Vi. Using this vector we select the k category
indices with the highest probability to appear in Vi. These indices are
represented as an array γ which it is transformed to a one-hot encod-
ing array t of size [nd, 1] using word-embedding matrix vocabulary,
where nd is the dimension of the embedding representation. Finally,
a dot product between word-embedding matrix B and t is computed
to obtain an embedded representationEj for a visual category j from
image-net.

Due to the fact that each category j in video frame Vi is associ-
ated with a probability from the softmax layer M [nl], we compute a
weighted average representation Gi as in Oosterhuis et. al. in [28].
The following equation describes the weighted average used for the
word embedding representation Gi for video-frame Vi:

Gi =
1

k

k∑
j

ψjEj , (1)

with ψj = M
[nl]
j (Vi). Notice that categories probabilities ψ are

obtained from the last layer from DCN model M . A complete
sequence to obtain categorical representation Gi is presented in
Algorithm 1.
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Algorithm 1: Categorical representation of Vi using embedding
matrix.

Input : video frame Vi, embedding-matrix B, DCN model
M , k first visual categories

Output: weighted average word-embedding activation Gi
1 begin
2 γ = argsort(M [nl](Vi))[0 : k];
3 E = zeros([nd, 1]);
4 for j ← 0 to k − 1 do
5 t = zeros([nd, 1]);
6 t[γ[j]] = 1; // one-hot encoding
7 Ej = B · t; // embedding representation

8 ψj = M
[nl]
j (Vi); // weight from softmax

layer
9 Gi = Gi + ψjEj ; // weighted sum

10 end
11 Gi = 1

kGi; // weighted average
12 return Gi;
13 end

2.3 Visual and categorical diversity

Using the concept of diversity expressed as temporal differences, we
obtain visual diversity Di for an input video-frame Vi as follows:

Di =
∥∥∥dV ′

i
dt

∥∥∥ =

∥∥∥∥V ′
i+∆t−V

′
i

∆t

∥∥∥∥ ,
where V ′i is the deep-feature vector extracted from the penulti-
mate layer of DCN model as explained previously, and ∆t is 1
because input layer is previously sampled to 1frame

second . Notice that
we compute the L2-norm of the derivative in order to obtain a scalar-
valued visual diversity. Using same approach as visual diversity Di
we compute categorical diversity Ki as temporal differences from
categorical representations Gi:

Ki =
∥∥∥dGi
dt

∥∥∥ =
∥∥∥Gi+∆t−Gi

∆t

∥∥∥ .
Finally, we scale Di and Ki in the range [0, 1] in order to avoid

magnitudes differences from visual and categorical representations
Vi and Gi.

2.4 Combined visual and categorical diversities

Visual and categorical diversity, Di and Ki respectively, for a video
frame Vi are related but provide measures in different description
domains for the frame. In other words, for a given video frame Vi
we can obtain consensual diversity description (or lack thereof), or a
high visual diversity and low categorical diversity (or the other way
around). Then, we can assume that we need to have both high visual
diversityDi and high categorical diversityKi to consider a frame to
have a high diversity ϑ. In other words, if a video frame is visually
diverse but not categorically, or viceversa, then it is not regarded
as important. From this analysis, we balance visual and categorical
diversity using a linear relation using coefficients c0 and c1. In Eq. 2,
diversity ϑi expressed in terms of Di and Ki, with the special case
c0 = c1 = 0.5 as the mean of visual and categorical diversity.

ϑi = c0Di + c1Ki (2)

Finally, we apply a Gaussian smoothing to the time series gener-
ated for the sequence of ϑi in order to generate a more continuous
diversity function along video frames. This allows to generate video
summaries with soft transitions between segments. In Fig. 3 it is
shown the combined diversity ϑ with respect toDi andKi for video
St. Marteen Landing from database SumMe. As explained previ-
ously, low values forDi orKi yield low diversity values, as happens

Fig. 3: Gaussian smoothed (σ =1.5) and normalized combined
diversity ϑi with respect toDi andKi for video St. Marteen Landing
from database SumMe [2].

for example in seconds 44 and 52. On the contrary, when both val-
ues are hight, as in seconds 25 and 56, the corresponding frames are
considered important.

2.5 Summary generation

For this purpose, we apply thresholding to ϑ as described in the
following equation:

S(α) = Vi | ϑi > τ

restricted to:

(|S| − α |V |)→ 0,

(3)

where |S| and |V | are the lengths of S and V respectively and α is
a summary length scalar, usually α = 0.15. Then, we need to find a
value τ such that the number of all frames with diversity ϑj greater
than τ , is closely to α|V |.

Fig. 4: Summary generation from ϑi for video St. Marteen Landing
from database SumMe [2], using the proposed method. Frames in the
blue region will be used as a summary for the input video.

The summary generation process is shown in Fig.4. Notice that
dashed red line illustrate the value of τ which was found using an
iterative process as explained previously. The blue shaded region
illustrates the subset of frames (15% of input video length |V |) that
constitutes the resulting summary.

2.6 Query injection

We represent an user query as a vector q = {w0, w1, w2, ..., wn}
of words w. In order to avoid direct-match between q and visual
categories j detected by DCN model M , each word of the query
is mapped to a vector space using a word-embedding matrix E as
explained in previous sections, in a similar manner as in Oosterhuis
et al. [28]. We assume that all words in the query have the same
importance for the user, as opposed to what is proposed in [28], so
we do not weight words w in the query q. Then, we calculate the
average of word-vectors for k words in query as follows:
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Gquery =
1

k

k∑
j

Ej (4)

The categorical representation Gi (section 2.2) extracted from
video-frame Vi, allow us to compare categorical similarity Hi of
q and Vi in a direct manner using the cosine similarity as follows:

cos(wi, wj) =
wi · wj
‖wi‖

∥∥wj∥∥
Hi = cos(Gi, Gquery)

(5)

Finally, we can represent query-combined diversity ϕ as a linear
relation between combined diversity ϑi and query similarity Si as
follows:

ϕi = c0ϑi + c1Hi =

ϕi = c0Di + c1Ki + c2Hi
(6)

Fig. 5: Video diversity biased by query similarity for q =
{airship, aircraft} over video St. Maarten Landing from dataset
SumMe. Query similarity in black, visual diversity in red and
categorical diversity in green.

In Fig. 5 it is shown an example of query injection to find
combined diversity ϑ using Eqs. 4, 5, and 6.

3 Experiments

In the following experiments, we first compare visual and categori-
cal diversity from different combinations of DCN models in order to
determine if there exist significant differences between them. Then,
each combination is evaluated using SumMe dataset and perfor-
mance criteria defined later in this chapter, and we select the model
with the best performance. Finally, we compare the best model with
respect to state-of-the-art works.

3.1 Data

SumMe: Video to user-importance dataset. Proposed and pub-
lished by Gygli et. al. in [2], this dataset contains 25 videos,
organized by three categories: egocentric, moving and static. For
each video, scores per segments were manually annotated by differ-
ent individuals. This score is related with an importance scale in the
range [0, 1], (see Figure 6) for minimum and the maximum degree
of importance for the user, respectively. Authors report that this was
the first dataset with segments annotations rather than key-frames.
This dataset has been widely used for different video summariza-
tion approaches on literature, allowing us to compare with respect to
other authors.

Video Preprocessing. Input video V is uniformly sampled to one
frame per second as similar to related works [1, 5, 32]. We use this
approach in order to reduce computational processing and due to the

Fig. 6: Averaged user-importance score for video St. Marteen
Landing from database SumMe [2].

need that our model must be as simple as possible, avoiding alter-
natives like clustering or super-frame segmentation [2]. Videos from
SumMe dataset mostly have a 30 fps rate. We consider that at this
frame rate will not occur a significant visual and categorical diver-
sity in less than a second. Then, we take a frame per second in order
to reduce processing time, that is, |Vsampled| =

|V |
fps .

3.2 Performance criteria

Evaluation of a generated summary using SumMe dataset, con-
sists in performing a measure of accuracy between video sum-
maries extracted from a computational method and video summaries
extracted from estimated importance given by N human users. For
this purpose, Gygli et. al. [2] proposed the use of pair-wise f-
measure evaluation metric between a generated summary S(α) and
human-made scores U(α) as expressed in Equation 7.

F (S,U, α) =
1

N − 1

N∑
j=1

2
p(S(α),Uj(α))r(S(α),Uj(α))

p(S(α),Uj(α)) + r(S(α),Uj(α))
(7)

Where p(S(α),Uj(α)) and r(S(α),Uj(α) are precision and recall
between generated summary and interestingness score made by user
j. Notice that, final score is the averaged result of the summary S
with respect to each user annotationUj at α|V | length of the original
video.

3.3 Baselines

We evaluate our method with respect to the following approxima-
tions:

•Random sampling: Video summarization by taking random
frames is commonly used a base comparison on literature due to
the fact that any proposed video summarization method must be
superior to this approach.
•Interestingness-based[2]: Original work by Gygli et. al., where it

is proposed SumMe dataset and a video summarization method
based on a regression model that uses a combination of features
related with frame-interestingness: attention, aesthetics, presence
of landmarks, faces and object tracking, to predict per-frame
importance.
•Deep semantic features [5]: As proposed by Otani et. al., this

method uses coordinated representations which authors refers as
semantic features, trained over a video-to-text dataset. This repre-
sentations are then used in a regression model to predict per-frame
importance.

3.4 Results

3.4.1 Visual and categorical diversity relationship: As
explained in previous sections, our method lies in the use of a
pretrained DCN and word-embedding models for extracting visual
and categorical diversity respectively. Visual diversity D depends
exclusively of activations from DCN model. Categorical diversity
K depends of DCN model and word-embedding activations. In this
order of ideas, it is possible to ask the following questions:
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•Will different DCN models generate different/similar visual diver-
sity D?
•Will Different DCN models generate different/similar categorical

diversity K?
•Will visual and categorical diversity D and K, be related for each

DCN model?

To answer these questions we measured correlation coefficients
for visual and categorical diversity through each video in dataset
SumMe, using different DCN models. In tables 1 and 2 can be
observed the mean correlation for D and K respectively.

Notice in table 1 that, in general, correlation coefficients for D
are greater than 0.7, which can be interpreted as that visual diversity
is strongly related across different DCN models. In other words, a
similar visual diversity is expected to be obtained when using any of
the evaluated DCN models.
It is also possible to observe that models of the same family such as
VGG16/VGG19 and DenseNet/ResNet50 will have a much stronger
correlation for visual diversity.

Correlation coefficients for categorical diversity K can be
observed in 2. Notice that, in general, categorical diversity corre-
lation across DCN models is below 0.4, which can be interpreted as
a weak relation between models. In other words, the selection of a
particular DCN model will result in a different categorical diversity.
Similarly to visual diversity, models of the same family such as
VGG16/VGG19 and DenseNet/ResNet50 will have a strong corre-
lation for categorical diversity.

Finally, we obtained correlation coefficients betweenD andK for
each evaluated DCN model, as can be observed in table 3. For any
DCN model, Visual and categorical diversity have a moderate pos-
itive relationship, as correlation coefficients are 0.5 approximately.
In other words, as explained in previous sections, although D and
K are related and depends of a DCN model, we can expect that for
a given input video-frame Vi we can obtain a high value of Di and
low Ki or the contrary. Thus, we can expect the use of combined
diversity ϑ in a video summarization task, will generate a similar
response to human users.

3.4.2 Evaluation between DCN models: We evaluated per-
formance of our model using different pretrained DCN models over
SumMe dataset videos. Evaluation was made using f-score as pre-
sented in equation 7.

In table 6 (see section 6) it can be observed the score by video
in SumMe dataset, using our method with different popular DCN
pretrained models. InceptionV3 and InceptionResNetV2 models
obtains the highest f-score (bold) for most videos (6 videos each

model). In terms of mean or averaged score, InceptionV3 is the
model with highest f-score and will be used as a base DCN for
comparison with state-of-art works. It is important to mention that
although InceptionV3 is the best DCN model in general terms, mean
f-score for each evaluated DCN model are similar with 0.189 as
lowest f-score and 0.209 as highest f-score.

3.4.3 State-of-art comparison: In table 7 (see section 6) it is
shown the results of quantitative evaluation for our method and dif-
ferent computational methods as explained in section 3.3. We shown
scores for human annotators as reported by author in [2] as follows:

•Minimum score (Min): Lowest score of all human annotators with
respect to mean score.
•Mean score (Mean): Average of scores made by each human anno-

tators with respect to others. For example, if a video is annotated
by 20 users, then f-score is computed for each annotator with
respect to the others (19). Finally all previous are averaged.
•Maximum score (Max): Highest score of all human annotators

with respect to mean score.

For computational methods, we report best scores per video in
bold and performance relative to human annotators.

Our method, obtains higher performance than method proposed
by Otani et. al., with 67% and 59% respectively, relative to human
average performance. Method proposed by Gygli et. al. still obtains
the highest mean f-score with a performance with respect to human
average of 75%. Also we obtained bests scores in 9

25 videos, Gygli
in 12

25 videos, and Otani in 4
25 videos.

Performance by video category is presented in table 4. Notice
that our method obtains the highest score for Static category with
a remarkable difference with respect to the other computational
approaches. Moving category represents the lowest score for our
method and the higher difference in performance with respect to
method proposed by Gygli. Finally, in Egocentric category we obtain
a similar performance to last model.

We consider important to mention that our method is simpler than
computational methods proposed by Gygli and Otani, in terms that
relies in using a single DCN pretrained model and word-embeddings
which do not require training stage.

3.4.4 Error analysis: Our method got low scores when videos
contain complex stories in terms of actions and interactions where
there is not high diversity in visual properties of Vi or objects on
scene, in other words, when video importance is not related with
diversity but the story. Examples of this kind of videos are play-
ing_ball, Excavators River Crossing and Playing on Water Slide,
where our method obtains its lowest scores.

Table 1 Correlation coefficients for visual diversity D using different DCN models.

Model (Visual Diversity) VGG16 VGG19 Xception InceptionV3 ResNet50 InceptionResNetV2 DenseNet

VGG16 1,0 0,931 0,802 0,756 0,871 0,706 0,859
VGG19 0,931 1,0 0,797 0,754 0,864 0,705 0,862
Xception 0,802 0,797 1,0 0,776 0,811 0,753 0,816
InceptionV3 0,756 0,754 0,776 1,0 0,782 0,749 0,783
ResNet50 0,871 0,864 0,811 0,782 1,0 0,728 0,882
InceptionResNetV2 0,706 0,705 0,753 0,749 0,728 1,0 0,748
DenseNet 0,859 0,862 0,816 0,783 0,882 0,748 1,0

Table 2 Correlation coefficients for categorical diversity K using different DCN models.

Model (Categorical Diversity) VGG16 VGG19 Xception InceptionV3 ResNet50 InceptionResNetV2 DenseNet

VGG16 1,0 0,527 0,295 0,225 0,332 0,246 0,301
VGG19 0,527 1,0 0,289 0,262 0,351 0,280 0,342
Xception 0,295 0,289 1,0 0,280 0,284 0,266 0,327
InceptionV3 0,225 0,262 0,280 1,0 0,238 0,300 0,276
ResNet50 0,332 0,351 0,284 0,238 1,0 0,234 0,369
InceptionResNetV2 0,246 0,280 0,266 0,300 0,234 1,0 0,293
DenseNet 0,301 0,342 0,327 0,276 0,369 0,293 1,0
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In figure 7 (see section 6) we show examples of videos from
dataset SumMe, with associated human scores of importance (red)
and summary made by our method (blue). In video playing_ball
main visual objects or categories are ball, dog and bird. These objects
are always present of video-frames, so it is expected a low cat-
egorical diversity. Moreover, although video is moving, there are
not important transitions or scene changes that generate high visual
diversity. In this case, importance as annotated by users, is related
with interactions between bird, dog and ball.

It is also important to consider that due to the fact that our method
relies on a pre-trained DCN model, performance of summariza-
tion is related with performance of our DCN model, i.e., if DCN
model does not correctly detect visual categories on video frame,
diversity will be affected. Possible approximations to solve this lim-
itation with the construction of joined-representations that can map
time-related phenomena like actions or interactions.

On the contrary, in videos like car_over_camera and St. Maarten
Landing (see figure 7 on section 6), importance is highly related
to visual differences and changes of objects in scenes, which our
method is able to capture as visual and categorical diversity. In these
cases, we obtained higher performance than other computational
methods.

In table 5 are shown query examples for three video on dataset
SumMe. Videos Playing Ball and Playing on Water Slide are exam-
ples videos where we obtained low scores using our method. Notice
that, injecting specific queries we were able to improve f-score. Also,
using queries, was possible to improve result for videos that obtained
high scores using global method. As was previously mentioned, due
to the static nature of our method, query-injection will not be able
to improve results on cases where video importance is related with
actions or interactions which can not be detected by DCN models
and therefore can not be represented by queries of categories.

4 Conclusions

We have developed a model based on visual and categorical diver-
sity using pre-trained DCN models and word-embeddings. The main

Table 3 Correlation coefficients between visual diversity D and categorical
diversity K using different DCN models.

DCN Model correlation(D,K)

VGG16 0,554
VGG19 0,555
Xception 0,512
InceptionV3 0,504
ResNet50 0,471
InceptionResNetV2 0,587
DenseNet 0,506

Table 4 Mean f-measure per video category for different computational meth-
ods
(higher is better). For each video category, best result is shown in bold.

Category Random Gygli [2] Otani [5] Ours (DCN: Inception V3)

Egocentric 0,140 0,226 0,181 0,216
Moving 0.138 0,225 0,182 0,176
Static 0.138 0,285 0,186 0,342

hypothesis is that importance of a video segment is related with
diversity, i.e., the less diverse a segment, the less important. Lit-
erature explored visual diversity in previous works, but we have
extended to a visual and categorical diversity. Experiments show
that it is possible to use this combined diversity for a video sum-
marization task. Although the simplicity of constructed model in
terms of its architecture and the linear relation of visual and cat-
egorical diversity that was used, performance (f-score) is close or
superior to state-of-art works. This motivates us to continue explor-
ing in this direction of research. Some conclusions we can made
based on experiments and results are: a) Visual diversityD, obtained
from different DCN models is highly correlated, i.e. we can obtain
a similar visual representation using any pre-trained DCN model,
b) categorical diversity K, obtained from different DCN models
and a word-embedding (GloVe) presents a low correlation, i.e. cat-
egorical representation vary significantly for different DCN models,
c) although K depends of D, both representations are not highly
related, i.e., a video-frame can be highly visually diverse but not cat-
egorically, or the contrary, d) we obtained best mean performance
(f-score: 0.209) using InceptionV3 as pre-trained DCN model and
e) injection of user queries can be used along with video diversity,
to personalize summaries and specify user intentions previous to
VSUM task.

As future work we will explore representing sequential nature of
video to improve performance in videos where importance is related
with actions and interactions between elements on scene and and
the use of Region-based DCN models (R-CNN) to represent spatial
interactions between scene objects.

Finally, simplicity and direct nature of our method allows to use it
without a training stage, which is important for rapid implementation
and processing for industrial applications.
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Table 6 F-measures for each DCN model using combined diversity ϑ (higher is better). For each video in SumMe dataset, we show best result (bold). Finally we
show the mean and standard deviation of the f-measures obtained by each DCN model.

Computational Method (ϑi = 1
2 (Di +Ki)): Evaluation of DCN models

Category Videoname VGG16[31] VGG19[31] Xception [33] InceptionV3 [34] ResNet50 [35] InceptionResNetV2 DenseNet [36]

Egocentric Base jumping 0,182 0,114 0,187 0,200 0,175 0,174 0,166
Scuba 0,142 0,230 0,300 0,112 0,126 0,170 0,182
Bike Polo 0,100 0,193 0,225 0,290 0,076 0,153 0,219
Valparaiso_Downhill 0,306 0,283 0,216 0,260 0,235 0,203 0,233

Moving Bearpark_climbing 0,088 0,107 0,173 0,195 0,133 0,229 0,147
Bus_in_Rock_Tunnel 0,081 0,083 0,109 0,101 0,089 0,091 0,117
Car_railcrossing 0,117 0,130 0,037 0,123 0,066 0,080 0,058
Cockpit_Landing 0,140 0,139 0,124 0,126 0,189 0,190 0,147
Cooking 0,075 0,128 0,132 0,204 0,266 0,207 0,265
Eiffel Tower 0,219 0,152 0,147 0,101 0,144 0,135 0,129
Excavators river crossing 0,092 0,118 0,086 0,081 0,056 0,098 0,089
Jumps 0,063 0,049 0,051 0,175 0,040 0,044 0,387
Kids_playing_in_leaves 0,339 0,263 0,415 0,319 0,390 0,221 0,196
Playing_on_water_slide 0,040 0,046 0,048 0,074 0,055 0,115 0,047
Saving dolphines 0,116 0,113 0,066 0,114 0,126 0,120 0,165
St Maarten Landing 0,581 0,563 0,557 0,469 0,610 0,504 0,552
Statue of Liberty 0,082 0,103 0,116 0,114 0,093 0,152 0,123
Uncut_Evening_Flight 0,216 0,178 0,269 0,300 0,116 0,248 0,153
paluma_jump 0,114 0,100 0,104 0,259 0,255 0,120 0,106
playing_ball 0,142 0,092 0,152 0,097 0,053 0,190 0,154
Notre_Dame 0,105 0,103 0,128 0,137 0,144 0,113 0,139

Static Air_Force_One 0,375 0,385 0,263 0,348 0,356 0,145 0,222
Fire Domino 0,094 0,231 0,155 0,103 0,215 0,121 0,099
car_over_camera 0,426 0,414 0,436 0,436 0,435 0,413 0,414
Paintball 0,485 0,471 0,478 0,480 0,378 0,423 0,432

mean score 0,189 0,192 0,199 0,209 0,193 0,186 0,198

Table 7 F-measures for different computational methods (higher is better). For each video in SumMe dataset, best results are shown in bold. Finally we show the
mean and standard deviation of the f-measures obtained by each computational method.

Human Annotators Computational Method

Category Videoname Min Mean Max Random Gygli (2014) Otani (2016) Ours (DCN: Inception V3)

Egocentric Base Jumping 0,113 0,257 0,396 0,144 0,121 0,077 0,200
Bike Polo 0,190 0,322 0,436 0,134 0,356 0,235 0,290
Scuba 0,109 0,217 0,302 0,138 0,184 0,154 0,112
Valparaiso Downhill 0,148 0,272 0,400 0,142 0,242 0,258 0,260

Moving Bearpark climbing 0,129 0,208 0,267 0,147 0,118 0,178 0,195
Bus in Rock Tunnel 0,126 0,198 0,270 0,135 0,135 0,151 0,101
Car Rail Crossing 0,245 0,357 0,454 0,140 0,362 0,328 0,123
Cockpit Landing 0,110 0,279 0,366 0,136 0,172 0,165 0,126
Cooking 0,273 0,379 0,496 0,145 0,321 0,329 0,204
Eiffel Tower 0,233 0,312 0,426 0,130 0,295 0,174 0,101
Excavators River Crossing 0,108 0,303 0,397 0,144 0,189 0,134 0,081
Jumps 0,214 0,483 0,569 0,149 0,427 0,015 0,175
Kids Playing in Leaves 0,141 0,289 0,416 0,139 0,089 0,278 0,319
Playing on Water Slide 0,139 0,195 0,284 0,134 0,200 0,183 0,074
Saving dolphines 0,095 0,188 0,242 0,144 0,145 0,121 0,114
St Maarten Landing 0,365 0,496 0,606 0,143 0,313 0,015 0,469
Statue of Liberty 0,096 0,184 0,280 0,122 0,192 0,143 0,114
Uncut Evening Flight 0,206 0,350 0,421 0,131 0,271 0,168 0,300
Paluma Jump 0,346 0,509 0,642 0,139 0,181 0,428 0,259
Playing Ball 0,190 0,271 0,364 0,145 0,174 0,194 0,097
Notre Dame 0,179 0,231 0,287 0,137 0,235 0,093 0,137

Static Air Force One 0,185 0,332 0,457 0,144 0,318 0,316 0,348
Fire Domino 0,170 0,394 0,517 0,145 0,130 0,022 0,103
Car Over Camera 0,214 0,346 0,418 0,134 0,372 0,132 0,436
Paintball 0,145 0,399 0,503 0,127 0,320 0,274 0,480

Mean 0,179 0,311 0,409 0,139 0,234 0,183 0,209

Relative to human avg. 58% 100% 131% 45% 75% 59% 67%

Relative to human max. 44% 76% 100% 34% 57% 45% 51%
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Fig. 7: Example summaries. Three video examples from dataset SumMe. For each video it is presented the mean user score in red, generated
summary (at 15%) by our method in blue, and intersection of generated summary and user scores in green. It is also shown, video frames with
high importance to human annotators.
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