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Abstract

The capacitive behaviour of an intergranular double Schottky barrier in a polycrystalline

semiconductor was evaluated. We found that the widely applied version of the Mott—Schottky
equation can lead to significant errors. Even though we considered strong Fermi level pinning
at the interface and no deep levels, the Mott—Schottky equation can be inadequate leading to

huge errors due to voltage splitting at double Schottky barriers. Experiments carried out on

ZnO varistors corroborated the main trends of our analysis.

(Some figures may appear in colour only in the online journal)

1. Introduction

Electrical properties of polycrystalline semiconductors are
known to be dominated by potential barriers at the grain
boundaries [1-3]. Consistently, the high resistivity exhibited
at low applied voltages derives from grain boundaries since
grains are very conductive. At high enough applied voltages,
a breakdown of these intergranular barriers takes place. Then,
the conductivity rapidly increases in a narrow range of the
applied voltage. This characteristic is exploited in metal-
oxide varistors, used for circuit protection [4-9]. Potential
barriers are caused by intergrain states that may arise due to
the presence of impurity or additive atoms, or to dislocations
introduced by the crystallographic mismatch between adjacent
grains, or because of an interface layer, which is another oxide.
Regardless of their origin, interface states deplete carriers from
surrounding grains leading to the formation of double Schottky
barriers [10-12].

Zinc and tin oxides are intrinsic n-type semiconductors
that exhibit oxygen vacancies with the behaviour of shallow
donor impurities. The interfacial region is relatively thin and
the depletion of majority carriers leaves ionized defects at close
grains that screen the charge accumulated at the interface. The
presence of charged depletion layers has been demonstrated by
means of capacitance—voltage measurements that are widely
used to characterize the electrical properties of the intergrains.
Even though several observed complexities indicate that a
simple parallel resistor—capacitor circuit is not enough to model
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all the involved phenomena [13], the Mott—Schottky approach
as proposed by Mukae et al is regularly used to determine
barrier heights and donor concentrations [14].

In this work, we showed that, additionally to other
complexities, the applied voltage splitting between the direct
and inverse polarized barriers at intergrains can lead to
significant errors. In particular, this can take place for the
simplest case of strongly pinned double Schottky barriers with
no deep donors. The proposed analysis leads to the observed
experimental trends.

2. Double Schottky barrier model and Mukae’s
approximation

Usually, the electrical properties of polycrystalline semicon-
ductors are described with a simple one-dimensional model
representing the interface between two grains. Figure 1(a)
depicts the conduction band for a double Schottky barrier
model thatis generally accepted [1, 15, 16]. The scheme shows
an n-type semiconductor junction with and without a voltage
applied across the grain boundary. In doing so, we chose to
maintain the interface with the same potential; the applied volt-
age drops partly at the left grain, V;, and partly at the right grain,
V,. Figure 1(b) shows the charge distribution. Charged donors
at both grains generate an electric field and then band bending.
Additional screening of the interface charge could be provided
by deep states but we will not include them in this work. We

© 2012 IOP Publishing Ltd  Printed in the UK & the USA
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Figure 1. Energy-band diagram for the double-depletion-layer
model. The diagram shows schematically the basic features of an
n-type semiconductor interface when a voltage is applied (dark line)
and when no voltage is applied (light line). (a) After a voltage V
was applied across the grain boundary, V; and V, are the voltage
drops at the left grain and at the right grain, respectively. Q; is the
charge trapped at the boundary. (b) Charge distribution at the double
Schottky barrier. wy is the width of the depletion regions when there
is no applied voltage; w; and w, are the widths of the depletion
regions when the voltage V is applied to the intergrain.

have assumed that the width of the interfacial region is very
small to justify its idealization as an infinitely thin layer with
a total charge —Q;.

Figure 1 indicates that shallow donors, with density Ny,
are everywhere ionized and are homogeneously distributed
along the grains. As seen in figure 1(b), the free carrier
concentration is assumed to be negligible within the depletion
regions that are then perfectly well defined: between —wy
and wy for the double barrier without an applied voltage and
between —w; and w, when a voltage V is applied. The
characteristics of the Schottky-type barriers at the intergrains
could be inferred from the applied voltage dependence of the
capacitance. This is regularly carried out using the approach
of Mukae et al, as described below [14].

The capacitance per unit area of a Schottky barrier is

given by
esNy 12
C= , (1)
2¢

where e is the electron charge, ¢ is the permittivity, Ny is
the donor concentration and e¢, given in eV, is the barrier
height. Strictly, the Schottky barrier height should be defined
as the difference between the top of the barrier and the Fermi
level [17]. However, many researchers in the field define the
barrier height as the band bending, i.e. the difference between
the top of the barrier and the bottom of the conduction band
in the bulk [11,12,18]. In figure 1, we adopted this second
convention. In a double Schottky barrier, such as that of
figure 1, the total capacitance for the intergrain results from
two capacitances in series, corresponding to a forward and a

reverse biased barrier,

1 2 1/2 1/2 1/2
L (mvd) (b0 — VD' + (o + V)21, ()

where eV, and eV, are the decrease and increase of the
barriers for the forward and reverse biased grains, respectively.
By assuming that the forward biased barrier modification is
negligible, V, is approximately equal to V, the total applied
voltage. Thus, equation (2) becomes

: LY - (po+V) (3
C,‘ 2C0 - €8Nd 0 ’
where "
1 2
= 2( b0 ) . 4)
C() EENd

Cy is the capacitance for no applied voltage.
For n intergrains in series the total capacity is C = C;/n
and the total applied voltage is V; = nV. Then, equation (3)

becomes
1 2 2 1/2 2 2 2
[——( ”¢°> } = (go+Vi/m).

C eeNd E&‘Nd

This equation is regularly used to determine the barrier height
and the dopant concentration in polycrystalline materials. By
plotting the left-hand term of equation (5) versus the applied
voltage, a straight line should be obtained. Then, knowing the
average number of grains between electrodes, N4 and ¢y can be
found from the slope and the intercept of the line on the voltage
axis. This analysis is based on the assumption that the applied
voltage drops completely at the reverse biased diode. This
assumption implies that the density of states at the interface
is large enough so that the quasi-Fermi level at the interface
does not significantly change when the interface charge density
increases (Fermi level pinning) [19]. The interface charge Q;
is determined by the density of states at the interface and the
quasi-Fermi level.

Regularly it is considered that the carrier transport through
the grain boundary is thermionic. If so, the electron current
density from the negatively biased grain to the positively biased
grain would be

Ji = AT? exp[—(e¢ + &) /kT], (6)

where A is the Richardson constant, T is the temperature, k
is the Boltzmann constant, and & is the difference between
the conduction band minimum and the Fermi level. There is
also a current density, J,, flowing in the opposite direction
of the same form as equation (1) but reduced by a factor
exp(—eV/kT). A fraction of these currents, say c, is trapped
and re-emitted by the interface states.

In steady state, the total current flowing from the grains
towards the interface must cancel with the total current flowing
from the interface towards the grains. Next, we will follow the
analysis of [20]. For V = 0, the activation energy for transport
from the interface to the grain and vice versa is e¢y. Thus, the
emitted currents are

Jer2 = cAT* exp[—(edpo + &)/ kT]. )
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Joexp(—ep/kT)[1 +exp(—eV/kT)] = 2Jyexp(—epo/kT).
1D
Equation (11) leads to
exp(eV/kT) +exp[—eV,/kT] = 2. (12)
ForeV > kT,exp(—eV/kT) =2and ¢ = ¢pg— (kT /e) In2,
independent of the applied voltage. The double Schottky
barrier is very one sided, with most of the applied voltage
dropping at the reversed biased diode. These calculations
indicate that Mukae’s approximation would be applicable.

3. Experiments

In this work, experimental measurements made on a
commercial ZnO-based varistor GNRO7D680 are reported.
We found that features for varistors of the same type present
varying characteristics. Then, we used the same varistor for
a complete set of measurements. Capacitance measurements
were carried out with a Hewlett-Packard impedance analyser
model 4184A. A furnace, with a commercial temperature
controller Novocontrol BDS 1200, was used for heating the
sample.

Figure 2 shows the measured capacitance at 1 MHz, a
typically used frequency, as a function of the applied voltage,
as suggested in equation (5). The varistor thickness was
measured with an optical microscope (*1.14 mm) and, from
SEM images, the average grain size was determined to be
~35.4 um. Thus, the average number of grains was n ~ 32.
By fitting the curves of figure 2, with straight lines for an
applied voltage greater than 20V, we could determine the
barrier heights from the slope and intercept of the line on
the voltage axis using Mukae’s method, equation (5). The
barrier heights resulted to be 1.92¢eV, 1.67eV and 1.42¢eV for
T = 368K, 423K and 478 K, respectively. These values
are consistent with those found by other authors using the
same method [21-24]. However, barrier heights determined
based on sample conductivity are typically in the range 0.4—
0.9eV [25-28]. On the other hand, the barrier should not
be strongly dependent on temperature as determined because
we are dealing with a sealed polycrystalline sample that is
not in contact with the atmosphere and then the amount of
oxygen at the intergrains is not expected to change. Note

Voltage (V)

Figure 2. Mott—Schottky behaviour for a commercial varistor
GNRO7D680 at three temperatures. From these plots the barrier
heights were determined: 1.92¢eV, 1.67eV and 1.42¢eV for

T = 368K, 423 K and 478 K, respectively.

that temperatures were kept in a range for which device
degradation does not occur. The main assumption in Mukae’s
approximation consists in considering that the applied voltage
does not modify the forward biased barrier, which has been
questioned as shown below.

4. Barrier height dependence on applied voltage

Several researchers have proposed that the barrier height
depends on the applied voltage. The barrier height has been
considered to decrease with the applied voltage as [28, 29]

e¢p = e¢y — BE'/?,

where E is the applied field.

Blatter and Greuter presented a detailed analysis of the
possible dependence of the barrier height on the applied voltage
as a consequence of a finite density of interface states. That
is, the quasi-Fermi level at the interface can move in the gap
[12]. They found that the steady-state current across a grain
boundary depends significantly on the states at the intergrain.
With the applied voltage, the interface charge Q; increases
as more interface states become occupied. Thus, depending
on the density and energy distribution of interface states, the
quasi-Fermi level at the interface would be pinned to varying
degrees.

Experimentally, the reduction in barrier can be derived
from the current density—voltage characteristics. The current
density increase with the applied voltage implies that,
according to a thermionic carrier transport, the barrier height
is a decreasing function of the applied voltage. The barrier
height as a function of the applied voltage can be derived from
equation (6):

13)

J
V)= —kTIn—.
ep(V) n

In figure 3, we present the resulting barrier heights as a
function of applied voltage for T = 368, 423, and 478K,

(14)
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Figure 3. Barrier heights calculated from measured currents as a
function of the applied voltage for T = 368, 423 and 478 K, for a
commercial varistor GNRO7D680. Lines correspond to fittings
using equation (14) assuming thermionic transport.

applying equation (14). Filled lines correspond to fittings
using the dependence shown in equation (13). The quality
of the fitting indicates that the proposed function is applicable
in our experimental results.

The reduction in barrier height, eA¢ = BE'/? reflects
in the capacitance of the intergrain as it affects the forward
and reverse biased barriers. Accordingly, the intergrain
capacitance can be expressed as

C; _ 2 (15)

C_o ap\ /2 N :
[(1-5) "o (10 52)

Knowing the intergrain capacitance dependence with the
applied voltage, obtained with equation (15), we can apply
Mukae’s approach, equation (3), to derive the barrier height
ego. The resulting values are 0.91eV, 1.01eV and 1.152eV
for T = 368K, 423 K and 478 K, respectively. These findings
disagree with those determined experimentally. Even worse,
the temperature dependence is wrong. These results indicate
that one or more assumptions in this analysis are not correct. In
the next section, we introduce a different approach considering
that the barrier height e¢ reduces not due to a finite density of
states at the intergrain but as a consequence of the extension of
the argument given in section 2, including the thermionic-field
emission contribution in the electronic transport through the
intergrain barrier.

5. Applied voltage splitting at the double barrier

The analysis leading to equation (12) can be extended
to incorporate thermionic-field emission or tunnelling
contributions, which can be calculated using

AT (¢
—/ F(E)P(E)dE.
0

(16)

Ji tunneling =
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Figure 4. Barrier heights as a function of the applied voltage
deduced by considering that the total current flowing from the grains
towards the interface must cancel with the total current flowing from
the interface towards the grains. Tunnelling contributions were
included. The Fermi level was assumed to be pinned at the interface
and deep levels were not considered.

F(E) is the Fermi-Dirac distribution and P(E) is the
transmission probability, which can be determined by means of
the Wentzel-Kramer—Brilloin (WKB) approximation [30-32].
Similarly, as done in section 2, we can figure out the trapped
and re-emitted current densities. We have performed these
calculations under different values of the relevant parameters
by keeping the total trapped and re-emitted current densities
equal, as expected under a steady-state condition. We found
that, in general, most of the applied voltage drops at the reverse
biased diode. However, as tunnelling contributions increase,
Vi becomes a larger fraction of the total applied voltage and
then the barrier height reduces with the applied voltage. Note
that in this approach we consider that the density of states at
the interface is high enough to pin the quasi-Fermi level at the
interface.

Figure 4 shows the resulting barrier height e¢ as a
function of the applied voltage per grain with temperature as a
parameter, for ey = 1 eV and a doping Ng = 5 x 10**m~3.
The barrier height decreases faster at lower temperatures,
a consequence of the relatively higher contributions of the
tunnelling currents. The applied voltage splitting determines
the capacitance of the double barrier according to equation (2).
Once the capacitance as a function of the applied voltage is
calculated, we can determine the barrier height using Mukae’s
method. Figure 5 shows those results for three different
dopings (filled lines). It is interesting to note that the lower
the doping, the lower the influence of the tunnelling currents.
In fact, a lower doping and a higher temperature reduce the
influence of the tunnelling currents and then Mukae’s method
works better.

In figure 5, we have also included the barrier heights
obtained from the experimental results of figure 2. Given the
assumptions and unknowns in our modelling, it was not our
goal to find the best set of parameters to adjust those findings.
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Figure 5. Determined barrier heights using Mukae’s method as a
function of temperature. Lines correspond to the model based on
equating the currents flowing from the grains towards the interface
with the total current flowing from the interface towards the grains,
figure 4. Calculations were performed for three dopant
concentrations. Filled circles correspond to the experimental results
of figure 2 using a commercial varistor GNRO7D680. Filled
triangles correspond to the application of Mukae’s method to the
results of figure 3, in which the electronic transport was assumed to
be thermionic.

However, it was found that the trends are reproduced well for a
doping of Ng = 5 x 10** m™ and a barrier height ey = 1V,
which are regularly reported values. Figure 5 also shows the
barrier heights calculated assuming a thermionic current and
a barrier height dependence given by equation (13). As said
before, this approach leads to inconsistencies.

It is important to stress that these methods could be valid
as long as the model of figure 1 is applicable. For small grains
and/or low doping, grains can be completely depleted and then
the voltage capacitance dependence cannot be described based
on the scheme of figure 1. Even before total depletion, the one-
dimensional character of the interface is lost and the current
models are not valid.

6. Conclusions

We have shown that the widely applied version of the Mott—
Schottky equation can lead to huge errors in the determination
of barrier heights in polycrystalline semiconductors. We
propose that voltage splitting at double Schottky barriers,
a consequence of tunnelling currents, can contribute
to parameter falsification in applying Mukae’s method.
Interestingly, strong quasi-Fermi level pinning at the interfaces
does not guarantee the applicability of Mukae’s method.
Experiments carried out on ZnO varistors confirmed the main
trends derived from the approach in which we considered
tunnelling contributions to electronic transport and that the
density of states at the interface is high enough to pin the quasi-
Fermi level at the interface.
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