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Highlights 

 P. sajor-caju LBM 105 could remove more than 90% of PCBs after 35 days. 

 PCBs modified hyphal diameter, biomass, glucose, proteins and laccase secretion. 

 The mycoremediation treatment of PCB with GA costed 0.69 $ g-1d-1. 

 

Abstract  
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Polychlorinated biphenyls (PCBs) are exceptionally stable organic pollutants. An effective and 

economically feasible process is essential for their removal. Mycoremediation using white-rot fungal 

strains proved as a highly effective approach that has not been thoroughly investigated. The aim of this 

work was to evaluate PCBs remediation efficacy applying Pleurotus sajor-caju LBM 105. Axenic 

cultures of the fungus, either in complex or N-limited liquid media, were spiked with 217 mg L-1 of a 

technical mixture of Aroclor 1242, 1254 y 1260 in oil transformer.  PCBs removal capacity, toxicity 

reduction, changes in fungal morphology and laccase expression caused by pollutant addition and the 

cost-effectiveness of the remediation treatment were assessed when growing the fungus under two 

different nutritional conditions. P. sajor-caju LBM 105 could remove 97.7% and 91.7% of the PCBs 

mixture and reduced the toxicity in complex and mineral media respectively after 35 days of 

incubation. The addition of PCBs to P. sajor-caju LBM 105 culture media resulted in an increase in 

hyphal diameter, changes in biomass, glucose consumption, proteins and laccase secretion. A 3-fold 

rise in laccase activity was detected in both media at 28 day. Laccase mRNA augmented 16% and 

91% at 21 and 28 days respectively when PCBs were added to the N-limited liquid media. 

Mycoremediation of PCBs with P. sajor-caju LBM 105 cultivated in N-limited liquid medium is 

an effective low-cost (0.69 $ g-1d-1) alternative technique for PCBs treatment.   

 

Key words:  Polychlorinated Biphenyls; Mycoremediation; Laccase; Morphology; Tolerance 

 

1. Introduction 

Polychlorinated biphenyls (PCBs) are persistent organic pollutants that were applied as dielectric and 

coolant fluids in transformers and electric motors in the twentieth century [1]. Although their use and 

production were banned in the last decades, they persist in the environment and represent a serious 

problem due to their recalcitrance and hazardous effects on wild life and human health [2]. They 

remain in soils and water bodies for many years, and because of their lipophilic nature, they 

bioaccumulate and biomagnify through the food chain [1]. Consequently, the clean-up of PCBs-

contaminated sites has become a priority due to the teratogenic, carcinogenic and endocrine-disrupting 

features of these xenobiotics [3, 4]. Several methods have been applied for in situ and ex situ 
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remediation/destruction of PCBs and other toxic substances: landfilling, landfarming, incineration, 

thermal desorption, chemical dehalogenation, catalytic hydrogenation, ultrasonic technology, 

advanced oxidation processes, etc. [5, 6, 7, 8]. Biological strategies were implemented as a result of 

the limitations associated with the traditional methods. These methodologies use the microorganism's 

metabolic capabilities for transforming the pollutants into smaller molecules or for affecting the 

functional groups involved in their toxicity. They demand longer treatment periods than 

physicochemical processes, but are easy, low-cost and eco-friendly [9]. Mycoremediation using white-

rot fungal strains proved as a highly effective remediation approach that has not been thoroughly 

investigated [10]. These fungi are capable of mineralizing even xenobiotic compounds (e.g., 

chlorophenols, polycyclic aromatic hydrocarbons, dioxins, furans, etc.) due to the nonspecific nature 

of their extracellular oxidative ligninolytic system; and they can be applied in solid, liquid and gaseous 

media [11, 12, 13, 14, 15]. As white-rot fungi grow by hyphal extension, they can easily penetrate 

across environmental matrices, reach pollutants in soil and act reaching as dispersion vectors [11]. 

They employ a variety of enzymes in pollutant degradation including intracellular cytochrome P450 

monooxygenases and their extracellular ligninolytic system consisting of several enzymes, among 

them the phenoloxidase laccase (Lac, E.C. 1.10.3.2) and various peroxidases, such as lignin 

peroxidase (LiP, E.C. 1.11.1.14), manganese peroxidase (MnP, E.C., 1.11.1.13) and versatile 

peroxidase (VP, E.C. 1.11.1.16). These fungi are also capable of degrading PCBs, although the exact 

role of the enzymatic system has not been fully elucidated yet [10, 11, 16]. Pleurotus ostreatus, 

Coriolopsis polyzona, Phanerochaete chrysosporium and Trametes versicolor were all able of 

significant PCB degradation with low congener specificity, and removal rates did not correlate with 

the degree of chlorine substitution [10, 17]. Their removal capacity seems to require different 

adaptation systems according to the fungal species [11, 18, 19]. In order to develop an effective 

mycoremediation process it is essential to look for low-cost culture conditions that improve fungal 

biodegradation [20, 21].  

Pleurotus sajor-caju is an edible white-rot fungus [22]. This basidiomycete and its enzymes, mainly 

Lac, were involved in the removal of phenols and the decolorization of dyes and paper mill effluents 

[23, 24, 25]. P. sajor-caju LBM 105 has demonstrated potential to be applied in PCBs bioremediation 
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[26]. The aim of this work was to evaluate the feasibility of applying P. sajor-caju LBM 105 in 

mycoremediation of high PCBs concentrations. In order to approach different aspects of the process, 

we focused on the study of PCBs fungal removal capacity and the associated toxicity reduction, the 

changes in morphology and laccase expression caused by the addition of this pollutant and the cost of 

the treatment under two different nutritional conditions. 

 

2. Materials and Methods 

2.1 Materials 

The investigation was performed using transformer oil containing a mixture of Aroclor 1242, 1254 

and 1260, obtained from Kioshi S.A. (Buenos Aires, Argentina). All the solvents were purchased from 

Merck or Cicarelli (Santa Fe, Argentina) and were of p.a. quality, trace analysis quality or gradient 

grade. All the chemicals used for the biochemical studies were obtained from Merck or Britania 

(CABA, Argentina). 

 

2.2 Microorganism, media and inoculum preparation 

P. sajor-caju LBM 105 was isolated from Eldorado, Misiones, Argentina and provided by the Faculty 

of Forestry Sciences, National University of Misiones, Argentina. Two types of liquid media were 

used in this study: a natural medium (MEM) consisting of malt extract, 12.7 g; corn step liquor, 5 g; 

distilled water up to 1 L [27] and a nitrogen-limited mineral medium (GA) containing glucose, 10 g; 

asparagine monohydrate, 0.5 g; MgSO4·7H2O, 0.5 g; H2KPO4, 0.5 g; HK2PO4, 0.6 g; CuSO4·5H2O, 

0.4 mg; MnCl2·4H2O, 0.1 mg; H3BO3, 0.1 mg; CaCl2, 0.1 g; Na2MoO4·2H2O, 0.02 mg; FeCl3, 1 mg; 

ZnCl2, 3.5 mg; thiamine hydrochloride, 0.1 mg; Tween 80, 1.7 mmol; distilled water up to 1 L, final 

pH: 6.5 [28]. Erlenmeyer flasks (250 mL) with 20 mL of medium were autoclaved at 105°C for 20 

min to prevent microbial contamination. Each Erlenmeyer flask was inoculated with 1 agar plug (5 

mm diameter) of the fungus grown for 7 d on MEA plates (malt extract, 12.7 g L-1; agar, 20 g L-1). At 

the beginning of the cultivation, each flask was spiked with 4000 μg of PCBs in acetone. Unspiked 

and abiotic cultures were used as controls. Cultures spiked with acetone without PCBs were used as 

controls of this solvent. Heat-killed controls were obtained by the addition of PCBs to autoclaved 7-d 
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old fungal cultures. All cultivations were carried out in duplicate at 29 ± 1°C under static conditions 

for 35 d. The samples were harvested weekly and the mycelium was separated from the supernatant by 

centrifugation at 8000 rpm for 10 min.    

 

2.3 PCBs determination 

The PCBs were extracted from cultures supernatants by washing three times with 20 mL of hexane 

under agitation (250 rpm, 25 ± 1°C) for 30 min [29]. The samples were then cleaned up with sulfuric 

acid and centrifugation (8000 rpm). Quantitative analyses of PCBs were performed using a gas 

chromatograph (Agilent 6890) equipped with a HP1 capillary column (Length: 30 m, ID: 0.23 mm, 

Film: 0.25 μm) and an electron capture detector (μECD). The abiotic losses were determined from 

cell-free controls incubated in parallel with fungal cultures. The reference material was 50 μg g-1 of 

AccuStandad Aroclor 1242, 1254 and 1260. The removal percentages were obtained by comparing the 

treated samples with the heat-killed controls, and were adjusted in function of time to:  

𝑦2 = 𝑎t                                                                                                                                      

Where y: is the removal percentage, a: the regression coefficient and t: the incubation period (in d).  

 

2.4 Toxicity assay 

To assess the bioremediation efficiency, Ganoderma sp. LBM 001 was used as toxicity indicator. This 

strain was severely affected by the presence of PCBs in previous studies [26]. The fungus was 

cultivated in 90 mm diameter agar plates containing sugarcane bagasse-based medium [26] 

supplemented with 100 µL crude extracts from 35 d cultures of P. sajor-caju LBM 105 grown in GA 

or MEM media with PCBs addition. Crude extracts were spread on the surface of the plates using 

a Drigalski spatula. The radial growth was measured every 48 h for 16 d. Fungal growth was modeled 

by using a logistic equation [26]. Fungal growth τ was standardized as Δτ1 = τT –τC and Δτ2 = τPCB –

τC, where τT were the values from medium with PCBs treated with the fungus, τPCB were the values 

from medium with PCBs without fungal treatment and τC were the values from control culture 

without PCBs to ignore the effect of nutrient components. A positive value of Δτ proved fungal 

growth inhibition in response to PCBs and/or toxic metabolites.  
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2.5 Effect of PCBs on growth and morphological appearance of the mycelium 

To remove the attached PCBs, the mycelium was washed three times with a solution of hexane-

acetone (10:6) during 15 min at 250 rpm, and then dried at 105 ± 1°C up to constant weight. 

Morphological changes due to PCBs addition were evaluated by direct observation and scanning 

electronic microscopy (SEM). For the microscopic analysis, mycelium grown for 14 d was separated 

from the supernatant. The hyphae were then fixed with a solution containing formaldehyde, alcohol 

and acetic acid (10:50:5). After drying at critical point with CO2 and gold-metalized, the surface was 

observed with a scanning electron microscope JEOL 5800LV. To evaluate the effect of PCBs on 

mycelia, hyphal diameter was measured in fifty hyphae using ImageJ software.  

 

2.6 Analytical determinations in culture supernatants 

The extracellular proteins from the supernatant were measured by the Lowry procedure [30], with 

bovine serum albumin as standard. Remaining glucose in the supernatant was determined by the 

glucose-oxidase/peroxidase method [31]. Enzymatic determinations: Lac activity was measured at 30 

± 1°C using 5 mM of 2,6-dimethoxyphenol (DMP) as substrate in sodium acetate buffer 0.1M (pH 

3.6). The changes in absorbance were evaluated at 469 nm (ε469 = 27.5 mM−1 cm−1) [32].  Peroxidase 

activity was determined at 30 ± 1°C by monitoring the oxidation of 5 mM of DMP in sodium acetate 

buffer 0.1 M (pH 3.6) and H2O2 0.1 mM at 469 nm. The enzyme activities were expressed in 

international units (U), defined as the amount of enzyme required to produce 1 μmol of product min-1 

at 30 ± 1°C. The activity was reported as U L-1. The peroxidase activity was always corrected for Lac 

activity. 

 

2.7 Polyacrylamide gel electrophoresis (PAGE) and Lac activity staining of gels 

The secreted protein profile was observed using sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE, 12% w v-1) [33]. Proteins were stained with 2 g L-1 AgNO3 [34]. To 

determine the presence of Lac isoenzymes, the culture supernatant was subjected to native 

polyacrylamide gel electrophoresis (ND-PAGE, 12% w v-1). After proteins separation, the gel was 
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incubated in 0.1 M sodium acetate buffer (pH 3.6) containing 5 mM DMP for Lac activity detection 

[27, 35]. After 10 min incubation, the solution was discarded, and the gel was immediately scanned 

with a Scanner HP Deskjet F300. To assess Lac isoenzymes molecular weight, an electrophoretic 

separation by SDS-PAGE (12% w v-1), followed by a subsequent re-naturalization with Triton X-100 

0.2% v/v and detection technique was performed as previously described [27, 35, 36] and compared 

with a molecular weight marker (Prestained Kaleidoscope SDS-PAGE standard broad range, BioRad). 

The electrophoretic run was performed at 120 V for 120 min in 1.5 M Tris–Glycine buffer (pH 8.3). 

 

2.8 Isolation of total RNA and Lac fragment amplification 

RNA was extracted from cultures harvested at 14, 21 and 28 d in GA and control media by 

centrifugation. The RNA was isolated with Tri-Reagent (Sigma-Aldrich) following manufacturer’s 

instructions and re-suspended in 20 μL of RNases-free sterile water. To confirm the quality of the 

isolated RNA, a 0.8% (w/v) agarose gel electrophoresis was performed. Total RNA was 

spectrophotometrically quantified at 260 nm. Samples were treated with RNse-Free DNase (Promega) 

at 37°C for 30 min, halting the reaction with Stop Solution incubated at 65°C for 10 min, following 

the manufacturer's protocol. In order to obtain the double-stranded cDNA, 100 pmol of oligo (dT) 

primer was added to the samples treated with DNases. The reverse transcription was carried out at 

42°C for 60 min in a 20 μL reaction containing: 5X Reaction Buffer (Tris-HCl pH 8.3 250 mM, KCl 

250 mM, MgCl2 20 mM, DTT 50 mM), dNTPs 10 mM of each one, RNase inhibitor (ARNsin) 20 U, 

RevertAid-Reverse Transcriptase (Thermo Scientific) 200 U.    

The PCR technique was performed at a final reaction volume of 20 μL containing 2 μL of cDNA from 

the previous step, 1X Taq polymerase Buffer (10X Tris-HCl pH 8.8 750 mM, (NH4)2SO4 200mM, 

Tween 20 0.1% (v/v)), MgCl2 2.5 mM, dNTP mix 200 μM, 10 pmol of each primer and 0.5 U Taq 

polymerase (Inbio Highway). The primers used for Lac fragment amplification were previously 

described by D’Souza et al. [37] and for internal control, an actin fragment was amplified using the 

primers described by Luis et al. [38]. The cycling conditions were 5 min 95°C, 40 cycles of 20, 40 and 

40 s at 95°C, 50°C and 72°C respectively and final extension of 15 min 72°C. Actin and Lac 

fragments from genomic DNA were also amplified as positive reaction controls. The results of the 
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amplification were verified by agarose gel electrophoresis (2% w/v) stained with ethidium bromide 

and photographed with a Canon Power Shot G10 digital camera. The images were analyzed by 

densitometry. To confirm PCR specificity, the PCR products were sequenced.  

 

2.9 Cost-effectiveness study 

In order to evaluate both culture media, a cost-effectiveness study was carried out. Culture media costs 

were assessed based on their composition. The relationship between PCBs removal and incubation 

period was calculated by simple regression. Therefore, the treatment cost was estimated considering 

removal period and PCBs concentration in the culture medium. 

 

2.10 Statistical analysis 

Data was processed using Microsoft Excel and the statistical analysis was performed using Graphpad 

Prism (5.01) for Windows (GraphPad Software, San Diego California USA). The results were 

presented as the mean ± standard deviation. Statistical significance values were evaluated using one-

way analysis of variance. A p < 0.05 value was considered statistically significant.  

 

3. Results 

3.1 P. sajor-caju LBM 105 capacity of removing and detoxifying PCBs 

The time courses of PCBs removal in both MEM and GA media are shown in Fig. 1. The results are 

displayed as the sums of Aroclors compared with heat-killed controls. Culture media spiked with 

acetone revealed that this solvent did not show signs of toxicity towards the strain. P. sajor-caju LBM 

105 removed 34.8% of the PCBs in MEM medium after 7 d of treatment. Conversely, no significant 

decrease in PCBs concentration was observed within the first 21 d of incubation in GA medium. This 

strain was capable of removing 97.7% and 91.7% of PCBs (217 mg L-1 initial concentration) in MEM 

and GA media respectively after 35 d. The ability of P. sajor-caju LBM 105 to remove Aroclor 1242, 

1254 y 1260 is depicted in Figs. 1B and C. There were no significant differences between the removal 

percentages of diverse congeners in MEM medium (p > 0.05). However, these percentages diminished 

with the increased degree of chlorination of the congeners in GA medium at 21 d (p < 0.05). To 
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evaluate the production of harmful metabolites, a microbial toxicity test was performed using 

Ganoderma sp. LBM 001. This strain proved to be sensitive to PCBs in previous studies (Sadañoski et 

al. 2018). The results indicated that the treatment with P. sajor-caju LBM 105 increased the radial 

growth of the biomarker demonstrating a reduction of toxicity as depicted in Table 1.  

 

3.2 P. sajor-caju LBM 105 responses towards PCBs addition 

Mycelium morphology did not present differences at macroscopic level (data not shown). Fig. 2 shows 

the effect of PCBs on the mycelium of P. sajor-caju LBM 105 in MEM and GA media. SEM 

observation revealed that P. sajor-caju LBM 105 hyphae showed the presence of ripples and 

protrusions at the surface in both media with and without PCBs. Mycelia in GA appeared wrapped by 

extra layers. However, these additional layers were not observed in the same medium supplemented 

with PCBs, the micrographs showed a spaced and linear filamentous mycelium. Nevertheless, hyphal 

diameter increased with PCBs addition (p < 0.05). Fig. 3 depicts growth, glucose consumption, 

extracellular protein, and Lac secretion of P. sajor-caju LBM 105 in both media. The tolerance of this 

fungus to PCBs was assessed by comparing the mycelial dry weight attained both in the presence or 

absence of PCBs. Although the growth kinetics was slower in both media in the presence of the 

pollutant, the values of biomass detected at 21 d in MEM and 28 and 35 d in GA were similar with or 

without PCBs (p < 0.05). Secreted extracellular proteins increased with PCBs in MEM medium. 

Under the conditions assayed in the present work, peroxidase activity was not detected. Highest Lac 

titers were detected after 14 d of incubation in MEM medium and were similar in the presence or 

absence of PCBs (p < 0.05). In contrast, the peak of Lac activity was detected at 14 d in GA medium 

in the absence of PCBs and after 21 d of incubation in the medium amended with the pollutant. To 

verify the possible presence of Lac isoforms and their differential response to PCBs, SDS-PAGE 

analyses with DMP were carried out. Lac isoenzymatic pattern varied with culture media, incubation 

period and the presence or absence of PCBs. A Lac of high electrophoretic mobility was distinguished 

after 7 d of incubation both in absence and presence of PCBs in MEM and at 21 d in GA amended 

with PCBs (data not shown). In most of the other conditions assayed a diffuse Lac band with lower 

electrophoretic mobility was detectable in most of the other conditions assayed. This band showed a 
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clear increment at 14, 21 and 28 d in MEM medium with the pollutant, but also in GA medium at 14 

and 21 d in cultures without PCBs and at 28 d in PCBs supplemented GA medium. Based on SDS-

PAGE, the molecular weights of Lac isoenzymes were estimated to be between 60 and 80 kDa (Fig. 4 

A, C). Peroxidase activity could not be detected. Fig. 4 B, D depicts the protein profile obtained from 

culture supernatants of P. sajor-caju LBM 105 without PCBs (-) and with PCBs (+) using SDS-PAGE 

12% w/v in MEM (A) and GA (B) media after different incubation periods. SDS-PAGE showed an 

increase of all protein fractions especially between 45 kDa and 78 kDa. Biochemical studies showed 

that the kinetics of Lac secretion varied in GA medium with the addition of PCBs (Fig. 3).  

Accordingly, as shown in Fig. 5, Lac mRNA increased 16% and 91% at 21 and 28 d respectively 

when PCBs were added to the culture medium, due to increased levels of Lac gene transcription.  

 

3.3 Bioremediation cost-effectiveness  

Synthetic culture medium (GA) resulted more economically convenient than the natural MEM 

medium in order to grow P. sajor-caju LBM 105 (Table 2). PCBs removal was modelled as function 

of time through a simple regression. The general regression model was y2 = k*t, where y depicts PCBs 

degradation, t is the time (d) and k represents an apparent removal rate (d-1). 

Model equation 1 for MEM was:  yMEM = (0, 025234*t) ½ with a correlation coefficient of 0.96. 

Model equation 2 for GA was: yGA = (0, 0220119*t) ½ with a correlation coefficient of 0.89. 

The value of y, the removal period and the mass of PCBs were used to evaluate the cost-effectiveness 

of the process (Table 3). 

 

4. Discussion 

Considering that PCBs pollution is typically caused by mixtures of congeners [39], we evaluated the 

removal capacity of P. sajor-caju LBM 105 using transformer oil containing a mixture of Aroclor 

1242, 1254 and 1260. P. sajor-caju LBM 105 was able to tolerate high concentrations of PCBs 

(approx. 200 ppm) and proved high efficiency in the removal of the pollutant in liquid culture (more 

than 90% after 35 d of incubation). This percentage of PCBs removal is comparable to those 

previously obtained with other ligninolytic fungi [12, 16, 18, 40, 41] or strains isolated from PCBs-
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polluted soils [29, 42]. Nevertheless, fungal PCBs removal is generally affected by initial PCBs 

concentration [42] and to our best knowledge only Ruiz Aguilar et al. [41] assayed PCBs removal by 

white-rot fungi in liquid culture at higher concentrations.  

Culture conditions demonstrated to influence fungal growth and enzymatic production [15]. As shown 

in Fig. 1, nutrient availability affected P. sajor-caju LBM 105 capability to remove PCBs, being faster 

and more efficient in the complex medium than in the N-limited one.  Similar results were reported by 

Plačková et al. [16] with T. versicolor. This fungus removed higher concentrations of PCBs in malt 

extract glucose medium than in a mineral medium. Nevertheless, other strains of white-rot fungi were 

capable of removing PCBs in mineral media more efficiently than in rich media [12].  

Although bioremediation is pointed out as a good solution for the removal of PCBs from contaminated 

environmental matrixes [43], there is scarce knowledge on its ecotoxicological impact. 

Mycoremediation of PCBs could potentially lead to the formation of toxic metabolites, such as 

chlorobenzoic acids, whose accumulation might affect PCBs biotransformation [44]. However, a 

toxicity test employing Ganoderma sp. LBM 001 demonstrated that P. sajor-caju was able to decrease 

PCBs toxicity in both liquid media. In accordance with our findings, Čvančarová et al. [12] also 

reported a reduction in PCBs toxicity in liquid media with P. ostreatus.  

The ability of fungal strains to grow in the presence of aromatic compounds and other pollutants is 

associated with the development of mechanisms that favor their adaptation to diverse substrates, being 

crucial for their application in bioremediation [45, 46]. It is important to evaluate mycelial changes 

caused by PCBs presence because it is known that fungal mycelia control the flow of nutrients 

maintaining ecological equilibrium [47].  P. sajor-caju macroscopic morphology was not affected in 

PCBs media. However, electron microscopy images showed an increase in hyphal diameter in 

response to PCBs addition. The fungal cell wall is a highly dynamic structure and is regulated 

depending on internal and external stimuli [48]. Cell wall strengthening has been linked to the 

successful growth of the halophilic yeast Wallemia ichthyophaga at high salinities [49]. Cell wall 

stress response in Aspergillus niger involved increased deposition of chitin to ensure cell wall integrity 

[50]. The mycelia in GA (nitrogen limited medium) appeared enclosed by extra layers; likewise, under 

nitrogen limitation, SEM images showed that the mycelium of P. chrysosporium appeared covered by 
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abundant quantities of polysaccharides [51]. However, these additional layers were not detected in the 

same medium supplemented with PCBs. In contrast, Hong et al. [18] observed that PCBs led to the 

formation of extra layers attached to the fungal surface of Ceriporia sp. Exopolysaccharides (EPS) 

provide protection against environmental stresses [52]. As the PCBs mixture was added to the cultures 

at the start of the incubation, the fungus was exposed to the toxic influence of both PCBs and their 

metabolites during the whole incubation period. The toxic stress of the long exposition to PCBs could 

be responsible for the slow growth in the media with the pollutant within the first days of incubation 

[53]. Extracellular protein secreted increased in the presence of PCBs in MEM media. Hong et al. [18] 

also detected a rise in extracellular protein secretion after the addition of Aroclors in Ceriporia 

cultures, suggesting that various extracellular enzymes might have an effect on biodegradation of 

Aroclors, principally ligninolityc enzymes. P. sajor-caju produced the highest amounts of Lac in the 

simultaneous presence of high nitrogen and carbon concentrations in the medium, concordant with the 

fact that its ligninolytic system is expressed constitutively. The intensity of the bands displayed in the 

zymograms was related to the enzymatic activity detected. ND-PAGE revealed Lac enzymes with high 

electrophoretic mobility on 7 and 21 d in MEM and GA media respectively. It was not possible to 

determine the molecular weight of these fractions on SDS-PAGE, perhaps because the enzymes could 

not renature their catalytic domains after treatment with Triton X-100. Mostly, Lac enzymes have 

molecular weights between 60 and 80 kDa. Nakamura and Go [54] described Lacs of low molecular 

weight in different fungi, including a Lac of 34 kDa in Pleurotus eryngii. PCBs were reported as Lac 

inducers in P. ostreatus [55, 56], T. versicolor [16] and Ceriporia sp. ZLY-2010 [18]. In the present 

work, Lac transcript levels were higher in presence of PCBs than in their absence. This increase was 

mainly observed at 21 and 28 d of culture, in correlation with Lac titers detected. Xenobiotic response 

elements (XRE) appeared in promoter regions of different white-rot fungal Lac suggesting that 

transcription of these Lac genes might be activated by aromatic compounds [57]. However, although 

Lac mRNA was detected at 14 d of incubation, Lac activity could not be measured in PCBs media. On 

the contrary, previous reports showed high Lac titers but low transcript levels in PCBs presence, 

indicating either an increased rate of Lac synthesis or an inespecifity of the biochemical reaction [56]. 

These results indicate that the presence of PCBs modifies Lac expression at the transcriptional level, 
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perhaps in response to specific transcription factors. Likewise, other factors seemed to be involved, 

such as the stability of the transcript and translational and post-translational processes, or trafficking 

and protein folding [58, 59]. Lac secretion in a shorter period of time might be an important factor 

increasing not only PCBs degradation efficiency but also PCBs tolerance as demonstrated in a 

previous study [26]. Many authors investigated the possible association between Lac production and 

PCBs degradation capability [12, 16, 56, 60, 61]. Čvančarová et al. [12] found no correlation between 

ligninolytic production and PCBs degradation efficiency. In contrast, PCBs stimulated Lac production 

by P. ostreatus promoting the degradation of PCBs with a high degree of chlorination and it was not 

detected peroxidase activity in culture supernatants [56]. Nevertheless, peroxidases [62] and 

cytochrome P450 monooxygenase [63] might be involved in the oxidation of PCBs prior to their 

degradation, as demonstrated in the case of polycyclic aromatic hydrocarbons. 

Table 3 shows PCBs removal as a function of time fitted to the obtained model (Equations 1 and 2). 

The same table displays bioremediation costs considering the price of culture media, PCBs mass and 

incubation period. Thus, it demonstrates that the cost to achieve almost complete removal diminishes 

by increasing the incubation period. Mycoremediation of PCBs with P. sajor-caju LBM 105 cultivated 

in GA medium exhibited a lower cost for PCBs removal per gram and day (0.69 $ g-1d-1) than when 

using MEM medium (mainly due to the price of medium components). 

In conclusion, P. sajor-caju (LBM 105) was capable of removing high concentrations of PCBs in 

liquid conditions and diminishing their toxicity. Changes in its morphology were observed, as well as 

an increase in hyphal diameter. PCBs addition also augmented Lac activity and Lac expression at the 

transcriptional level. The mycoremediation of PCBs with P. sajor-caju LBM 105 cultivated in N-

limited liquid GA medium demonstrated to be an effective low-cost alternative technique for PCBs 

treatment. Based on an exhaustive review of research literature, this work can be considered as the 

first study about P. sajor-caju potential for low-cost bioremediation of high PCBs concentrations.  
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LEGENDS 

Fig. 1 Removal of PCBs after treatment with P. sajor-caju LBM 105. A. Recovery of the sum of 

PCBs. B-C. Recovery of the sum of Aroclors 1242, 1254 and 1260.   

 

Fig. 2 P. sajor-caju LBM 105 micromorphology after 14 d of incubation in absence (-) or presence (+) 

of PCBs (217 mg L-1). SEM micrographs of mycelia in A-C. MEM culture media and D-F. GA culture 

media. Bar = 5 μm. C, F. Hyphal diameter. Means with different letters are significantly different (p < 

0.05).  
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Fig. 3 Effect of PCBs on growth, glucose consumption, protein and Lac secretion in A-B. MEM and 

C-D. GA culture media.  Jo
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Fig. 4 Effect of PCBs on Lac and protein profile of P. sajor-caju LBM 105 without (-) and with (+) 

PCBs at 7, 14, 21, 28 and 35 d. A, C. SDS-PAGE (12% wt v-1) revealed with DMP substrate. B, D. 

SDS-PAGE (12% wt v-1) after silver nitrate staining. MW: molecular weight marker. 
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Fig. 5 Semi quantitative RT-PCR for mRNA of Lac (left) and actin mRNA (right). Three independent 

experiments were performed with RNA isolated from mycelium grown in absence (-) or presence of 

217 mg L-1 PCBs (+) during 14, 21 and 28 d in GA medium. The densitometry graph is shown above, 

and the matched products of RT-PCR separated using electrophoresis in agarose 2% (w v-1) are shown 

below. The positive control (C+) corresponds to the 200 bp fragment obtained from genomic DNA 

(amplification control) and negative control (C-) corresponds to the amplification without the presence 

of cDNA or genomic DNA respectively. MW: molecular weight marker. 
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Table 1. Reduction of toxicity during PCBs treatment with MEM and GA using Ganoderma sp. LBM 

001 as toxicity indicator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Cost of MEM and GA culture media. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  GA MEM 

    

 Unit cost  Total cost  Total cost 

Medium component $ kg-1 g L-1 $ kg-1 g L-1 $ kg-1 

Glucose 239.82 10.000 2.433 - - 

Asparagine 1062.38 0.5000 0.539 - - 

MgSO4.7H2O 347.27 0.5000 0.176 - - 

H2KPO4 362.66 0.5000 0.184 - - 

HK2PO4.3H2O 499.73 0.6000 0.304 - - 

H3BO3 251.68 0.0001 0.000 - - 

CaCl2 666.71 0.1000 0.068 - - 

CuSO4.5H2O 597.74 0.0004 0.000 - - 

MnCl2.4H2O 716.32 0.0001 0.000 - - 

Na2MoO4.2H2O 2758.80 0.00002 0.000 - - 

FeCl3 166.98 0.001 0.000 - - 

ZnCl2 13128.50 0.0035 0.047 - - 

Tiamine HCl 1183.38 0.0001 0.000 - - 

Tween 80 210.62 2.227 0.476   

Malt extract 1495.56 - - 12.70 19.336 

Corn steep liquor 228.70 - - 5.00 1.164 

Water 0.07 985.57 0.067 982.30 0.067 

Total  1000.00 $ 4.295 1000.00  $ 20.567 

Treatment Δτ1 Δτ2 
Toxicity reduction 

(%) 

MEM 2.59 2.85 9.12 

GA 1.31 1.46 10.27 
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Table 3. Cost-effectiveness study of PCB bioremediation in MEM and GA culture media. 

 

 

 

Culture PCBs Removal Fit Bioremediation Cost 

Time yMEM yGA MEM GA 

(d)   ($ g-1 d-1) ($ g-1 d-1) 

7 0.420 0.392 34.95 7.81 

14 0.594 0.555 12.35 2.76 

21 0.728 0.679 6.72 1.50 

28 0.840 0.785 4.36 0.97 

35 0.939 0.877 3.12 0.69 
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