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Strong couplings between the mechanical, electric, magnetic, fluidic and thermal fields exist in the behaviour laws describing micro-
systems. Also, due to the large surface/volume ratio, surface forces such as the electrostatic force and fluid damping become predominant.
This paper presents the modeling and simulation of electrically-actuated micro-systems taking the electro-mechano-fluidic coupling into
account. A micro-resonator consisting in a cantilever beam suspended over a substrate is modeled, and finite-element simulations are
validated with experimental measurements.

Index Terms—Electromagnetic forces, electromechanical sensors, finite element methods, nonlinear dynamical systems, scientific com-
puting.

I. INTRODUCTION

F ROM gas and pressure sensors to micro-pumps and micro-
mirrors, micro–electro–mechanical systems (MEMS) are

used in a large variety of sensors and actuators for automotive,
biomedical, environment and space applications [1]. Current
simulation technology only addresses the modeling and simu-
lation of MEMS partially, often without satisfactorily solving
the strongly coupled, multiscale and multiphysical problems at
hand.

The aim of this paper is to present the modeling and simula-
tion of electrically-actuated micro-systems using the finite-ele-
ment method, focusing in particular on the strong coupling be-
tween the electrostatic actuation and the mechanical response,
as well as on the modeling of fluid damping. This multiphysic
modeling strategy is applied to the simulation of a micro-res-
onator consisting of a cantilever beam suspended over a sub-
strate. The obtained numerical results are validated against ex-
perimental measurements.

II. MULTI-PHYSICAL MODELING OF MEMS

We use the finite-element method (FEM) to model the
electro–mechanical–fluidic interactions and to perform static
and dynamic analyses taking into account large mesh dis-
placements and fluid damping. The usual method to model
the coupling between electric and mechanical fields is to use
two different numerical codes and iterate between them, which
is time consuming and less accurate (e.g., for pull-in voltage
computation [2]) when the coupling becomes stronger. Here
we propose to compute electrical and mechanical fields and
their interactions together in the same formulation.

A. Electro–Mechanical Coupling

A consistent way of deriving a finite-element discretiza-
tion for the coupled electro–mechanical problem consists in
applying the variational principle on the total energy of the
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coupled problem, which includes the electric and mechanical
energies. The expression of the energy density results from
thermodynamic considerations [3] and if the unknown vari-
ables are the mechanical displacement and the scalar electric
potential , Gibb’s free energy density has to be used [4]–[6]:

(1)

where is the strain tensor, the stress tensor, the
electric field and the electric displacement. The internal
forces may be obtained using the virtual work principle as pre-
sented in [4].

The internal energy of the coupled problem on a volume is:

(2)

where is the mechanical energy and the electric co-en-
ergy. The total energy for the coupled problem, considering both
internal and external contributions is

(3)

and the mechanical and electrical equilibrium are obtained by
equating to zero the variations of the total energy (3) with re-
spect to the displacement and the electric potential, i.e.,

and (4)

When developing (4) using (2) and (3), and
can be treated as in the standard variational cal-

culus for uncoupled electrostatics and mechanics. Further, the
mechanical energy is independent from the electric potential:

(see [4]). The variation of the electric energy
due to the displacement is the contribution of the electrostatic
forces. After some developments [4], we obtain

(5)

where is a matrix depending on the space derivatives of
. This term represents the electrostatic forces on the structure.

From (4) and (5), a fully coupled finite-element formulation can
be built following classical discretization procedures.
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Fig. 1. Finite-element mesh superimposed with a microscope photograph of
the micro-resonator (viewed from above).

The variation of the mechanical and electrostatic forces with
respect to small potential and displacement perturbations is an
important characteristic of the coupled system since it allows a
better convergence of static nonlinear solvers and a better eval-
uation of the linear vibrations around equilibrium positions [2].
The tangent stiffness matrix around a position may be
obtained by linearization of the internal forces. The finite-ele-
ment form is

(6)

where and are the discretized displacement and poten-
tial fields and and and are the discretized external
sources. The total coupled matrix is symmetric. The matrix
is the stiffness matrix of the purely electric problem. The re-
maining terms are derived from the total energy as presented in
[4]. These terms depend on the electric field and the coupled
problem is thus nonlinear.

B. Squeeze Film Damping

The structures considered here are cantilever micro-beams
suspended over a substrate as shown in Fig. 1. To model the
effects of the air squeezed in the gap between the beam and the
substrate, the nonlinear Reynolds equation is considered:

(7)

where is the total pressure, is the gap (the distance between
the two plates), and the air viscosity. This relation is valid
only if the flow is laminar and fully developed, if the pressure
is constant along the -direction and if the fluid does not slip at
the wall [7]. Another important assumption of this model is the
continuum assumption of fluid mechanics: if the dimensionless
Knudsen number , where is the mean-free
path of the molecules in the gas, (7) is not valid anymore and
should be replaced by a statistical model. When , which
often happens in MEMS, (7) can still be used provided that a
modified viscosity is considered,
where is the viscosity at atmospheric pressure [8].

In the case of perforated micro-structures as the structure pre-
sented in Fig. 6, a new term can be added in (7) to take the release
of the fluid through the holes into account. The equation is then
called the perforation profile Reynolds equation (PPR) [9]. This
hole effect is modeled by the perforation acoustic impedance

which depends on the hole size, the distance between the
holes, the gap and the thickness of the structure. In the case of
large holes compared to the thickness and the gap, the complete

lumped model proposed in [10] has to be used to determine the
impedance.

To obtain the weak form, the PPR equation is premultiplied
by a test function

(8)

where is the external pressure. The coupling with the me-
chanics comes from the dependency of the gap on the displace-
ment , where is the surface normal, and the
action of the fluid pressure on the structure modeled by the me-
chanical damping force where is the surface
normal. After discretization, the finite-element fluidic formula-
tion becomes

(9)

where is the discretized pressure and and are
coupling matrices depending on the gap and the pressure [11],
[12], and the hole release term is included in the matrix .

III. MULTI-PHYSIC SOLVERS

A. Static Solver

To compute the static equilibrium, the system of equations is
reduced to the coupling between mechanics and electrostatics.
The residue to cancel is

(10)

where are the discretized electrostatic forces and are
the external mechanical forces. This equation being nonlinear,
an iterative solution method is needed. Starting at the th step,
which is a known equilibrium position , to get
to the th equilibrium step, a prediction phase is
generated. Then, following the continuation algorithm, the th
iteration solution is obtained [13] by

(11)

where and is an auxiliary constraint equa-
tion which depends on the chosen continuation algorithm. In
the case of the Crisfield algorithm [13],

. The derivative of the residue by the variables
corresponds to the tangent stiffness matrix

obtained in (6).

B. Harmonic Solver

Around the static equilibrium , a harmonic solver is
applied to determine the dynamic behavior of the system taking
the fluid damping into account. The electro–mechano–fluidic
dynamic equations are as follows:

(12)

where is the discretized fluidic damping force. The lin-
earization of these equations around an equilibrium position
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Fig. 2. Detail of the micro-beam anchor.

provides the different terms needed to use a standard
harmonic solver:

(13)

IV. SIMULATIONS AND EXPERIMENTAL MEASUREMENTS

The examples studied here are micro-resonators consisting of
a cantilever beam suspended over a lower electrode deposited on
the substrate see Fig. 1. The technology used for fabrication is
the PolyMUMPS process proposed by MEMSCAP. The beams
are made of polysilicon. The Young modulus is estimated at

GPa, the Poisson coefficient is and the
mass density is 2330 kg/m . The resonator is placed in air with
a viscosity of Pa.s at atmospheric pressure ( Pa).

A. 175 m Cantilever Beam

The considered beam measures 175 m 2 m 30 m.
The air gap between the beam and the lower electrode is about
2 m and the lower electrode starts at 7 m from the anchor.
Its initial deflection being nearly zero, the prestress due to fab-
rication is neglected. Fig. 1 shows a top view of the resonator
together with the finite-element mesh modeling the structure.
The mechanical structure is modeled by nonconforming non-
linear elements taking the large displacement hypothesis into
account [14]. Fig. 2 shows in more details the geometrical model
of the beam anchor. Since the anchor shape cannot be measured
accurately experimentally, the geometrical design is defined as
close as possible to the reality based on scanning electron mi-
croscope images.

Fig. 3 compares the static response with experimental data.
The strongly coupled electro–mechanical problem is solved
using the Crisfield continuation algorithm to obtain the equi-
librium position for each voltage. A study is performed to
determine the anchor shape by defining two design parameters:

, the tilt of the anchor and , the deposition thickness on
a vertical edge as presented in Fig. 3. The anchor shape has
clearly an important influence on the behavior of the structure.
One set of optimal values for these parameters is 0.5 m
and 1.5 m.

Keeping this optimal design, the dynamic response is then
compared to experimental measurements as presented in Fig. 4.
The resonance frequencies are measured experimentally using a
vibrometer analyzer POLYTEC MSA400 [15] by applying a ac

Fig. 3. Applied voltage [V] versus displacement of the tip of the beam [m] for
different values of the length � of the anchor connection (see Fig. 2).

Fig. 4. Dynamic response of the micro-resonator: speed of the tip of the beam
[m/s] versus frequency [Hz] when a dc voltage of 5 V and an white noise voltage
of 0.024 V (pink line), 0.027 V (black line), and 0.03 V (blue line) are applied.
The jagged curve denotes the experimental values.

and a dc voltage to the resonator. First the structure is excited
by a dc voltage of 5 V, which bends the beam (statically). An
ac voltage is then superimposed to the dc voltage according to
the input signal plotted in Fig. 4. This white noise signal has a
frequency spectrum ranging from 0 to 500 kHz and a discrete
Fourier transform mean intensity of 0.027 V, with minimal and
maximal values of 0.024 and 0.03 V. To simulate this excitation
numerically, a static analysis is first performed for V as
presented previously. Then, the harmonic response is computed
around this position for three ac voltages: 0.024 V (pink line),
0.027 V (black line, the mean value), and 0.03 V (blue line).
As observed in Fig. 4, the amplitude of the ac voltage has a big
influence on the dynamic results. Despite the rather simple fluid
damping model, the experimental resonance frequencies match
the numerical simulations quite well.

B. 200 m Cantilever Beam

To validate the parameters chosen to model the anchor of
the 175 m beam, the same simulations are performed for a
200 m 2 m 30 m cantilever beam for a continuous
voltage of 5 V and a mean ac amplitude of 0.023 V.
The input graph depicted in Fig. 5 does not show the constant
characteristic which would have been ideal. Thus, results for
higher frequency have to be handled with care. The dynamic
behavior of the 200 m micro-resonator is then studied for
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Fig. 5. Dynamic response of a 200 �m micro-resonator: speed of the tip of the
beam [m/s] versus frequency [Hz] when a dc voltage of 5 V and an white noise
voltage of 0.02 V (pink line), 0.023 V (black line, mean value), and 0.027 V
(blue line) are applied. The jagged curve denotes the experimental values.

Fig. 6. Layout and photography of the holed 175 �m beam.

0.02 V, 0.023 V, and 0.027 V. Again, the experimental
response fits quite well with the curve for V, es-
pecially in the lower part of the frequency range as is expected
for the applied input signal.

C. 175 m Cantilever Beam With Holes

Finally the dynamic behavior of a holed 175 m 2 m 30
m micro-resonator is studied around its static equilibrium of 5

V and with a mean ac amplitude of 0.024 V. This beam com-
prises 5 holes of 4 m length as shown in Fig. 6. The size of the
holes being larger than the gap and the thickness of the beam, the
complete lumped model proposed by Veijola [10] has to be used
to estimate the acoustic impedance and the obtained value is

Pa.s/m. The dynamic simulations are then performed
for of 0.02 V (pink line), 0.024 V (black line), and 0.03 V
(blue line) and plotted in Fig. 7. The dashed black line corre-
sponds to numerical results for 0.024 V without consid-
ering the damping in the holes. Again the first resonance fre-
quency is well fitted.

V. CONCLUSION

This paper presents the modeling of micro-resonators taking
the electro-mechano-fluid coupling into account. First a static
analysis is performed using the Crisfield algorithm to iden-
tify the shape of the anchor, fitting the numerical results to
experimental measurements. We found that 1.5 m and

0.5 m represents a good fit with experiments. Then
harmonic numerical results are compared to experiments to
verify the damping model. We observe a strong influence of the

Fig. 7. Dynamic response of the holed micro-resonator : speed of the tip of the
beam [m/s] versus frequency [Hz] when a dc voltage of 5 V and an white noise
voltage of 0.02 V (pink line), 0.024 V (black line, mean value), and 0.03 V (blue
line) are applied. The jagged curve denotes the experimental values.

input voltage on the results. Then the same anchor shape is used
for other micro-resonators: a 200 m resonator and a 175 m
micro-beam with holes. Again the experimental measurements
fit the numerical results well, validating the parameters used to
model the anchor.
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