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We show here results of four-component calculations of NMR σ for atoms with 10 ≤ Z ≤ 86 and their ions,
within the polarization propagator formalism at its random phase level of pproach, and the first estimation of
QED effects and Breit interactions of those atomic systems by using two theoretical effective models. We
also show QED corrections to σ(X) in simple diatomic HX and X2 (X = Br, I, At) molecules. We found
that the Z dependence of QED corrections in bound-state many-electron systems is proportional to Z5, which
is higher than its dependence in H-like systems. The analysis of relativistic ee (or paramagnetic-like) and
pp (or diamagnetic-like) terms of σ, expose two different patterns: the pp contribution arise from virtual
electron-positron pair creation/annihilation, and the ee contribution is mainly given by 1s→ ns and 2s→ ns
excitations. The QED effects on shieldings have a negative sign and their magnitude is larger than 1% of
the relativistic effects for high-Z atoms like Hg and Rn, and up to 0.6% of its total four-component value for
neutral Rn. Furthermore, percentual contributions of QED effects to the total shielding are larger for ionized
than for neutral atoms. In molecule, the contribution of QED effects to σ(X) is determined by its highest-Z
atoms, being up to −0.6% of its total σ value for astatine compounds. It is found that QED effects grow faster
than relativistic effects with Z.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) spectroscopy is
a powerful experimental technique used, among many
other applications, to identify chemical compounds and
predict their molecular structures. Precise calculations of
both of its relevant spectroscopic parameters, the NMR
shielding constant, σ, and the J-coupling (indirect spin-
spin coupling) constant, are highly challenging. They
require to consider several intra- and intermolecular effects
with the proper theories and state-of-the-art models.1–4

There are few leading electronic effects, such as the
electron correlation and relativistic effects, that should
be included in order to get an accurate theoretical repro-
duction of the nuclear magnetic shieldings. In the case
of heavy-atom containing molecules it is known that rela-
tivistic effects may be as large as the non-relativistic (NR)
contributions.5,6 Furthermore, it was recently shown that
electron correlation effects within a four-component DFT
scheme and relativistic effects may not be independent
each other, for NMR spectroscopic parameters.6,7 When
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one looks for the most accurate results, the effects of the
nuclear size and quantum electrodynamic (QED) correc-
tions must be included.8,9 The nuclear charge distribution
effects on shieldings may be of the order 3% to 6% in
heavy-atom containing molecules as HAt and PbIH3.7,10

The first theoretical models developed to introduce
QED effects (the self-energy part) on σ, were presented
by Romero and Aucar.11,12 In those models the main dif-
ficulties were related with solutions of formal expressions
and implementations, like the integrals for the fourth
level of the scattering matrix. During the last couple of
years few attempts were made to estimate quantitatively
the influence of QED effects on shielding of H-like and
He-like systems.13–15 Rudziński et al.13 have published
relativistic and QED corrections to the shielding of 3He,
derived from the Breit-Pauli Hamiltonian. They con-
cluded that QED corrections are non-negligible, being
1% of the relativistic contribution. These findings are
in line with previous suggestions of Pyykkö and Zhao16.
Afterward, Yerokhin et al.14,15 have presented the results
of ab initio calculations for several H-like ions in the range
of 8 ≤ Z ≤ 92, considering various QED contributions
to σ, as well as Bohr-Weisskopf and quadrupole correc-
tions. They found that QED corrections, related to total
σ, are in the range from −0.002% for 8O7+ to −0.7%
for 83Bi82+ (being also about 1% of the relativistic part).
The Bohr-Weisskopf corrections, meaning the effect in-
duced by the spatial distribution of the nuclear magnetic
moments, and the quadrupole corrections are of the same
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order of magnitude as the QED effects for H-like ions.14,15
In Refs. 13, 14 and 15 the first reliable results were given,
but only for 1- and 2-electron atomic systems. Theoretical
treatments used in both references are fully relativistic,
being that of Ref. 13 based on the non-relativistic QED
expansion (only the zeroth-order approximation is ob-
tained non-relativistically). The difficulties are such that
there are no actual calculations published in the literature
with estimations of such effects on σ for many-electron
systems.

Among different formalisms that were developed to in-
troduce QED effects on atomic systems,17–21 there is the
polarization propagator one which was recently derived
from the path integral version of quantum theory.22 This
fact gives new insights on how to include QED and corre-
lation effects altogether, through the consideration of the
effects of external perturbations on a many-body quantum
system that is described within a QED-based theoretical
framework. Within the polarization propagator formal-
ism perturbative (external) effects can be described by
using the knowledge of the unperturbed though correlated
many-body quantum system.
Recently we published preliminary results concern-

ing the estimation of QED effects on NMR shielding
constant for He-like and Be-like atomic systems with
10 ≤ Z ≤ 86.23 In that work we presented a model by
which QED corrections, obtained by Yerokhin et al. for
H-like atoms, are scaled to those ionic systems.14,15 Such
procedure is similar to the way QED effects are usually
introduced in multi-electron atoms.24 We also estimated
the Gaunt corrections to the molecular orbital energies of
few diatomic molecules, i.e. HX (X = Br, I, At).25

As a next step in our research program to include
QED effects on atomic and molecular properties, in this
manuscript we give an estimation of QED effects on shield-
ing of neutral and ionic atoms with 10 ≤ Z ≤ 86, and
diatomic halogen molecules by using an extension of our
previous approach. To our knowledge there is no other
estimation of QED effects on nuclear shielding of molec-
ular systems. Our results show that QED effects may
be measurable. At the moment highly accurate absolute
values of NMR shieldings in some gas-phase molecules
can be obtained by experiments. Their error bars may be
less than the values of QED corrections for heavy-atom
containing molecules.26–29

We also include the analysis of the physical mecha-
nisms that are involved in both relativistic terms, ee
(or paramagnetic-like) and pp (or diamagnetic-like). We
shall show that the origin of the pp-like term may be un-
derstood, within the polarization propagator formalism,
as due to the propagation of virtual electron-positron
pairs.6,22,30 This is shown through the analysis of the
nuclear shielding of ions of the same nucleus.
In the following sections we will present two different

models for including QED effects on shielding of ionic
and neutral atoms, together with diatomic molecules. We
shall consider relativistic contributions to the shieldings
of those systems and propose a Z-dependence for QED

effects on the shieldings of neutral atoms. We shall also
show the pattern that QED corrections follows in all those
systems.

II. THEORETICAL MODELS AND COMPUTATIONAL
DETAILS

In this section we sketch few basic expressions of the
underlying theoretical method used for relativistic calcu-
lations. Then we present two models for including QED
effects on magnetic shieldings. The first one is the same
as given previously,23 and the second one is less accurate
though useful for our purpose. Computational details are
also given.

A. The NMR shieldings

Within the polarization propagator formalism, the
shielding constant of nucleus K, σ(K), is written at first
consistent order of approach or random phase approxima-
tion (RPA) as6

σ(K) =
(
bK b∗K

)(A B∗

B A∗

)−1 (
b∗B

bB

)
(1)

where K corresponds to the nuclear magnetic moment
index, B is the external magnetic field, and Gaussian cgs
system of units are used. There are two different terms
on the rhs of Eq. (1). The first one and the last one are
so-called perturbators, b, and the matrix in the middle
correspond to the principal propagator, P = M−1, being
matrices A and B written within the second quantization
language as,

Aia,jb = −〈0|[a†iaa, [a†baj , H0]]|0〉 = δabδij(εa − εi) + 〈aj||ib〉
= Aia,jb(0) + Aia,jb(1) (2)

and

Bia,jb = 〈0|[a†aai, [a†baj , H0]]|0〉 = −〈ji||ab〉. (3)

Subscripts a, b, . . . refer to canonical unoccupied Dirac-
Hartree-Fock (DHF) orbitals and i, j, . . . stands for canon-
ical occupied DHF orbitals and H0 refers to the unper-
turbed electronic Hamiltonian.
Eq. (1) is valid within both regimes, relativistic and

NR, though the actual expressions of its three factors
depends on the framework one works in. In what fol-
lows all expressions will be given within the relativistic
framework.

Both perturbators are written as

bKia =

〈
i

∣∣∣∣α× rKr3
K

∣∣∣∣ a〉 , bBjb = 〈j|α× rG
2
|b〉 (4)

where rG = r −RG being RG the gauge origin, and rK
= r − RK , being RK the position of nucleus K. They
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are related with excitations from occupied to unoccupied
orbitals. In the relativistic regime the set of unoccupied
orbitals is splitted into two subsets, the positive and
negative branch of energies. Excitations from occupied
electronic states to negative (pp) and positive (ee) energy
solutions are related with the pp or diamagnetic-like, σpp,
and ee or paramagnetic-like, σee, contributions to σ.22,30

As mentioned in Ref. 23 actual calculations are not
performed using Eq. (1) but an algorithm that solves
the product among the inverted matrix of the principal
propagator (which is the inverse of the electronic Hessian)
and one of the perturbators

σ(K) =
∑
ia,jb

(
bKia b

∗K
ia

)
(M−1)ia,jb

(
b∗Bjb
bBjb

)
(5)

=
∑
ia

(
bKia b

∗K
ia

) (X∗Bia
XB
ia

)
=
∑
ia

σia(K) (6)

All the information related to the principal propagator
and one of the two perturbators is contained in the matrix
X. The way it is formally derived and implemented in the
four-component Dirac code is explicitly given in Ref. 31.

B. Estimating QED effects – model A

This model was first proposed in Ref. 23. We have
made a consideration that leading QED corrections to
both, perturbators and principal propagators are enough
to estimate an order of magnitude for QED corrections
to shieldings.

In the papers of Yerokhin et al.14,15 the NMR shielding
constants for H-like ions are calculated within Rayleigh-
Schrödinger sum-over-states perturbation theory by con-
sidering virtual excitations from ground 1s1/2 state to
excited ns1/2 electronic Dirac states. This model is based
on earlier works of Moore32 and Pyper33. In Yerokhin et
al. work the QED correction to the shielding constant is
calculated as a sum of various vacuum polarization (VP)
and self energy (SE) contributions and expressed in terms
of the function D(Zα) as

∆σQED = ∆σSE + ∆σV P (7)

∆σSE = α2(Zα)3DSE(Zα) (8)

∆σV P = α2(Zα)3DV P (Zα) (9)

where ∆σV P collects VP influence on both electronic or-
bital properties (perturbed-orbital contribution, ∆σV P,po)
and hyperfine interaction (∆σV P,mag), i.e.

∆σV P = ∆σV P,po + ∆σV P,mag

= α2(Zα)3DV P,po(Zα) + α2(Zα)3DV P,mag(Zα)
(10)

Then the ratio

RD =
DV P,po(Zα)

DV P (Zα) +DSE(Zα)
=

∆σV P,po

∆σQED
(11)

is a relative contribution of perturbed-orbital VP contri-
bution to total QED effect.

In our study we assume that the pattern of SE to
VP effects ratio, expressed by DSE(Zα), DV P (Zα), and
DV P,po(Zα) coefficients, is similar for H-like and many-
electron atomic systems. That happens in the case of
orbital energies – compare, e.g., Ref. 34 and supplement
of Ref. 35. The VP influence on principal propagator is
equivalent to adding VP energy correction to appropriate
orbitals energies. The perturbed-orbital VP influence on
perturbators can be reproduced in many-electron atoms
by comparing calculations with and without Uehling po-
tential included in self-consistent field (SCF) process. Let
us make the following ratios

CB(DCBVDCB ) =
(n1κ1m1α× rn2κ2m2)DCBV
(n1κ1m1α× rn2κ2m2)DCB

=

(
R(1)(n1κ1n2κ2)

)
DCBV(

R(1)(n1κ1n2κ2)
)
DCB

(12)

and

CK(DCBVDCB ) =

(
n1κ1m1

α×r
r3 n2κ2m2

)
DCBV(

n1κ1m1
α×r
r3 n2κ2m2

)
DCB

=

(
R(−2)(n1κ1n2κ2)

)
DCBV(

R(−2)(n1κ1n2κ2)
)
DCB

(13)

being both indices DCB and DCBV mean wavefunctions
calculated in a self-consistent manner by using Dirac–
Coulomb–Breit Hamiltonian without and with adding
the Uehling potential, respectively. Besides R(n) are the
radial integrals defined as

R(n)(n1κ1n2κ2) =

∫ ∞
0

rn(Pn1κ1Qn2κ2 +Qn1κ1Pn2κ2)dr

(14)
being Pnκ and Qnκ the radial parts of the one-electron
wavefunction (Dirac bispinor). The CK(DCBVDCB ) and
CB(DCBVDCB ) factors count the VP effects on both pertur-
bators of Eq. (4). It is worth to mention that CK(DCBVDCB )

factors are larger than CB(DCBVDCB ) factors or, in other
words, the expectation value of α×rr3 operator is more
influenced by VP than the one for α× r operator. Then
the coefficient CV P/DC expressed as

CV P/DC = CK(DCBVDCB )CB(DCBVDCB )− 1 (15)

accounts for perturbed-orbital VP influence on both per-
turbators. Index DC means the Dirac–Coulomb–Breit
level of theory, without QED corrections. We should
also mention that factors CV P/DC in each of the fol-
lowing group of excitations: ns − n′s, np1/2 − n′p1/2,
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np3/2 − n′p3/2, etc. depends weakly on n′. So, it is jus-
tified to use only one CV P/DC factor for each of those
group of orbitals.

Next, let us use the following auxiliary symbols:

mK
ia =

1

2c2
〈i|(cα× rG)|a〉〈a| (cα× rK)

r3
K

|i〉

∆εia = εDCi − εDCa , ∆εV Pia = ∆εV Pi −∆εV Pa for simplifi-
cation. Then using Eq. (1)

σDC+V P,po
ia =

mDCV
ia

∆εia + ∆εV Pia
=
mDC
ia

(
1 + C

V P/DC
ia

)
∆εia + ∆εV Pia

= σDCia + ∆σV P,poia =
mDC
ia

∆εia
+ ∆σV P,poia

(16)
After short derivations:

∆σV P,poia =
mDC
ia

(
C
V P/DC
ia − ∆εV P

ia

∆εia

)
∆εia + ∆εV Pia

(17)

Next, we can write:

σDC+QED
ia = σDCia + ∆σQEDia = σDCia + σDCia C

QED/DC
ia

= σDCia + ∆σV P,poia

∆σQEDia

∆σV P,poia

=
mDC
ia

∆εia
+ ∆σV P,poia R−1

D

(18)
where the scaling coefficients CQED/DCia is introduced.
Finally, linking Eq. (17) and Eq. (18) we obtain the
CQED/DC coefficient in the form

C
QED/DC
ia =

(
C
V P/DC
ia −∆V P

ia

1 + ∆V P
ia

)
R−1
D (19)

when a is a positive-energy unoccupied state. If a is one
of the negative-energy unoccupied states, CQED/DCia = 0.
For simplicity we used the factor ∆V P

ia = ∆εV Pia /∆εia.
Then we are able to rewrite Eq. (6) to include leading-

order QED effects within polarization propagator formal-
ism at zeroth- and first-order level of approach:

σDC+QED(K) =
∑

i=inner s-type,
a=unoccupied s-type

σDCia (K)
(

1 + C
QED/DC
ia

)

+
∑

i=inner s-type,
a6=unoccupied s-type

σDCia (K)

+
∑

i6=inner s-type,
a

σDCia (K)

(20)
In this equation the amplitudes for excitations between

atomic or molecular orbitals are scaled by coefficients
C
QED/DC
ia .
The more general approach30 considers excitations from

occupied electronic states to both positive- (electronic)
and negative-energy (positronic) unoccupied Dirac states,
resulting in the ee and pp contributions, respectively. In
order to ensure the compatibility between the approaches
of Yerokhin et al. and ours, we implemented QED correc-
tions only to the ee term of shielding. Coefficients DSE ,
DV P , and DV P,po have been calculated for H-like systems,
in such a way that the use of CQED/DC factor is justified
only for ns− n′s excitations. Assuming that the pattern
of SE to VP effects ratio is similar for each ns subshell,
as happens in the case of orbital energies (see supplement
of Ref. 35), we extended our model for excitations from
ns subshells with n > 1.

C. Estimating QED effects – model B

There are few approaches to estimate the influence
of QED effects on orbital energies, in many-electron
atoms.24,35 The original idea of Bethe36 linked the QED
contribution to ns orbital energies with the electron den-
sity at the site of the nucleus. We test this simple model
in the case of QED contributions to shielding constants:

∆σQED = ∆σQEDHyd

∑
n

ρ(0)ns
ρ(0)ns,Hyd

∑
a σns,a∑
a σ

Hyd
1s,a

(21)

where ∆σQEDHyd is calculated by Eq. (7), according to
Ref. 15, and σia was defined in Eq. (5) (a is an unoc-
cupied electronic state).

D. QED effects on the shielding constants of nuclei in
molecules

For the calculation of nuclear shieldings in molecules
within polarization propagators, the occupied and va-
cant atomic orbitals, AOs, i, j and a, b, respectively, are
replaced by their molecular orbitals, MOs, counterparts.

In order to estimate their QED effects we assume that

• They will modify the contributions due to pertur-
bators but not much the matrix elements of the
principal propagator. Then we can use the same
criterium for including QED effects in molecules as
used for atoms; meaning, by applying coefficients
CQED/DC

• They are mostly due to excitations arising from
the occupied MOs that are built from s-type GTO.
These MOs are σ bonding and antibonding orbitals.
Furthermore, the inner occupied MOs are close in
energy to the inner AOs of the atom to whom that
nucleus belongs. Then we can use CQED/DC for
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including QED effects due to the innermost s-type
MOs.

In order to be more clear about the way we included
the ee contributions to the shielding on molecules, it is
better to rearrange the summation of the rhs of Eq. (20)
into two parts. The one that include QED effects on
top of contributions of the ns− n′s MOs excitations and
another one that only consider relativistic contributions.
This scheme of calculation will be given more explicitly
in the next section.

E. Computational details

1. MCDF method

The calculation of C(DCBVDCB ) coefficients, the radial in-
tegrals defined in Eq. (14), and QED contributions to the
orbital energies were performed by means of Mcdfgme
code release 200537,38. This four-component code is based
on the well-established Multiconfigurational Dirac–Fock
(MCDF) approach.

The methodology of MCDF calculations performed in
the present studies is similar to the one published earlier,
in several papers (see, e.g., 39,40). The effective Dirac–
Coulomb–Breit Hamiltonian for an N -electron system is
expressed by

Ĥ =

N∑
i=1

ĥD(i) +

N∑
j>i=1

Vij (22)

where ĥD(i) is the Dirac one-particle operator for i-th elec-
tron and the terms V̂ij account for the effective electron-
electron interactions.

An atomic state function (ASF) with the total angular
momentum J , its z-projectionM , and parity p is assumed
in the form

Ψs(JM
p) =

∑
m

cm(s)Φ(γmJM
p) (23)

where Φ(γmJM
p) are configuration state functions (CSF),

cm(s) are the configuration mixing coefficients for state s,
γm represents all information required to uniquely define
a certain CSF. The CSF is a Slater determinant of Dirac
4-component bispinors:

Φ(γmJM
p) =

∑
i

di

∣∣∣∣∣∣∣
ψ1(1) · · · ψ1(N)

...
. . .

...
ψN (1) · · · ψN (N)

∣∣∣∣∣∣∣ (24)

where the ψi is the one-electron wavefunctions and the di
coefficients are determined by requiring that the CSF is an
eigenstate of Ĵ2 and Ĵz. The one-electron wavefunction

is defined as

ψn,κ,j =
1

r

(
Pn,κ(r) · Ωmj

κ,j(θ, φ)

iQn,κ(r) · Ωmj

−κ,j(θ, φ)

)
(25)

where Ω
mj

κ,j(θ, φ) is a angular 2-component spinor and
Pn,κ(r) and Qn,κ(r) are large and small radial part of the
wavefunction, respectively.

The electron-electron interaction term is a sum of the
Coulomb interaction V̂ Cij operator and the transverse Breit
V̂ Bij operator:41

V̂ij = V̂ Cij + V̂ Bij (26)

where the Coulomb interaction operator is V̂ Cij = 1/rij ,
and the Breit operator

V̂ Bij = −αi ·αj
eiωijrij

rij
− (αi ·∇i)(αj ·∇j)

eiωijrij − 1

ω2
ijrij

(27)
where ωij = (εi−εj)/c is the frequency of one virtual pho-
ton exchanged (εi and εj are orbital energies of interacting
electrons).

The Uehling potential,42 being the first term of vacuum
polarization contribution of order α(Zα), in the case of
finite nuclear size and spherical symmetric nuclear charge
distribution ρ(~r) can be expressed as:43

U(~r) = −2

3

Zα2~2

mr

∫ ∞
0

d3r′ r′ρ(r′)

×
[
K0

(
2mc

~
|r − r′|

)
−K0

(
2mc

~
|r + r′|

)] (28)

where the function K0(x) is defined as:

K0(x) =

∫ ∞
1

dt e−xt
(

1

t3
+

1

2t5

)√
t2 − 1 (29)

The Uehling potential in atomic self-consistent field
calculations that can be treated perturbatively or in self-
consistent way.35 In the last case, the regular Hartree–
Fock equations (where F̂ is a Fock operator according to
Dirac–Coulomb–Breit Hamiltonian, ψk is an one-electron
wavefunction (orbital), and εk is an orbital energy.)

F̂ψk = εkψk (30)

are transformed into new Hartree–Fock equations

(F̂ + U)ψ′k = ε′kψ
′
k (31)

where Uehling potential, U , is added to eigenvalue equa-
tion, and ψ′k and ε′k are modified orbital and orbital
energy, respectively.

The radial integrals specified in Eq. 14 have been cal-
culated by using intrinsic function of Mcdfgme code.
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2. NMR shielding constant calculations

The calculations of NMR shielding constants were per-
formed by means of the Dirac code release 2017.44 The
Gaussian nuclear charge distribution was used.45 We used
for Ne, Ar,46 Br, Kr, I, Xe, At, and Rn47 the dyall.acv4z
basis set and for Zn,48 Cd,49 and Hg,50 the dyall.cv4z basis
set. NR values of σ were obtained performing pseudo-
nonrelativistic calculations by assuming the speed of light
as c = 100c0 (being c0 = 137.0359998 a.u.).

Because the Dirac code has issues related to open-
shell systems, the

∑
a σ

Hyd
1s,a values in Eq. (21) are actually

extracted from calculations performed for point-like H-
like systems33 and corrected by finite nuclear size (FNS)
effect by using proportionally values of FNS (calculated
by Dirac code) for He-like ions.

Four-component calculations of shieldings are based on
the Dirac–Coulomb and Dirac–Coulomb–Gaunt Hamil-
tonians. Due to actual implementations in the Dirac
code, Gaunt contributions to the shieldings are partially
included in both kind of terms of Eq. (5). They are in-
cluded in the matrix elements of the principal propagator
through the orbital energies (occupied and virtual). For
perturbators they are included through the matrix ele-
ments of the Fock matrix that is one-index transformed.
There are no Gaunt contributions included in the two-
electron elements of the principal propagator.31 Further-
more, we should highlight that the Breit electron-electron
interactions are replaced by Gaunt integrals, i.e. the re-
tardation terms are neglected. We assume that Gaunt
interactions provide a useful approximation to the Breit
interactions; they were found to be an order of magnitude
larger than the retardation contributions.25

Linear response calculations were performed within
the relativistic polarization propagator approach at the
random phase level of approach (RPA). Two-electron
integrals containing only small component basis functions,
the (SS|SS) integrals, were included in all calculations.

In all cases, the uncontracted Gaussian basis sets were
used with the common gauge-origin (CGO) approach.
The small component basis sets for relativistic calcula-
tions were generated by applying the unrestricted kinetic
balance prescription (UKB).

In the Dirac code MOs are expanded in a gaussian
basis set in such a way that s-type, p-type, etc gaussian
functions are used. Then Large and Small s-type compo-
nents are expanded in a set of s-type gaussian functions
so that we can use the scaled CQED/DC1s,ns , CQED/DC2s,ns , . . .
coefficients for including QED corrections arising from
the innermost s-type MOs. For the molecules analyzed
here, we found that the first term on the rhs of Eq. (20)
dominates over the second term, i.e. the contribution of
excitations starting from inner s-type MO that end up on

s-type unoccupied MOs is very high (larger than 90 %):∑
i=inner s-type,

a=unoccupied s-type

σDCi,a (K)

∑
i=inner s-type,

a

σDCi,a (K)
> 0.9 (32)

Then, in practice, we calculate σDC+QED by using sim-
plified form of Eq. (20):

σDC+QED(K) =
∑

i=inner s-type,
a

σDC+QED
ia (K)

+
∑

i 6=inner s-type,
a

σDCia (K)

(33)

with the error of calculations about 5%. We used the
special output of Dirac code to make such kind of anal-
ysis. We show how to actually do it in Supplementary
Information for I2 molecule.

The gauge origin of the external magnetic potential was
placed at the molecular center of mass in all the NMR
shielding calculations. Furthermore, when necessary the
shieldings were calculated for the anions rather the neutral
atoms in order to have closed-shell systems.

Experimental bond distances were extracted from
Ref. 51 for HBr, HI, Br2 and I2. For HAt and At2,
optimized distances were employed, and calculated at
DHF level of approach. The internuclear distances are:
1.4145 Å (HBr), 1.6090 Å (HI), 2.2811 Å (Br2), 2.6663 Å
(I2), 1.7117 Å (HAt) and 2.9627 Å (At2).

III. RESULTS AND DISCUSSIONS

We shall show first results at RPA level of approach of
four-component calculations of shielding for neutral atoms
and ions separated in paramagnetic-like and diamagnetic-
like as is usual within the NR regime. This analysis will
show the origin of novel behaviors that appear for the
first time in the present work. Relativistic effects are then
analyzed and compared with NR contributions. Gaunt
contributions (which are partially included as mentioned
in the previous Section) to the relativistic effects are also
given. The pattern of QED contributions to the atomic
and diatomic molecular systems are then given, together
with the analysis of which excitations are more involved.
In our previous article23 we have included only few of
total excitations. We shall end up with the analysis of
the dependence of QED effects on the shielding of atoms
and molecules, and compare them with relativistic and
NR effects.
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TABLE I. NMR shielding constants (without QED contribu-
tions, but employing the Dirac–Coulomb–Gaunt Hamiltonian)
for Ne, Ar, Zn, Kr, and Cd neutral atoms, and their ions. σt

means total shielding and σpp and σee mean diamagnetic-like
and paramagnetic-like terms, respectively. σLamb stand for
numbers calculated by the Lamb expression. nel is the number
of electrons in the ion.

Z nel σt σpp σee σLamb

(ppm) (ppm) (ppm) (ppm)
10 2 348.8549 338.1047 10.7501 342.3263

4 421.3373 409.6369 11.7004 400.4438
10 557.1123 545.1253 11.9870 553.3895

18 2 656.4766 598.0950 58.3816 628.4583
4 803.1269 738.6204 64.5065 755.8693
10 1156.6681 1090.1447 66.5234 1124.4790
12 1195.9558 1128.6501 67.3058 1158.8409
18 1273.1343 1205.4665 67.6679 1245.6581

30 2 1196.1820 924.0793 272.1027 1073.2668
4 1465.2827 1162.2390 303.0437 1309.4299
10 2149.9452 1833.8730 316.0722 1998.8822
12 2240.5185 1918.4602 322.0582 2072.9265
18 2466.5450 2141.9852 324.5598 2277.7234
30 2708.5417 2380.5594 327.9823 2564.3647

36 2 1522.3339 1055.0074 467.3265 1305.3292
4 1861.1178 1339.3208 521.7970 1598.4356
10 2716.8037 2171.1266 545.6771 2450.7825
12 2835.1619 2278.0196 557.1423 2547.4234
18 3135.6392 2573.5528 562.0864 2819.8878
30 3520.6708 2952.8542 567.8166 3252.5333
36 3584.5022 3014.7361 569.7661 3324.2802

48 2 2358.6725 1247.4817 1111.1908 1797.8509
4 2865.7675 1619.5662 1246.2014 2213.7973
10 4082.0652 2770.4307 1311.6345 3403.7627
12 4263.8099 2920.9406 1342.8693 3550.2714
18 4718.6823 3360.6799 1358.0024 3966.4257
30 5382.5622 4006.6724 1375.8898 4669.1920
36 5537.2706 4157.2339 1380.0368 4817.9820
48 5712.6538 4328.3407 1384.3131 5020.0663

A. Relativistic and non-relativistic contributions

We should first mention that all relativistic calculations
were performed using the Dirac–Coulomb–Gaunt Hamil-
tonian. Tables I and II collect calculated NMR shielding
constants (without QED contributions) for closed-shell
10Ne, 18Ar, 30Zn, 36Kr, 48Cd, 54Xe, 80Hg, and 86Rn neu-
tral atoms, and their selected closed-shell ions. We in-
cluded in them both contributions, σpp and σee, which
are equivalent to diamagnetic-like and paramagnetic-like
terms well defined within the NR framework.30 For low-
and medium-Z atoms, the diamagnetic-like term con-
tributes more than the paramagnetic-like one, but for
high-Z atoms this behavior is reversed.
One can see that the diamagnetic-like contributions

strongly depend on the actual number of electrons that are
bonded to the ionized atoms (nel), but the paramagnetic
dependence on them is much smaller. These differences

TABLE II. Like Table I, but for Xe, Hg, and Rn neutral atoms,
and their ions.

Z nel σt σpp σee σLamb

(ppm) (ppm) (ppm) (ppm)
54 2 2906.9916 1306.3837 1600.6080 2062.9539

4 3519.7615 1720.6408 1799.1206 2546.1461
10 4928.7650 3032.2250 1896.5400 3912.4090
12 5148.0911 3204.2655 1943.8256 4085.7798
18 5684.1065 3716.6786 1967.4279 4576.4484
30 6489.9526 4494.3249 1995.6277 5412.6441
36 6689.2415 4686.5192 2002.7223 5602.9513
48 6951.7593 4942.6570 2009.1024 5894.0158
54 7012.5684 4993.4026 2019.1658 5953.2268

80 2 7334.7492 1216.0226 6118.7266 3461.2741
4 8787.6229 1816.5725 6971.0503 4314.2259
10 11 235.8003 3828.0459 7407.7544 6541.5774
12 11 722.6113 4097.2880 7625.3233 6855.0454
18 12 675.3055 4931.0022 7744.3034 7700.9773
30 14 153.6585 6272.4815 7881.1770 9123.3277
36 14 569.7331 6646.0210 7923.7120 9479.9783
46 15 122.0610 7174.3572 7947.7038 10 005.0399
60 15 695.6976 7718.4575 7977.2401 10 465.4841
80 16 043.8386 8038.3147 8005.5239 10 998.2549

86 2 9247.5992 1108.1436 8139.4556 3875.8111
4 11 077.3338 1761.2554 9316.0784 4842.9054
10 13 854.4739 3944.0385 9910.4354 7302.8837
12 14 452.8551 4239.2752 10 213.5799 7657.1837
18 15 530.6210 5150.9483 10 379.6727 8596.1049
30 17 188.1006 6622.3589 10 565.7417 10 160.0066
36 17 666.7068 7039.1203 10 627.5865 10 562.4473
46 18 294.0091 7634.4209 10 659.5882 11 154.7362
60 18 972.1586 8274.3071 10 697.8515 11 700.4071
80 19 441.4233 8693.8250 10 747.5983 12 356.5946
86 19 660.0728 8740.4598 10 919.6130 12 411.9911

show that they arises from two different physical origins.
The major contributions to σee arises from electron-

electron excitations that start from the 1s shell, even
for neutral atoms. The next important part of those
excitations start from the 2s shell (and then appears
those starting from higher ns shell for high-Z atoms). For
example, for Be-like (nel = 4) Ne the e-e excitations from
the 1s shell contribute 82.42% and excitations from the 2s
shell contribute 17.58%. For Be-like Rn these numbers are
65.29% and 34.71% respectively. For neutral Ne (nel = 10)
the e-e excitations from the 1s shell contribute 82.57%
and excitations from the 2s shell contribute 13.69%. For
neutral Rn (nel = 86) these numbers are 52.35% and
21.16% respectively. One can see that with increasing
Z the percentual contributions from 2s shell excitations
increase and those from the 1s shell decrease.

The percentage of contributions to the relativistic value
of σee of He-, Be-, Ne-like and neutral Rn atoms are
shown in Fig. 1. For He-like Rn the excitation 1s→ 2s
(1s → 3s) contributes ≈ 25.4% (≈ 5.6%). The other
important contributions arises from excitations to the
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FIG. 1. Pattern of percentage contributions of leading e-e excitations starting from 1s and 2s orbitals for He-, Be-, Ne-like, and
neutral Rn. Excitations to unoccupied, bounded and unbounded AOs are displayed. The pattern for neutral Rn contains only
excitations to unbounded AOs.

high-excited ns orbitals (near continuous orbitals). For
Be-like Rn the excitation 1s → 2s are not allowed, and
the excitation 1s→ 3s (2s→ 3s) contributes ≈ 4.7% (≈
8.5%). In this case the major part of σee contributions
are originated from 1s → ns and 2s → ns excitations.
There is a similar behavior for Ne-like Rn. In the case
of neutral Rn, excitations between inner s shells are not
allowed and so, contributions are due to 1s → ns and
2s→ ns excitations.

We want to highlight here another interesting behavior
of the largest contributions to σee. The contributions of
each of the total 1s→ ns and 2s→ ns excitations does
not depend much on nel for a given Z. Still each one
of them contribute little less when the other excitations
come into play. For example, the contribution from total
1s → ns excitations is almost the same until the 2s →
ns excitations start to contribute. In such a case the
total contribution of excitations arising from 1s orbitals
diminish a little bit its value. The same happens to both,
1s→ ns and 2s→ ns excitations when excitations arising
from 3s orbitals start to contribute.

All this explains the behavior of σee in the whole family
of ions studied in this work, which clearly is due to a
relativistic effect that affect in the same manner each
kind of s-type excitation mentioned above for a given Z.
They do not depend on the occupation number nel for
the whole family of ions of a given atom. We stress that
σee is zero within the NR framework.
What about the pattern of electronic contributions to

σpp? It is different from its σee counterpart. Each subshell
contributes to the excitations to the negative-energy part
of the spectra, and all inner and middle shells do it with
a significant value (as opposite to σee part, where 1s and
2s subshells contribute together 75–90% to σee). In order

to be more explicit let us analyze the way σpp is built for
the neutral Rn. Excitations that start in 1s and 2s AOs
contribute with ≈ 12.68% and 7.27%, respectively, of the
total value of the shielding (i.e. 6.34% and 3.63% per each
electronic occupation of both ns AOs, respectively). The
2p AOs contribute with ≈ 26.85% (4.47% per electron),
and the absolute value of those contributions are almost
independent of whether one consider the neutral or the
ionized Rn, meaning that it depends only on Z. Then, all
other subshells will contribute with values that are almost
the same for a given nucleus. This behavior explains why
σpp grows continuously when the highly ionized atom is
becoming less ionized.

From this previous analysis, and given that within our
formalism σpp can be understood as due to the prop-
agation of virtual electron-positron pairs, that involve
negative-energy electronic orbitals together with positive-
energy electronic orbitals, we are able to state that σpp
“strongly depends” on the occupation number of electrons
in each subshell, and the value of Z.

In the work of Lamb52 there was pointed out that the
diamagnetic contribution to the non-relativistic shielding
is connected to the ground-state expectation value of
the electrostatic potential. This was further reported in
Helgaker et al.53 paper, in which the simple formula for
the shielding of spherically symmetrical closed-shell atoms
with the gauge origin in nuclear position of the atom, was
written and called Lamb expression:

σ =
α2

3
〈0|1
r
|0〉 (34)

Even though in those previously mentioned papers it was
not explictly written, on the ground of our new under-
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TABLE III. Non-relativistic results for NMR shielding con-
stants for Ne, Ar, Zn, Kr, and Cd neutral atoms, and their ions.
σR−NR means the relativistic shift, i.e. σR−NR = σt − σt,NR.
Gaunt contribution to the σt is also elucidated (Gaunt contri-
bution is included in σR−NR but given in separate column for
its further analysis).

σt,NR σR−NR σR−NR/σt σGaunt

Z nel (ppm) (ppm) (%) (ppm)
10 2 343.9151 4.9398 1.4160 −0.1110

4 415.8421 5.4952 1.3042 −0.1316
10 551.1607 5.9516 1.0683 −0.1959

18 2 627.9233 28.5533 4.3495 −0.3604
4 770.8770 32.2499 4.0155 −0.4337
10 1121.8639 34.8042 3.0090 −0.6334
12 1160.5729 35.3829 2.9585 −0.6678
18 1237.2350 35.8993 2.8198 −0.7044

30 2 1053.9361 142.2459 11.8917 −0.8934
4 1303.3988 161.8839 11.0480 −1.0978
10 1974.2344 175.7108 8.1728 −1.7789
12 2060.5827 179.9358 8.0310 −1.8866
18 2283.1862 183.3588 7.4338 −2.0101
30 2521.6519 186.8898 6.9000 −2.4096

36 2 1266.9408 255.3931 16.7764 −1.2164
4 1569.6561 291.4617 15.6606 −1.5145
10 2400.2900 316.5137 11.6502 −2.5746
12 2510.3405 324.8214 11.4569 −2.7349
18 2804.2597 331.3795 10.5682 −2.9541
30 3183.4441 337.2267 9.5785 −3.4312
36 3244.8743 339.6279 9.4749 −3.5179

48 2 1692.9455 665.7270 28.2246 −1.8181
4 2102.1646 763.6029 26.6457 −2.3674
10 3252.3564 829.7088 20.3257 −4.5276
12 3409.7727 854.0372 20.0299 −4.8316
18 3845.9554 872.7269 18.4951 −5.3769
30 4492.7914 889.7708 16.5306 −6.3281
36 4641.9163 895.3543 16.1696 −6.3789
48 4813.0728 899.5810 15.7472 −6.8480

standings one may realize that the shielding for the whole
atom is a sum of shielding contributions from particular
shells. This approach may allows us to simply analyze
the variation of σ with occupation of particular shells, on
NR level of theory. The shielding numbers calculated by
using Eq. (34) and expectation values of 1/r from MCDF-
calculated orbitals are presented also in Tables I and II,
marked as σLamb. The numbers calculated by Lamb ex-
pression agree well, within ten percent, with pp results for
shielding constants of atoms calculated by Dirac code
with Z ≤ 30. For higher-Z atoms, the relativistic effects
become important and so the difference between both
kind of calculations become higher. For neutral atoms
that difference is much smaller than for ionic atoms. In
the case of neutral Hg the difference is close to 25% but
for He-like Hg such a difference is as high as three times.

Tables III and IV collect NR results for NMR shielding
constants of selected atoms and their ions. It can be seen
that the paramagnetic-like term goes to zero within the

TABLE IV. Like Table III, but for Xe, Hg, and Rn neutral
atoms, and their ions.

σt,NR σR−NR σR−NR/σt σGaunt

Z nel (ppm) (ppm) (%) (ppm)
54 2 1905.9422 1001.0494 34.4359 −1.9922

4 2368.4125 1151.3490 32.7110 −2.7048
10 3678.3718 1250.3932 25.3693 −5.6492
12 3859.4636 1288.6275 25.0312 −6.0481
18 4366.7104 1317.3961 23.1768 −6.8464
30 5146.0275 1343.9251 20.7078 −8.1215
36 5335.9689 1353.2726 20.2306 −8.2457
48 5591.8795 1359.8798 19.5617 −8.7942
54 5642.0615 1370.5069 19.5436 −9.0639

80 2 2828.8500 4505.8992 61.4322 1.6319
4 3522.0704 5265.5525 59.9201 −0.4348
10 5524.3437 5711.4566 50.8327 −9.7077
12 5808.0173 5914.5940 50.4546 −10.8804
18 6623.0491 6052.2564 47.7484 −14.1050
30 7974.2459 6179.4126 43.6595 −17.7444
36 8338.5148 6231.2183 42.7682 −18.6334
46 8866.2448 6255.8162 41.3688 −20.1192
60 9414.2095 6281.4881 40.0204 −21.0645
80 9729.8925 6313.9461 39.3543 −22.3831

86 2 3041.7961 6205.8031 67.1072 5.0326
4 3788.2603 7289.0735 65.8017 2.2874
10 5950.2979 7904.1760 57.0514 −9.5504
12 6257.6240 8195.2311 56.7032 −11.1096
18 7143.6821 8386.9389 54.0026 −15.4192
30 8626.6467 8561.4539 49.8104 −19.9342
36 9030.9652 8635.7416 48.8814 −21.2242
46 9625.7345 8668.2746 47.3831 −23.1337
60 10 270.2984 8701.8602 45.8665 −24.2527
80 10 682.6048 8758.8185 45.0524 −25.8796
86 10 727.9376 8932.1352 45.4329 −27.5181

NR framework as it should be. For neutral atoms, the
relativistic part of shielding constant, meaning σR−NR =
σt − σt,NR, contributes from 1% for Ne to 45% for Rn
to the total σ. For ions these numbers are even higher
because inner shells are more influenced by relativistic
effects than outer shells.

Gaunt contributions to σt (meaning the difference in σt
value calculated with and without Gaunt term included
in SCF process) are also given in Tables III and IV. We
observe that they grow in absolute values from higher to
lower ionized atoms. Its values are the largest for neutral
atoms.
We observe that Gaunt contributions to σ are not de-

pendent on relativistic effects. They are ≈ −2% of the
relativistic effect for Ar and ≈ −0.3% for Rn. The fact
that the percentage of Gaunt contributions goes down
when compared with relativistic effects on σ is related
with the increase of relativistic effects. When σGaunt is
compared with σNR it is observed that σGaunt ≈ −0.05%
of σNR for Ar and ≈ −0.27% of σNR for Rn. Another
interesting finding is that σGaunt change its sign between
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Be-like and Ne-like Rn and between He-like and Be-like
Hg.

B. QED contributions for neutral atoms and ions

Tables V and VI collect QED contributions, calculated
with model A, to σee for selected atoms and their ions.
The QED contributions, σQED, were splitted into parts
according to particular types of e-e excitations: 1s→ 2s
(only for He-like atomic systems), 1s→ ns (n > 2), 2s→
ns, 3s→ ns, and 4s→ ns. We used three CQED/DC coef-
ficients in present work: CQED/DC1s,2s , CQED/DC1s,ns (assuming
α ' ∆εQED1s /εDC1s and β ' ∆εV P1s /ε

DC
1s ), and CQED/DC2s,ns

(assuming α ' ∆εQED2s /εDC2s and β ' ∆εV P2s /ε
DC
2s ; used

for 2s → ns, 3s → ns, and 4s → ns excitations). With
Dirac code one can calculate both bounded and un-
bounded though discretized electronic orbitals, but we
assume that QED effects on excitations from the inner
orbitals to highly excited, bounded or unbounded though
discretized orbitals are the same (QED effects arises from
strong electric field near nucleus).

As stated before in Refs. 14 and 15, QED contributions
to NMR shielding constants have negative sign. The
σQED is almost independent of the number of electrons
in ion. It is because a major part of e-e excitations occur
from inner 1s and 2s shells, that are more influenced by
QED effects. Even if contributions from 1s and 2s shells
decrease a little with nel, the contributions from 3s and
4s shells arise instead. As one can see from Tables V and
VI, the σQED contributes to σt from −0.0011% for Ne to
−0.51% for Rn. For neutral atoms σQED scales like Z5,
a dependence that is weaker than that of H-like atoms
for which σQED scales like Z4.15

QED effects contributes to σR−NR from −0.10% for
Ne to −1.13% for Rn. Note that σQED/σR−NR ratio
grows almost linearly with Z for neutral atoms. The
σQED/σR−NR ratio depends also on the number of elec-
trons; the higher the number of electrons in ion, the
lower the ratio σQED/σR−NR. The contribution to σ
of QED effects is larger than that of Gaunt for higher
Z atoms. The σQED/σGaunt ratio depends on the num-
ber of electrons; the higher number of electrons in ion,
the lower σQED/σGaunt ratio. For neutral atoms, the
σQED/σGaunt ratio grows like Z2.4.
In Table VII we present the contributions of QED

effects to σee for neutral atoms, calculated with model B.
One can see that QED contributions from model B are
about 79–97% of QED contributions from model A, except
for Ne and Ar atoms. Results from the less accurate
model B show that, by applying model A, we are getting
reliable orders of magnitude for QED contributions to
NMR shielding constants.
The percentage with which QED effects contribute to

the total NMR shielding constants, σQED/σt, for neu-
tral atoms (present work) and for H-like atomic systems
(Yerokhin et al. work15) are presented on Fig. 2. The
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FIG. 2. Percentage of QED effects on total NMR shielding
constants, σQED/σt (%).

analysis of uncertainty was performed in our previous
paper23.

In Figs. 3 and 4 we observe the pattern of dependence
with Z of four terms that contribute to both, σ and the
total energy. Such terms are: NR, relativistic, QED and
Breit/Gaunt.
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FIG. 3. Individual contributions (absolute values) to the
nuclear shielding for selected atoms.

It is seen that, for σ, relativistic effects are as large as
the NR shieldings when Z ' 86, though they are smaller
when Z ' 10. On the other hand QED effects grow faster
than all the other ones as Z grows. For Z ' 86 QED
effects are less than two orders of magnitude smaller than
both, relativistic and NR contributions. Hence, if one
wants to reproduce NMR shieldings within less than 1%
of error one must include QED effects.
In Fig. 4 we observe that, the contributions of QED

effects and Breit interactions to the total atomic energy
of atoms, grow together almost at the same rate. This be-
havior is different as that observed in Fig. 3, meaning that
QED effects are larger for shieldings than for electronic
energies of atoms. A similar behavior is also observed for
relativistic effects, which are larger for shieldings than for
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TABLE V. QED contributions to σee (model A) for Ne, Ar, Zn, Kr, and Cd, and their ions.

σQED (ppm)
1s− 2s 1s− ns 2s− ns 3s− ns 4s− ns total σQED/σt σQED/σR−NR

Z nel exc. exc. exc. exc. exc. (%) (%)
10 2 −0.0006 −0.0051 −0.0057 −0.0016 −0.1148

4 −0.0051 −0.0011 −0.0062 −0.0015 −0.1123
10 −0.0052 −0.0009 −0.0061 −0.0011 −0.1026

18 2 −0.0124 −0.0814 −0.0938 −0.0143 −0.3285
4 −0.0817 −0.0213 −0.1030 −0.0128 −0.3194
10 −0.0834 −0.0182 −0.1016 −0.0088 −0.2918
12 −0.0822 −0.0163 −0.0043 −0.1028 −0.0086 −0.2904
18 −0.0826 −0.0167 −0.0035 −0.1027 −0.0081 −0.2862

30 2 −0.1210 −0.7189 −0.8399 −0.0702 −0.5905
4 −0.7208 −0.2110 −0.9318 −0.0636 −0.5756
10 −0.7303 −0.1924 −0.9227 −0.0429 −0.5251
12 −0.7109 −0.1634 −0.0659 −0.9402 −0.0420 −0.5225
18 −0.7150 −0.1641 −0.0594 −0.9385 −0.0380 −0.5118
30 −0.7194 −0.1673 −0.0499 0.0000 −0.9366 −0.0346 −0.5011

36 2 −0.2630 −1.4243 −1.6873 −0.1108 −0.6607
4 −1.4277 −0.4451 −1.8728 −0.1006 −0.6426
10 −1.4445 −0.4128 −1.8573 −0.0684 −0.5868
12 −1.3997 −0.3453 −0.1518 −1.8968 −0.0669 −0.5840
18 −1.4071 −0.3459 −0.1402 −1.8933 −0.0604 −0.5713
30 −1.4145 −0.3481 −0.1086 −1.8711 −0.0531 −0.5549
36 −1.4163 −0.3500 −0.1117 −1.8780 −0.0524 −0.5530

48 2 −0.9093 −4.4783 −5.3875 −0.2284 −0.8093
4 −4.4879 −1.5564 −6.0442 −0.2109 −0.7915
10 −4.5346 −1.4745 −6.0091 −0.1472 −0.7242
12 −4.3585 −1.2042 −0.5909 −6.1536 −0.1443 −0.7205
18 −4.3794 −1.2048 −0.5606 −6.1449 −0.1302 −0.7041
30 −4.3875 −1.1836 −0.4228 −0.1754 −6.1692 −0.1146 −0.6934
36 −4.3940 −1.1893 −0.4275 −0.1603 −6.1712 −0.1114 −0.6892
48 −4.4008 −1.1945 −0.4314 −0.1389 −6.1656 −0.1079 −0.6854
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FIG. 4. Individual contributions (absolute values) to the total
energy for selected atoms.

energies when compared with NR contributions in both
cases.

C. QED contribution for diatomic halogen molecules

NMR shielding constants (without QED contributions,
but employing a Dirac–Coulomb–Gaunt Hamiltonian) for
Br, I, and At halogens nuclei in Br2, I2, and At2 homonu-
clear molecules, and HBr, HI, and HAt heteronuclear
molecules, and Br−, I−, and At− ions are presented in
Table VIII. Because of lack of spherical symmetry, the
shielding tensor contributions parallel (‖) and perpendic-
ular (⊥) to the molecular axis are presented. As one can
see, σee‖ and σee⊥ differ from each other more than σpp‖ and
σpp⊥ . This can be understood by using a relativistic model
that relates σ with the spin-rotation constants.54–56 There
are different contributions to the parallel and perpendicu-
lar components of the spin-rotation tensor caused by the
change of electron density according to bond formation.

QED contributions to σee are collected in Table IX. We
performed calculations of Br−, I−, and At− ions instead
of the calculations of regular Br, I, and At atoms, because
the Dirac code has issues related with open-shell systems.
One can see in Table IX, that QED contributions to

σ(X) in X2 molecules (X = Br, I, At) are little smaller
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TABLE VI. Like Table V, but for Xe, Hg, and Rn, and their ions.

σQED (ppm)
3-8 1s− 2s 1s− ns 2s− ns 3s− ns 4s− ns total σQED/σt σQED/σR−NR

Z nel exc. exc. exc. exc. exc. (%) (%)
54 2 −1.5292 −6.7793 −8.3084 −0.2858 −0.8300

4 −6.7934 −2.4912 −9.2846 −0.2638 −0.8064
10 −6.8621 −2.3769 −9.2390 −0.1875 −0.7389
12 −6.5695 −1.9212 −0.9809 −9.4716 −0.1840 −0.7350
18 −6.6000 −1.9222 −0.9382 −9.4604 −0.1664 −0.7181
30 −6.5990 −1.8721 −0.7061 −0.3290 −9.5062 −0.1465 −0.7073
36 −6.6108 −1.8804 −0.7113 −0.3075 −9.5100 −0.1422 −0.7027
48 −6.6159 −1.8838 −0.7050 −0.2477 −9.4525 −0.1360 −0.6951
54 −6.6226 −1.8881 −0.7107 −0.2582 −9.4796 −0.1352 −0.6917

80 2 −12.1398 −42.1905 −54.3303 −0.7407 −1.2058
4 −42.2834 −20.8103 −63.0937 −0.7180 −1.1982
10 −42.7113 −20.2322 −62.9435 −0.5602 −1.1021
12 −40.1205 −15.6795 −9.1133 −64.9134 −0.5537 −1.0975
18 −40.2977 −15.7083 −8.8875 −64.8934 −0.5120 −1.0722
30 −39.9437 −14.9245 −6.6414 −3.9353 −65.4449 −0.4624 −1.0591
36 −40.0215 −14.9743 −6.6628 −3.8336 −65.4922 −0.4495 −1.0510
46 −40.1550 −15.0882 −6.6824 −3.5854 −65.5110 −0.4332 −1.0472
60 −40.2419 −15.2391 −6.8101 −3.2923 −65.5833 −0.4178 −1.0441
80 −40.1393 −15.0934 −6.6010 −2.9050 −64.7387 −0.4035 −1.0253

86 2 −20.9742 −63.7083 −84.6825 −0.9157 −1.3646
4 −63.8550 −34.0958 −97.9508 −0.8842 −1.3438
10 −64.5155 −33.2451 −97.7606 −0.7056 −1.2368
12 −60.2874 −25.5057 −15.2115 −101.0046 −0.6989 −1.2325
18 −60.5550 −25.5637 −14.8771 −100.9958 −0.6503 −1.2042
30 −59.8948 −24.1817 −11.0859 −6.7802 −101.9426 −0.5931 −1.1907
36 −60.0149 −24.2606 −11.1225 −6.6381 −102.0361 −0.5776 −1.1816
46 −60.2194 −24.4409 −11.1519 −6.2544 −102.0666 −0.5579 −1.1775
60 −60.3695 −24.6982 −11.3552 −5.7573 −102.1802 −0.5386 −1.1742
80 −60.1529 −24.3805 −10.8917 −4.8929 −100.3180 −0.5160 −1.1453
86 −60.1770 −24.4150 −10.9369 −4.9683 −100.4972 −0.5112 −1.1251

TABLE VII. QED contributions to σee (model B) for Ne, Ar, Zn, Kr, Cd, Xe, Hg, and Rn. ”B/A” means
σQED(model B)/σQED(model A) ratio.

σQED (ppm)
2-6 1s− ns 2s− ns 3s− ns 4s− ns total σQED/σt σQED/σR−NR B/A
Z exc. exc. exc. exc. (%) (%) (%)
10 −0.0096 −0.0007 −0.0103 −0.0018 −0.1726 168.3
18 −0.1130 −0.0151 −0.0010 −0.1292 −0.0101 −0.3598 125.7
30 −0.7534 −0.1380 −0.0199 −0.9114 −0.0336 −0.4877 97.3
36 −1.4480 −0.2905 −0.0506 −1.7890 −0.0499 −0.5268 95.3
48 −4.0903 −0.9478 −0.2198 −0.0302 −5.2881 −0.0926 −0.5878 85.8
54 −6.2914 −1.5565 −0.3960 −0.0712 −8.3151 −0.1186 −0.6067 87.7
80 −33.5908 −11.2176 −3.7581 −0.9958 −49.5623 −0.3089 −0.7850 76.6
86 −52.3454 −18.8301 −6.5755 −1.8721 −79.6231 −0.4050 −0.8914 79.2

than in the case of X− ion. The σQED‖ values for atoms in

X2 molecules are closer to σQED for ions than the σQED⊥
values. Furthermore, σQED(X) for X in HX molecules
(X = Br, I, At) are closer to its atomic σQED values.
It is worth to highlight the fact that σee becomes more
positive (diamagnetic) as relativistic effects increase. This

is more pronounced for perpendicular contributions. We
also found that the virtual ns → n’s type excitations
give a total contribution to σee that is close to 95% (see
Supplementary Information)
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TABLE VIII. NMR shielding constants (without QED contributions, but with Gaunt term included) for Br2, I2, At2, HBr, HI,
and HAt molecules (per atom) and Br−, I−, and At− ions. Between square brackets results of calculations with the Gauge
origin at the position of the heavy nucleus are included. Shieldings are given in ppm and distance in pm.

dX-X σt σpp σee σt‖ σpp‖ σee‖ σt⊥ σpp⊥ σee⊥
Br2 228.11 2444.3800 2979.2262 −534.8462 3332.0085 2919.3630 412.6455 2000.5657 3009.1578 −1008.5920

[2444.2677]
Br− 3436.6011 2912.5954 524.0057 3436.6011 2912.5954 524.0057 3436.6011 2912.5954 524.0057
HBr141.45 2945.5229 2913.9614 31.5615 3390.5349 2912.0992 478.4357 2723.0169 2914.8924 −191.8756

[2945.5189]
I2 266.63 5512.6072 4975.4177 537.1895 6309.3206 4893.7703 1415.5503 5114.2505 5016.2414 98.0091

[5524.7590]
I− 6795.1202 4887.0379 1908.0823 6795.1202 4887.0379 1908.0823 6795.1202 4887.0379 1908.0823
HI 160.90 5857.8445 4887.6303 970.2142 6553.6279 4886.0641 1667.5637 5509.9528 4888.4133 621.5394

[5857.8425]
At2 296.27 16 915.9043 8756.1722 8159.7321 15 623.7007 8639.6204 6984.0803 17 562.0062 8814.4481 8747.5581
At− 19 162.2480 8627.9157 10 534.3322 19 162.2480 8627.9157 10 534.3322 19 162.2480 8627.9157 10 534.3322
HAt171.17 18 146.9316 8627.5773 9519.3543 16 258.8652 8629.0506 7629.8146 19 090.9648 8626.8407 10 464.1241

[18 146.9229 ]

TABLE IX. QED contributions to σee for Br2, I2, At2, HBr, HI, and HAt molecules (per atom) and Br−, I−, and At− ions.

σQED (ppm)
3-11 σQED‖ σQED⊥ σQEDiso

3-67-1011-11 dX-X (pm) 1s− ns 2s− ns 3s− ns 4s− ns 1s− ns 2s− ns 3s− ns 4s− ns total
Br2 228.11 −1.2663 −0.3199 −0.0962 −1.2412 −0.2506 −0.0977 −1.6205
Br− −1.2669 −0.3213 −0.1018 −1.2669 −0.3213 −0.1018 −1.6900
HBr 141.45 −1.2658 −0.3210 −0.1008 −1.2746 −0.3192 −0.0954 −1.6875
I2 266.63 −6.1132 −1.7961 −0.6518 −0.1747 −6.0602 −1.6987 −0.5645 −0.2337 −8.6166
I− −6.1078 −1.8046 −0.6763 −0.2454 −6.1078 −1.8046 −0.6763 −0.2454 −8.8342
HI 160.90 −6.1010 −1.8020 −0.6707 −0.2326 −6.1480 −1.7974 −0.6578 −0.2110 −8.8063
At2 296.27 −54.4513 −22.2530 −9.5767 −3.6524 −54.4016 −21.8176 −9.1525 −3.8709 −89.4729
At− −54.1502 −22.5061 −10.0639 −4.5892 −54.1502 −22.5061 −10.0639 −4.5892 −91.3093
HAt 171.17 −54.0260 −22.4104 −9.9144 −4.3066 −54.6905 −22.4272 −9.9199 −4.5336 −91.2666

IV. CONCLUSIONS

When searching for highly accurate atomic and molecu-
lar response properties one should consider physical effects
that were taken to be vanishingly small few years ago.
Among them one must include QED effects and Breit
interactions.
As a next step in our research program that aims to

include QED effects together with electron correlation on
response properties in atoms and molecules, we present
here two effective models that were developed to calculate
QED effects on top of the paramagnetic-like contribu-
tions to the NMR magnetic shieldings of nuclei in many-
electron atoms and diatomic molecules. Our results are
based on state-of-the-art calculations of QED effects on
H-like systems, taken from the works of Yerokhin and
collaborators.14,15

One of our most important findings is related with
new insights about the likely physical origin of the
paramagnetic-like or ee contribution, and the diamagnetic-
like or pp contribution to the magnetic shieldings, within

a relativistic framework. The analysis of the physical
mechanisms that are involved in them shows that pp con-
tributions can be rationalized as due to virtual electron-
positron pair creation/annihilation in such a way that: i)
for a given atomic number Z, each subshell contributes
almost the same value, being the condition for doing it
that ii) the subshell be occupied. On the other side, the ee
contributions can be understood as mostly due to virtual
excitations that start from linear combinations of s-type
gaussian-type orbitals and do not depend on nel.
Another important finding is the fact that QED cor-

rections to the NMR shielding constant of many-electron
systems can be close or even larger than 1% of the rela-
tivistic correction for high-Z atoms. On the other hand its
Z dependence is proportional to Z5, being proportional
to Z4 for H-like systems. Furthermore, σQED/σR−NR ∝
Z. It is worth to mention that QED effects are larger on
ions than on neutral atoms for a fixed Z.

We also found that, for molecules, most of the main ee
excitations involved in the relativistic shielding calcula-
tions occur between the lowest molecular orbitals (which
are similar to 1s and 2s atomic orbitals) and higher unoc-
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cupied orbitals. This behavior is also found in the main
mechanisms contributing to σQED. So, its origin is highly
atomic for magnetic shieldings in molecules and this is
the reason why we were able to apply our models to them.
We have calculated relativistic, non-relativistic, Breit

(or a fraction of the total Gaunt) and QED contributions
to the shieldings of the following atomic and molecular
systems: atoms with 10 ≤ Z ≤ 86 and their ionic closed-
shell electronic structures, andX2 and HX (X = Br, I, At)
molecules. The Z dependence of those contributions to
both, the magnetic shielding constant and the total atomic
energy are such that the magnetic shielding constants are
more influenced by relativistic and QED effects than the
total atomic energies.

At the moment we are trying to extend the application
of our models to the NMR J-couplings. We now know that
the CK(DCBVDCB ) factor is larger than the CB(DCBVDCB ) fac-
tor. Thus we expect that QED corrections to J-coupling
constants should be larger, or at least of the same size,
as QED corrections to NMR shielding constants.

SUPPLEMENTARY MATERIAL

We introduce some supplemental material in few tables.
In tables 1, 2, 3, and 4 we show the pattern of contribut-
ing excitations (ia) that start in each of the four lowest
occupied MO, to the parallel component of the e-e terms
of the shielding of iodine nucleus in I2, e.g ., σ

(e−e)
‖ (I; I2).

The pattern for perpendicular components are similar.
We include only contributions that are larger than a very
small threeshold.
In tables 5 and 6 we show results of the influence, on

shielding calculations, due to different Gauge-origins and
basis sets.
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