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Abstract

Breast cancer is the most common cancer type in females worldwide. Environmental exposure 

to pesticides affecting hormonal homeostasis does not necessarily induce DNA mutations but 

may influence gene expression by disturbances in epigenetic regulation. Expression of long 

interspersed nuclear element-1 (LINE-1) has been associated with tumorigenesis in several 

cancers. In nearly all somatic cells, LINE-1 is silenced by DNA methylation in the 5´UTR and 

reactivated during disease initiation and/or progression. Strong ligands of aryl hydrocarbon 

receptor (AhR) activate LINE-1 through the transforming growth factor-β1 (TGF-β1)/Smad 

pathway. Hexachlorobenzene (HCB) and chlorpyrifos (CPF), both weak AhR ligands, promote 

cell proliferation and migration in breast cancer cells, as well as tumor growth in rat models. 

In this context, our aim was to examine the effect of these pesticides on LINE-1 expression 

and ORF1p localization in the triple-negative breast cancer cell line MDA-MB-231 and the 

non-tumorigenic epithelial breast cell line NMuMG, and to evaluate the role of TGF-β1 and 

AhR pathways. Results show that 0.5 μM CPF and 0.005 μM HCB increased LINE-1 mRNA 

expression through Smad and AhR signaling in MDA-MB-231. In addition, the methylation of 

the first sites in 5´-UTR of LINE-1 was reduced by pesticide exposure, although the farther 

sites remained unaffected. Pesticides modulated ORF1p localization in MDA-MB-231: 0.005 

μM HCB and 50 μM CPF increased nuclear translocation, while both induced cytoplasmic 

retention at 0.5 and 5 μM. Moreover, both stimulated double-strand breaks, enhancing H2AX 

phosphorylation, coincidentally with ORF1p nuclear localization. In NMuMG similar results 

were observed, since they heighten LINE-1 mRNA levels. CPF effect was through AhR and 

TGF-β1 signaling, whereas HCB action depends only of AhR. In addition, both pesticides 

increase ORF1p expression and nuclear localization. Our results provide experimental 

evidence that HCB and CPF exposure modify LINE-1 methylation levels and induce LINE-1 

reactivation, suggesting that epigenetic mechanisms could contribute to pesticide-induced 

breast cancer progression.
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1.Introduction

Agriculture is one of the main economic activities in developing countries, so significant 

amounts of pesticides are found in the environment. Different studies have linked breast 

cancer risk with pesticide exposure, including organochlorine pesticide hexachlorobenzene 

(HCB) and organophosphate chlorpyrifos (CPF) [1, 2]. Although banned, HCB is released as 

a byproduct of chlorinated solvent manufacture [3] and has been detected in human samples 

such as breast adipose tissue, serum and milk [1, 4-7]. HCB promotes epithelial cell 

proliferation, preneoplastic lesions and alterations in mammary gland development as well as 

breast cancer cell migration and invasion, metastasis and angiogenesis [8]. Furthermore, HCB 

acts as an endocrine disruptor (ED) [9,10] and has been classified as a probable human 

carcinogen [11]. In turn, CPF is a current-use insecticide in fruit trees and soybeans and its 

presence has been documented in waters and soils [12-13]. Its presence was reported in 

plasma [14] as well as in colostrums and mature milk samples from rural mothers [15]. In 

addition, CPF metabolite (3,5,6-trichloro-2-pyridinol) has been found in human urine samples 

collected from eight countries [16]. CPF alters the endocrine balance and promotes 

hyperplasia in mammary gland [17], as well as increases mammary tumor incidence in rats 

[18]. Although these pesticides belong to different chemical families, both are associated with 

mammary carcinogenesis and weakly bind to the aryl hydrocarbon receptor (AhR) [19, 20]. 

AhR activation can trigger membrane actions, releasing c-Src from its cytosolic AhR complex 

which phosphorylates a variety of growth factor receptors [21], and nuclear actions, by which 
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AhR modulates the expression of genes involved in cell proliferation, differentiation, and/or 

apoptosis [22].

Breast cancer is the most frequently diagnosed disease and the main cause of cancer death 

among women [23]. Transforming growth factor-β1 (TGF-β1) is involved in mammary 

morphogenesis, as well as in the development and progression of breast cancer [24]. The 

AhR and TGF-β1 signaling pathways are interrelated and regulate several common processes 

including cell proliferation, differentiation, migration, invasion, and apoptosis [25, 26]. For 

instance, HCB exposure in breast cancer cells MDA-MB-231 and non-tumorigenic mammary 

epithelial cells NMuMG, promotes the phosphorylation of c-Src through AhR, leading to the 

activation of TGF-β1 signaling and an increase in cell migration and invasion [27, 28]. 

Environmental factors such as metals, persistent organic pollutants and EDs may modulate 

epigenetic changes [29], which are more frequent in tumor cells than genetic mutations. One 

of the modifications occurring in the first stages of malignant transformation is the wide 

hypomethylation of the genome, which affects repetitive transposable genetic elements such 

as the long interspersed nuclear element-1 (LINE-1) [30]. LINE-1 codes for two proteins: 

ORF1p, with nucleic acid binding activity, and ORF2p, an endonuclease and reverse 

transcriptase [31]. After transcription, mRNA is exported to the cytoplasm, where ORF1p and 

ORF2p are translated. In the cytoplasm, these proteins associate with their own mRNA to form 

ribonucleoproteins that will be imported into the nucleus. Then, ORF2p retrotranscribes the 

mRNA and nicks the genomic DNA, allowing cDNA to integrate into the genome [31]. This 

process is inhibited in somatic tissues by genetic and epigenetic mechanisms; however, 

aberrant expression of ORF1p and ORF2p and new somatic insertions have been detected in 

epithelial cancers [32, 33]. These insertions affect the genome by interrupting genes, 

generating DNA breaks, and altering the splicing and frequency of recombination, contributing 

to genomic instability [34]. LINE-1 retrotransposition create DNA double-strand breaks (DSBs) 

in breast cancer cells indicated by an accumulation of phosphorylated histone H2AX (γ-H2AX) 

foci [35], an early step in the cellular response to DSBs [36]. The demethylation of the LINE-1 
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internal promoter region is one of the mechanisms regulating LINE-1 transcription [37]. Studies 

have reported an association between the levels of ORF1p and ORF2p and the stage of 

mammary tumor development, as well as between the subcellular localization of these 

proteins and patient survival [38]. Moreover, benzopyrene, a strong ligand of AhR, induces 

LINE-1 reactivation and epithelial-mesenchymal transition in the human liver cancer cell line 

HepG2 through the TGF-β1 canonical pathway [39]. Based on these findings, we 

hypothesized that HCB and CPF may modulate LINE-1 expression through TGF-β1 signaling 

mediated by AhR in breast cancer cells MDA-MB-231 and non-tumorigenic mammary 

epithelial cells NMuMG. Therefore, the present study examined the effect of these pesticides 

on LINE-1 expression, methylation status and ORF1p localization.

2. Materials and methods

2.1 Chemicals

HCB (>99% purity, commercial grade) was obtained from Aldrich-Chemie GmbH & Co. 

(Steinheim, Germany). CPF (99% purity) was purchased from Chem. Service, Inc. (PA, USA). 

Anti-phospho-c-Src, anti-c-Src, anti-phospho-Histone H2A.X (Ser139), anti-Smad3 and anti-

phospho-Smad3 antibodies were purchased from Cell Signaling Technology, Inc. (MA, USA). 

Anti-LINE-1 ORF1p antibody (MABC1152) was obtained from EMD Millipore Corporation (CA, 

USA). Anti-β-Actin and anti-GAPDH antibodies, dimethyl sulfoxide (DMSO), trypsin, 

glutamine, amiloride hydrochloride hydrate and inhibitors4,7-orthophenanthroline (PHE) and 

SB431542 were purchased from Sigma-Aldrich Chemical, Co. (MO, USA). Anti-AhR and anti-

Histone 3 antibodies were purchased from Abcam, Ltd. (Cambridge, UK). The enhanced 

chemiluminescence kit (ECL) was obtained from GE Healthcare Life Sciences 

(Buckinghamshire, UK). RPMI-1640 culture medium was obtained from HyClone 

Laboratories, Inc. (UT, USA). Random primers were purchased from Biodynamics (Buenos 
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Aires, Argentina). Moloney murine leukemia virus reverse transcriptase (M-MLV RT), 

cofactors for reverse transcription, and HpaII, HinfI and EcoRI enzymes were obtained from 

Promega Corporation (WI, USA). The BstUI enzyme was from New England BioLab (MA, 

USA). The kit Hot Firepol EvaGreen qPCR Mix Plus (ROX) was purchased from Solis Biodyne 

(Tartu, Estonia), and the specific oligonucleotides were obtained from Thermo Fisher (Perth, 

UK). All other reagents used were of analytical grade.

2.2 Cell culture and treatment

The human breast cancer cell line MDA-MB-231 (American Type Culture Collection) 

represents a triple-negative phenotype (ERα, PR and HER-2 negative), with a great degree 

of malignancy. The NMuMG cell line (Sigma-Aldrich) was derived from normal mammary 

gland tissue of a NAMRU adult mouse. The cells were cultured at 37 °C in a 5% CO2 incubator 

with RPMI-1640 (for MDA-MB-231) or MEM (for NMuMG) supplemented with10% fetal bovine 

serum (FBS), 1% antibiotic–antimycotic mixture (10,000 Units/ml penicillin, 10 mg/ml 

streptomycin sulfate, and 25 μg/ml amphotericin B), and 1% glutamine. After 24 h of starvation, 

the cells at 70–80% confluence were exposed to HCB or CPF dissolved in ethanol (EtOH). 

For dose-response assays, the cells were exposed for 15 min, 24 or 48 h to HCB (0.005, 0.05, 

0.5, and 5 μM), CPF (0.05, 0.5, 5, and 50 μM) or vehicle in RPMI supplemented with 5% FBS. 

For time-course studies, the cells were treated with CPF (0.5 μM) or vehicle in RPMI 

supplemented with 5% FBS for 5, 15, and 30 m, as well as 2, 6, and 24 h. The final EtOH 

concentration in each treatment was 0.5% and had no influence on the parameters analyzed 

as shown previously [40]. When indicated, the cells were pretreated with 2 μM SB431542, 

which is an inhibitor of the TGF-β1 canonical pathway, or 5 μM PHE, which is an antagonist 

of AhR. Both inhibitors were dissolved in DMSO. Then, pesticides or vehicle were added to 

the media in the presence or absence of the inhibitors. All assays were performed at cell 

passages 6 to 15.
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This research work was carried out using environmentally relevant doses of HCB and CPF. 

The highest HCB dose used (5 μM) was similar to that found in human serum from a rural 

population highly exposed to airborne HCB [41]. In addition, different studies have reported 

HCB concentration comparable to 0.05 μM in serum of mothers at the time of giving birth in 

China [6], and in umbilical cord serum in France [42]. Finally, other authors have reported HCB 

levels close to 0.005 μM in China [43] and Germany [44]. On the other hand, the lowest CPF 

concentration (0.05 μM) is similar to environmental values found in water or soil [13], while the 

0.5 μM dose is comparable to CPF levels reported in water from Thailand [45]. In addition, 

higher doses were found in sediments [46]. Huen et al. [14] have reported CPF levels in 

plasma from womens and newborns living in an agricultural community which ranged from 0-

1726 ng/mL (0-4.9 µM). Furthermore, CPF was detected in breast milk from nursing mothers 

in India which ranged from 8.5–355 μg/L (0.02-1 µM) [47].

2.3 Western blotting

After treatment, total cell protein lysates were prepared as previously described by Miret et al. 

[27]. For subcellular fractioning, the nuclear and cytosolic fractions were separated by 

differential centrifugation as previously reported [48]. The purity of each fraction was assessed 

by examination of nuclear and cytosolic-specific marker molecules Histone 3 and GAPDH, 

respectively. Protein concentration was determined as previously described [49], and 40 μg of 

protein was resolved by 10-12% SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and 

transferred to nitrocellulose membranes. The membranes were then blotted for phospho-

Smad3 (1:250), phospho-c-Src (1:500), and then re blotted for Smad3 (1:500), c-Src (1:500), 

AhR (1:500), ORF1p (1:500), Histone 3 (1:500), GAPDH (1:2000) and β-Actin (1:1000) as 

previously reported [27].

2.4 RNA preparation and reverse transcription (RT)-quantitative PCR (qPCR)
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Total RNA was isolated using TRI-reagent/chloroform extraction according to the 

manufacturer's protocol. Then, 1 mg of total RNA was reverse-transcribed using the M-MLV 

RT kit with random primers as previously described [27]. Expression levels of LINE-1 mRNA 

were analyzed using specific primers for the coding region of ORF1 (LINE-1 ORF1) and ORF2 

(LINE-1 ORF2) (Table 1). The SYBR-Green I/Q Taq DNA polymerase mix was used on the 

7500 Fast Real-time PCR System (Bio-Rad, CA, USA). Cycling conditions were as follows: 

denaturation at 95 °C for 30 s, annealing at 60 °C for 30 s, and extension at 72 °C for 30 s (40 

cycles). The specificity of the primer set was monitored by analyzing the dissociation curve, 

and the relative mRNA quantification was performed using the comparative ΔΔCt method with 

GAPDH as the housekeeping gene.

2.5 Bioinformatics

LINE-1 promoter regions were analyzed for CpG islands by using the Meth Primer 

software(http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi). A CpG island was 

defined as a 200-bp DNA sequence with a calculated percentage of CpGs over 50% and a 

calculated vs expected CpG distribution over 0.60. These regions were also checked for 

restriction sites for BstUI, HinfI and HpaII to evaluate the number of methylation-sensitive sites. 

PCR primers were designed with Vector NTI Suite 6.0 software (Infomax Inc., MD, USA).

2.6 DNA methylation-sensitive analysis

The DNA methylation status of the LINE-1 promoter was analyzed using a combination of 

single digestions with methylation-sensitive restriction enzymes and subsequent qPCR 

analysis [50]. Genomic DNA was isolated by using TRI-reagent/chloroform extraction 

according to the manufacturer's protocol. The total concentration of DNA was quantified by 

A280 and stored at -20 °C until needed. Equal quantities (1μg) of total DNA were digested 

with 7.5 units of EcoRI (Promega, WI, USA) to reduce the size of the DNA fragments and then 
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purified with phenol/chloroform extraction and EtOH precipitation. Then, 0.5 μg of EcoRI-

cleaved DNA was incubated with 10 units of BstUI (1 h at 60 °C), HinfI (3 h at 37 °C), or HpaII 

(3 h at 37 °C) and 1X enzyme buffer, following the manufacturer's instructions. The digestion 

products were purified with the phenol/chloroform method. The relative expression level of the 

different DNA regions was analyzed by qPCR. The primer sequences are shown in Table 1. 

After initial denaturation at 95 °C for 15 min, the reaction mixture was subjected to successive 

cycles of denaturation at 95 °C for 15 s, annealing at 54-60 °C for 15 s and extension at 72 °C 

for 15 s (40 cycles). The methylation-sensitive restriction enzymes BstUI, HinfI and HpaII are 

unable to cut at methylated sites, allowing amplification of the fragment. A region without HpaII 

restriction sites (IC-1) and another region without BstUI or HinfI restriction sites (IC-2) were 

used as the internal controls. The relative degree of methylation was determined by plotting 

Ct values against the log input (internal control), which yielded standard curves for the 

quantification of unknown samples [51].

Name Sense (5’-3’) Antisense (5’-3’) Product 

size

HpaII (a) GAGGAGCCAAGATGGCCGAA AATCACCGTCTTCTGCGTCG 75 pb

HpaII (b) GTGAGCGACGCAGAAGACGG CCCACTGTCTGGCACTCCCT 82 pb

HpaII (c) and IC 

(2) 

GTCGCACCTGGAAAATCGGG CCGAGCCAGGTGTGGGATAT 101 pb

BstUI /HinfI(a) 

and IC (1)

GTGGGCGCAGGCCAGTGTGT TCCAGGTGCGACCGTCACCC 133 pb

HinfI (b) TTAAGAAACGGCGCACCACG GCCGCCTTGCAGTTTGATCT 113 pb
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LINE-1 ORF1 CAAGTTGGAAAACACTCTGCAG GGAGTATCTTTGTGGCGTTCT 109 pb

LINE-1 ORF2 TCGACACATACACTCTCCCAAG GCCACAATTTCAGAGCCTGTT 82 pb

Human β-Actin GGACTTCGAGCAAGAGATGG AGCACTGTGTTGGCGTACAG 234 pb

Mouse β2-

Microglobulin

CAAGTATACTCACGCCACCCA GCAGGCGTATGTATCAGTCTC 219 pb

Table 1. Primer sequences for qPCR analyses. 

2.7 Immunofluorescence

After treatment, cells grown on cover glasses were fixed, permeabilized and blocked with 

blocking buffer (1% BSA and 1% Triton X-100 in phosphate-buffered saline, PBS) for 30 min 

at 37 °C and later incubated with an anti-ORF1p (1:20) mouse monoclonal or γ-H2AX (1:400) 

rabbit polyclonal antibodies in 0.2% BSA and 1% Triton X-100 in PBS for 24 h at room 

temperature in a humidified chamber. Finally, cells were incubated with the secondary 

antibodies Alexa 488 anti-mouse IgG (1:2000) or Alexa 488 anti-rabbit IgG (1: 200) for 1 h at 

room temperature in the dark. Hoechst was used for nuclei staining. Microscopic images were 

obtained using an Olympus BX50 F-3 fluorescence microscope (Olympus Optical Co., Ltd, 

Tokyo, Japan). Random fields were chosen by counting at least 1000 cells/treatment at 600X 

magnification.

2.8 Statistical analysis



11

Data were evaluated by one-way ANOVA followed by Dunnett's post hoc test to identify 

significant differences between controls and treatments. For assays with inhibitors, we used 

Tukey post-hoc test to identify differences between all groups. The results represent the mean 

± SD of at least three independent experiments. DNA methylation-sensitive analysis was 

carried using Mann Whitney U test and results represent the mean ± SEM. Differences were 

considered significant when p values were <0.05.

3. Results

3.1 Pesticide exposure induces changes in LINE-1 mRNA expression

LINE-1 expression in tumor tissues is associated with several cancer characteristics, including 

progression, cancer risk, and poor prognosis [52]. To evaluate LINE-1 mRNA expression, RT-

qPCR studies were conducted, analyzing LINE-1 ORF1 and ORF2 mRNA levels. First, we 

analyzed LINE-1 induction profiles in MDA-MB-231 cells exposed to CPF (0.05, 0.5, 5, and 50 

μM), HCB (0.005, 0.05, 0.5, and 5 μM) or vehicle for 48 h. Results showed an increase in 

LINE-1 mRNA expression levels at all CPF doses assayed, with similar tendencies for both 

ORF1and ORF2 sequences (Fig. 1A). However, no changes were observed in LINE-1 mRNA 

levels upon 48 h HCB treatment (data not shown). After analyzing HCB action at different 

times, we repeated the dose response study for 24 h and found an increase in LINE-1 mRNA 

levels for both ORF1 and ORF2 at 0.005 μM HCB (Fig. 1B). Given that both LINE-1 specific 

sequences ORF1 and ORF2 showed similar results, the following assays were conducted only 

on the LINE-1 ORF1 sequence.
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Fig. 1. HCB and CPF action on LINE-1 mRNA expression levels in MDA-MB-231 cells. LINE-1 ORF1 and 

ORF2 mRNA levels were evaluated by RT-qPCR. Cells were exposed to (A) CPF (0.05, 0.5, 5, and 50 μM) for 48 

h or (B) HCB (0.005, 0.05, 0.5, and 5 μM) for 24 h. Values are expressed as the mean ± SD of at least three 

independent experiments. Asterisks indicate significant differences vs. control (**p<0.01 and ***p<0.001; ANOVA 

and Dunnett's post hoc test). 
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3.2 CPF and HCB reduce the methylation status of LINE-1 

LINE-1 retrotransposon expression is regulated by methylation of its internal promoter [53]. 

Considering the changes induced by pesticide exposure in the expression of LINE-1 mRNA, 

we next determined the methylation status of the 5´-UTR of the human LINE-1 sequence. 

Cells were treated with CPF (0.5 μM) for 48 h or HCB (0.005 μM) for 24 h, the doses and times 

which induced an increase in LINE-1 mRNA expression and which may also simulate the 

exposure concentrations of the general population [6, 16]. To search for potential sites of DNA 

methylation, the 5´-UTR was analyzed for CpG islands and restriction sites for HpaII, BstUI or 

HinfI methylation-sensitive restriction enzymes. One CpG island and 6 restriction sites were 

identified in the sequence studied (Fig. 2A). We observed that methylation was reduced by 

pesticide exposure at the first sites in the 5´-UTR (87, 152 and 216) but remained unaltered 

at the farther sites (283, 355 and 422). Specifically, the methylation status was decreased by 

CPF (0.5 μM) at sites 87 and 152, and by HCB (0.005 μM) at sites 87, 152 and 216 (Fig. 2B-

G).
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Fig. 2. Pesticide effects on LINE-1 methylation status in MDA-MB-231 cells. (A) Map of LINE-1 5´-UTR and 

its CpG island. Target sites for digestion by HpaII, BstUI and HinfI methylation-sensitive restriction enzymes are 

shown. Positions of PCR primers and their amplification products are indicated by arrows and lines, respectively.  

IC: internal control region. We named 1 to the first nucleotide from 5´UTR. (B-G) Cells were exposed to 0.5 μM 

CPF for 48 h, 0.005 μM HCB for 24 h or vehicle. Graphs show the relative methylation status of (B) HpaII a site 

(87), (C) HpaII b site (152), (D) BstUI site (216), (E) HinfI a site (283), (F) HpaII c site (355), and (G)HinfI b site 
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(422). Values are expressed as the mean ± SEM of at least three independent experiments (*p< 0.05, Mann 

Whitney U test).

3.3 CPF activates AhR and TGF-β1 signaling pathways in MDA-MB-231cells

A potential mechanism explaining the regulation of LINE-1 expression may be linked to the 

canonical TGF-β1 pathway, as reported for the strong ligand of AhR benzopyrene [39]. In this 

regard, we have previously observed that HCB promotes the AhR/c-Src axis, which in turn 

stimulates the canonical TGF-β1 pathway in the MDA-MB-231 cell line [27]. Therefore, we 

evaluated the action of CPF on AhR/c-Src and TGF-β1 signaling.

First, assays on AhR protein levels revealed an increase after 24 h of CPF (0.5, 5 and 50 μM) 

treatment (Fig. 3A). Then, analyses of c-Src phosphorylation levels in a time-course assay 

showed that 0.5 μM CPF increased phosphorylation at 5 and 15 min (Fig. 3B), in an AhR-

dependent manner (Fig. 3C). Next, assays on the effect of CPF (0.05, 0.5, 5 and 50 μM) on 

Smad2 and 3 activation at 15 min showed an increase in the phosphorylation of both proteins 

at all doses assayed (Fig. 3D). Finally, a time-course study demonstrated that 0.5 μM CPF 

induced Smad2 phosphorylation only at 15 min, whereas it activated Smad3 at 15 min and 6 

h (Fig. 3E).
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Fig. 3. CPF action on AhR and TGF-β1 signaling pathways in MDA-MB-231 cells. (A) AhR, (B-C) phospho (P)- 

and total-c-Src, and (D-E) P- and total-Smad2 and 3 protein levels. (A, D) Dose-response studies: cells were 

exposed to CPF (0.05, 0.5, 5, and 50 µM CPF) or vehicle for (A) 24 h or (C) 15 min. (B, E) Time-course studies: 

cells were treated with CPF (0.5 μM) or vehicle for 5, 15 and 30 min, 2 and 6 h. (C) Cells were pretreated with PHE 

(5 μM) or vehicle (DMSO) for 1 h and then treated with CPF (0.5 μM) in the presence or absence of inhibitor for 15 

min. Whole-cell lysates were used to analyze protein levels by Western blot. The AhR protein/β-Actin protein ratio 

or phosphorylated protein/total protein ratio were normalized to control values. A representative Western blot from 

at least three independent experiments is shown in the upper panels (Smad2 top band, Smad3 lower band). 

Quantification by densitometry scanning of the immunoblots is shown in the lower panels. Values are expressed 



17

as the mean ± SD of at least three independent experiments. Asterisks indicate significant differences vs control 

(*p < 0.05, **p < 0.01 and ***p < 0.001; ANOVA and Dunnett's post-hoc test).

3.4 AhR and TGF-β1 signaling pathways regulate LINE-1 expression

Previously, we have observed that HCB exposure heightens cell migration and invasion 

through AhR and TGF-β1 signaling in MDA-MB-231 cells [27]. Based on those findings and 

studies reported by Reyes-Reyes et al. [39], who showed that benzopyrene induces LINE-1 

reactivation through TGF-β1 and AhR pathways, we examined whether pesticide treatment 

could alter LINE-1 expression through these signaling in MDA-MB-231 cells.

In order to evaluate AhR participation in pesticide-induced LINE-1 mRNA expression, cells 

were pretreated for 1 h with AhR inhibitor PHE (5 μM) and then exposed to CPF (0.5 μM), 

HCB (0.005 μM) or vehicle during 48 or 24 h. Results clearly show that the presence of the 

inhibitor blocked the increase in LINE-1 mRNA levels exerted by CPF and HCB, unveiling an 

AhR-dependent mechanism (Fig. 4). In addition, and considering that pesticide-induced AhR 

activation promotes TGF-β1 signaling, we next examined TGF-β1 involvement in LINE-1 

mRNA expression by pretreating MDA-MB-231 cells with TGF-β1 inhibitor SB431542 (2 µM) 

and then exposing them to CPF (0.5 μM), HCB (0.005 μM) or vehicle. Results again showed 

a blockade of CPF or HCB-induced LINE-1 expression upon inhibitor pretreatment, which 

reveals a TGF-β1-dependent mechanism (Fig. 4). 
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Fig. 4: Pesticide-induced LINE-1 expression depends on AhR and TGF-β1 signaling. 

Cells were pretreated with SB431542 (2 μM), PHE (5 μM) or vehicle (DMSO) for 1 h and then 

treated with (A) CPF (0.5 μM) for 48 h or (B) HCB (0.005 μM) for 24 h, in the presence or 

absence of the inhibitors. LINE-1 ORF1 mRNA levels were evaluated by RT-qPCR. Values 

are expressed as the mean ± SD of at least three independent experiments. Asterisks indicate 

significant differences vs. control (***p<0.001) and crosses indicate significant differences vs. 

pesticide treatment (+p<0.05, ++p<0.01 and +++p<0.001; ANOVA and Tukey post hoc test).

3.5 CPF and HCB modulate ORF1p subcellular localization 
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Although LINE-1 encodes two proteins, ORF1p and ORF2p, in breast and hepatocellular 

carcinomas ORF1p shows higher expression levels than ORF2p and is likely to play important 

roles [54]. ORF1p is critical for LINE-1 retrotransposition, participating in ORF2p expression 

regulation, ribonucleoprotein complex formation and delivery to the chromosomal DNA, and/or 

assisting strand exchanges during retrotransposition [55]. For these reasons, we examined 

whether HCB or CPF exposure may affect ORF1p expression levels. In addition, the ORF1p 

subcellular localization was evaluated to assess LINE-1 retrotransposition activity.

MDA-MB-231 cells were treated with CPF (0.05, 0.5, 5, and 50 μM) for 48 h or HCB (0.005, 

0.05, 0.5, and 5 μM) for 24 h, and ORF1p levels were evaluated by Western blot. Results 

revealed a reduction in ORF1p levels at 50 μM CPF (Fig. 5A); nevertheless, no changes were 

observed in this protein upon cell exposure to HCB (Fig. 5B). To determine whether pesticide 

exposure can induce ORF1p cytoplasm to nucleus translocation, ORF1p protein levels were 

examined in cytoplasmic and nuclear fractions, both of which revealed ORF1p expression 

(Fig. 5C-D). CPF increased nuclear translocation at 50 μM but promoted cytoplasmic retention 

at 0.5 and 5 μM (Fig. 5C). Besides, HCB increased nuclear translocation at 0.005 μM but 

induced cytoplasmic retention at higher doses (0.5 and 5 μM) (Fig. 5D). In addition, these 

results were verified by immunofluorescence assays, which further corroborated ORF1p 

nuclear localization at a low HCB dose (0.005 μM) and a high CPF dose (50 μM) (Fig. 6A, C).

Next, we have evaluated whether the pesticide action on ORF1p nuclear localization is 

dependent of AhR and TGF-β1/Smad pathways. For this purpose, MDA-MB-231 cells were 

pretreated with specific inhibitors (5 μM PHE for AhR and 2 μM SB431542 for TGF-β1 receptor 

I) for 1 h and then exposed to CPF (50 μM) for 48 h or HCB (0.005 μM) for 24 h, in the presence 

of inhibitors. ORF1p protein levels were examined in the nuclear fraction by Western blot, 

showing that CPF action is mediated by TGF-β1/Smad pathway, however when AhR signaling 
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was analyzed, a non-significative tendency was observed (Fig. 5E). In addition, HCB clearly 

induced ORF1p nuclear import through AhR and TGF-β1/Smad signaling (Fig. 5F).
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Fig. 5. Pesticide effects on ORF1p protein expression and localization in MDA-MB-231 cells. (A-B) ORF1p 

expression and (C-D) ORF1p cytoplasmic and nuclear localization and (E-F) ORF1p nuclear translocation analyzed 

by Western blot. Cells were exposed to (A, C) CPF (0.05, 0.5, 5, and 50 μM) or EtOH for 48 h, and (B, D) HCB 

(0.005, 0.05, 0.5 and 5 μM) or EtOH for 24 h. (E-F) Cells were pretreated with SB431542 (2 μM), PHE (5 μM) or 

vehicle (DMSO) for 1 h and then exposed to (E) CPF (50 μM) for 48 h or (F) HCB (0.005 μM) for 24 h, in the 

presence of inhibitors. To normalize values, we used (A-B) anti-β-Actin antibody for whole cell lysates, (C-F) anti-

Histone 3 (H3) for nuclei and (C-D) anti-GAPDH for cytosol. A representative Western blot is shown in the upper 

panels. Quantification by densitometry scanning of the immunoblots is shown in the lower panels. Values are 

expressed as the mean ± SD of at least three independent experiments. Asterisks indicate significant differences 

vs control (*p< 0.05 and **p< 0.01; ANOVA and Dunnett's post-hoc test) and crosses indicate significant differences 

vs. pesticide treatment (+p<0.05, ++p<0.01 and +++p<0.001; ANOVA and Tukey post hoc test). 

3.6 Pesticides induce DNA DSBs and H2AX phosphorylation

We observed that the lowest dose of HCB (0.005 μM) and the highest dose of CPF (50 μM) 

trigger ORF1p nuclear translocation in MDA-MB-231 cells (Fig. 6A, C). Given that aberrant 

expression of ORF1p and new somatic insertions produce genomic instability [34], then we 

evaluate if pesticides exposure may generate DNA DSBs. The phosphorylation of H2AX (γ-

H2AX) is an early response to DSBs and can be observed flanking the DSB [56]. Therefore, 

we analyze the accumulation of γ-H2AX by immunofluoresce, finding that HCB and CPF 

exposure enhance γ-H2AX foci, coincidentally at the same doses that pesticides promote 

ORF1p nuclear localization. However, γ-H2AX remained unaltered at the pesticides doses 

where ORF1p is retained in the cytoplasm (Fig. 6B, D).
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Fig. 6. ORF1p protein localization and H2AX phosphorylation. (A) Merge images of ORF1p or (B) γ-H2AX and 

Hoechst nuclear stain. Cells were exposed to HCB (0.005 and 5 μM), CPF (0.5 and 50 μM) or vehicle and protein 

expression was evaluated by immunofluorescence, by staining with specific antibodies. Magnification x 600. 

Graphics show the percentage of (C) ORF1p and (D) γ-H2AX-nuclear positive cells. We chose random fields 

counting at least 1000 cells/treatment. Data are expressed as means ± SD of at least three independent 

experiments. Asterisks indicate significant differences vs control (**p< 0.01). ANOVA and Dunnett's post-hoc test.

3.7 Pesticide action on LINE-1 mRNA expression, and role of AhR and TGF-β1 signaling 

in non-tumorigenic mammary cells

 

As LINE-1 reactivation has been implicated in tumorigenesis [57], it was interesting to evaluate 

whether LINE-1 activation status could be modulated by pesticide exposure in epithelial 

mammary cells. For this reason, LINE-1 mRNA expression was evaluated in the non-
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tumorigenic mammary epithelial cells NMuMG. Compared to MDA-MB-231 cells, NMuMG 

express significantly lower levels of LINE-1 mRNA and ORF1p (data not shown). NMuMG 

cells were exposed to CPF (0.05, 0.5, 5 and 50 µM), HCB (0.005, 0.05, 0.5 and 5 µM) or 

vehicle for 48 h and LINE-1 mRNA levels were evaluated by RT-qPCR. Data indicated clearly 

that both pesticides increases LINE-1 mRNA expression, CPF at 0.05, 0.5 and 5 µM (Fig. 7A) 

and HCB at 0.005 µM (Fig. 7B), with greater effect in the presence of CPF.

 

Previous results have shown that 0.05 µM HCB activates the AhR/c-Src/Smad3 axis in 

NMuMG cells, while AhR/c-Src is stimulated at 0.005 µM HCB [28, 58]. Herein, we studied 

CPF action on these signaling pathways. Cells were treated with CPF (0.05, 0.5, 5 and 50 µM) 

for 15 min and the phosphorylation levels of c-Src and Smad3 were analyzed by Western blot. 

As shown in Fig. 7C, c-Src was activated at all assayed doses but Smad3 phosphorylation 

was increased only at 5 and 50 µM CPF.

 

In order to evaluate if AhR and TGF-β1 pathways could be mediating pesticide-enhanced 

LINE-1 mRNA levels, NMuMG cells were pretreated for 1 h with 5 µM PHE (for AhR), or 2 µM 

SB431542 (for type I TGF-β receptor), and then exposed with pesticides for 48 h in the 

presence of inhibitors. We used 5 µM CPF, since it induced an enhancement in LINE-1 mRNA 

levels, as well as c-Src and Smad3 phosphorylation. RT-qPCR data showed that CPF-induced 

LINE-1 mRNA levels were prevented by both inhibitors, indicating that this action is AhR and 

TGF-β1-dependent (Fig. 7D). On the other hand, in regard to HCB exposure, herein we found 

that LINE-1 mRNA expression was stimulated at 0.005 µM. However, only c-Src 

phosphorylation was increased at this dose, without changes in Smad3 activation [58], 

therefore, we studied the role of AhR. We observed that PHE blocked the HCB-induced LINE-

1 mRNA levels (Fig. 7E), showing that this action is mediated by AhR.
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Figure 7: HCB and CPF modulate LINE-1 mRNA expression in non-tumorigenic mammary epithelial cells 

NMuMG. Role of AhR and TGF-β1 signaling. Cells were exposed to (A) CPF (0.05, 0.5, 5, and 50 μM) or (B) 

HCB (0.005, 0.05, 0.5, and 5 μM) for 48 h and LINE-1 ORF1 mRNA levels were evaluated by RT-qPCR. β2-

microglobulin (β2-M) expression was used as a control to normalize the data. (C) Phospho (P)- c-Src, and P- 

Smad3 protein levels were determined by Western blot after 15 min of CPF treatment (0.05, 0.5, 5, and 50 μM). 

Values were normalized by immunoblotting using anti-β-Actin antibody. A Western blot from one representative 
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experiment is shown in the upper panel. Quantification by densitometry scanning of the immunoblots is shown in 

the lower panels. (D-E) Cells were pretreated with SB431542 (2 μM), PHE (5 μM) or vehicle (DMSO) for 1 h and 

then exposed to (D) CPF (5 μM) or (E) HCB (0.005 μM) for 48 h, in the presence of the inhibitor. LINE-1 ORF1 

mRNA levels were evaluated by RT-qPCR. Values are expressed as the mean ± SD of at least three independent 

experiments. Asterisks indicate significant differences vs. control (*p<0.05, **p<0.01, ***p<0.001; ANOVA and 

Dunnett's post-hoc test) and crosses indicate significant differences vs. pesticide treatment (+p<0.05, ++p<0.01 

and +++p<0.001; ANOVA and Tukey post hoc test). 

 

 

3.8 CPF and HCB effects on ORF1p expression and localization in NMuMG cells

 

ORF1p nuclear expression compared to cytoplasmic expression is associated with poor 

patient survival [59]. Thus, ORF1p may be used as biomarker for cancer progression, and 

translocation of LINE-1 protein into the nucleus may serve as a risk indicator of poor prognosis. 

To evaluate if HCB and CPF exposure promote changes in ORF1p levels, NMuMG cells were 

treated for 48 h with CPF (0.05, 0.5, 5 and 50 µM) or HCB (0.005, 0.05, 0.5 and 5 µM), and 

analyzed by Western blot. Our data showed that 5 and 50 µM CPF, and 0.05, 0.5 and 5 µM 

HCB increase ORF1p expression levels in non-tumorigenic mammary epithelial cells NMuMG 

(Fig. 8A-B). 

 

On the other hand, we examined ORF1p levels in cytosol and nucleus, with the aim of 

investigating whether pesticide treatment alters the localization of this protein. Western blot 

analysis show that 0.05-5 µM CPF induced ORF1p nuclear import (Fig. 8C). In addition, HCB 

enhanced both, nuclear and cytosolic ORF1p levels at the same doses as the increase in the 

total protein was observed (0.05-5 µM) (Fig. 8D). 

 

 



26

 

Figure 8: Pesticide action on ORF1p expression and localization in NMuMG cells. (A-B) ORF1p expression 

levels and (C-D) ORF1p cytoplasmic and nuclear localization. NMuMG cells were exposed to (A, C) CPF (0.05, 

0.5, 5, and 50 μM) or (B, D) HCB (0.005, 0.05, 0.5 and 5 μM) for 48 h. Whole cell lysates and cytoplasmic and 

nuclear fractions were used to analyze ORF1p levels by Western blot. To normalize values, we used anti-β-Actin 

antibody for whole cell lysates and cytosol, and anti-Histone 3 (H3) for nuclei. A representative Western blot is 

shown in the upper panels. Quantification by densitometry scanning of the immunoblots is shown in the lower 

panels. Values are expressed as the mean ± SD of at least three independent experiments. Asterisks indicate 

significant differences vs control (*p<0.05, **p<0.01, ***p<0.001; ANOVA and Dunnett's post-hoc test).  
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4.Discussion

Several epigenetic mechanisms can modify genome function under exogenous influence, 

including the exposure to environmental pollutants acting as EDs [60]. Considering the 

significant increase in breast cancer incidence observed in recent years and the role of EDs 

exposure as a potential risk factor [61], studies of epigenetic changes caused by these 

compounds can provide evidence of how they promote cancer. Abundant research suggests 

that epigenetic alterations may be one of the mechanisms by which pesticides can have 

adverse effects on human health [62]. In line with this understanding, the present study 

demonstrates that environmental relevant concentrations of HCB and CPF enhance LINE-1 

expression and ORF1p nuclear import in NMuMG non-tumorigenic mammary epithelial cells. 

Furthermore, pesticides reduce LINE-1 methylation status and increase LINE-1 activation in 

the human triple-negative breast cancer cell line MDA-MB-231. These findings may prove 

crucial, as hypomethylation of LINE-1 correlates with worse prognosis for many types of 

cancer, such as colorectal, liver, esophageal, breast, bladder, and lung cancers [57]. In 

particular, LINE-1 expression has been observed in aggressive forms of human breast ER-

negative tumors, which exhibit frequent distant metastasis and resistance to hormone therapy 

[36, 63]. LINE-1 reactivation and subsequent insertion lead to DNA instability, functional 

knockout of genes, genetic mutations or alterations in gene expression which result in aberrant 

cellular phenotypes and explain LINE-1 role in carcinogenesis [57, 64]. A direct association 

has been found between cancer-associated DNA damage and the activation of LINE-1 

expression [65]. Accordingly, herein we observed an association between ORF1p nuclear 

translocation and DNA DSBs, evidenced by the accumulation of γ-H2AX foci after pesticide 

exposure (0.005 μM HCB and 50 μM CPF). DSBs are generated by exogenous agents or by 

reactive oxygen species [66]. In this regard, we have previously observed that CPF (50 μM) 

reduces cell proliferation accompanied by a redox imbalance in this cell line [67] which could 

contribute to DNA DSBs. 
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AhR activation has been implicated in the transcriptional and post-transcriptional regulation of 

LINE-1 [68]. However, some AhR ligands such as 2,3,7,8-tetrachloro dibenzo-p-dioxin (TCDD) 

do not induce LINE-1 expression [69]. In this context, the current work shows that the increase 

induced by CPF or HCB in LINE-1 mRNA levels is mediated by AhR in both cell lines, MDA-

MB-231 and NMuMG. A previous investigation conducted in our laboratory found that HCB 

binds to AhR and triggers c-Src activation [70], which in turn promotes the phosphorylation of 

the canonical (Smad3) and non-canonical (JNK and p38) TGF-β1 downstream pathways, 

inducing MDA-MB-231 cell migration and invasion. In addition, AhR activation by HCB leads 

to TGF-β1 gene expression, which is secreted and accumulated into de culture medium [27]. 

In a similar way, the current data show that CPF exposure increases AhR protein levels as 

well as activates c-Src and Smad2/3 in MDA-MB-231 cells, indicating that CPF stimulates 

AhR/c-Src and TGF-β1 signaling. All findings indicated clearly that both pesticides enhance 

LINE-1 mRNA expression levels in breast cancer cell line MDA-MB-231, in a dependent 

manner of the AhR and TGF-β1 signaling. In line with our results, Reyes-Reyes et al. [39] 

have reported that AhR activation by benzopyrene induces the expression of TGF-β1 and 

activates TGF-β1/Smad signaling, which subsequently increases LINE-1 mRNA expression. 

Accordingly, in NMuMG non-tumorigenic mammary epithelial cells, 5 μM CPF heightens LINE-

1 mRNA expression through AhR and TGF-β1/Smad signaling. However, CPF induces the 

LINE-1 mRNA levels at lower doses, which does not alter Smad3 phosphorylation. Besides, 

0.005 μM HCB enhances LINE-1 mRNA expression and c-Src activation in NMuMG cells, but 

without changes in TGF-β1/Smad3 pathway [58], suggesting that AhR/c-Src signaling could 

be activating other pathways that modulate the LINE-1 mRNA expression.  

It has been established that hypomethylation of LINE-1 5´UTR is associated with activation of 

LINE-1 expression in many types of cancer [71], including breast cancer [30]. Indeed, the 

degree of LINE-1 hypomethylation increases in more advanced cancers and is also related to 

tumor size and grade [72]. For instance, HCB promotes mammary tumor growth, angiogenesis 

and metastasis in different animal models [8], whereas CPF alters HDAC1 mRNA expression 
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in rat mammary gland and increases tumor incidence in a chemically induced rat mammary 

tumor model [18]. Therefore, the LINE-1 reactivation induced by the pesticides contributes to 

explaining how these compounds behave as risk factors for breast cancer progression. 

However, Ventura et al. [18] noted that CPF treatment does not promote changes in LINE-1 

DNA methylation in rat mammary gland, indicating that this CPF action could be specific to 

breast cancer or that different CpG sites may have been analyzed. In the current study, we 

found that only the methylation of the first CpG sites evaluated in 5´UTR were reduced by 

pesticide exposure, in agreement with previous reports [37]. Similar results regarding LINE-1 

hypomethylation have been observed after exposure to organochlorine pesticides [73] and 

other EDs such as phthalate [74]. In addition, placental LINE-1 methylation has been inversely 

correlated with infant birth length among Korean mothers exposed to persistent organic 

pollutants [75]. In turn, TGF-β1 signaling has been implicated in the regulation of epigenetic 

mechanisms including DNA methylation, as Smad proteins interact with chromatin modifying 

complexes to remodel chromatin structure [76]. Therefore, Smad activation by pesticide 

exposure could in fact participate in the epigenetic control of the LINE-1. 

Hypomethylation of LINE-1 leads to an increase in retrotransposon activity and, consequently, 

in the translation of ORF1p and ORF2p [57]. However, in the current work, pesticide treatment 

did not only fail to induce ORF1p expression in MDA-MB-231 cells, but also actually reduced 

it in the presence of 50 µM CPF. This could be explained by ORF1p degradation mechanism 

via proteosoma, as deHaro et al. [77] described in different cancer cell lines. Interestingly, in 

NMuMG mammary epithelial cells, ORF1p expression levels were significantly enhanced by 

HCB and CPF exposure, in contrast to MDA-MB-231 cells. Rodic et al. [54] have reported that 

90% of the breast cancer tissue samples examined were highly positive for ORF1p, while 

other authors have found high cytoplasmic expression of ORF1p and ORF2p in non-invasive 

tumors, although this was not related with patient survival [36]. These authors also showed 

that, for invasive tumors, the nuclear localization of ORF1p and ORF2p was more closely 

associated with lymph node metastasis and poor patient outcomes than cytoplasmic 
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expression. Given that ORF1p is required for LINE-1 retrotransposition, changes in the 

subcellular localization of ORF1p from cytoplasm to nucleus may be a critical step in 

tumorigenesis. The data presented here show that 0.05-5 µM CPF induced ORF1p nuclear 

import as well as LINE-1 mRNA expression in NMuMG cell line, while HCB enhanced both, 

nuclear and cytosolic ORF1p levels at the same doses as the increase in the total protein was 

observed (0.05-5 µM). On the other hand, in MDA-MB-231 cell line, the lowest HCB dose used 

(0.005 µM), which is close to current human exposure, induces ORF1p nuclear localization, 

with similar results observed for 50 µM CPF. Besides, the ORF1p nuclear import after HCB 

exposure involves AhR and TGF-β1 pathways, while only TGF-β1 signaling is implicated in 

MDA-MB-231 treated with CPF. It has also been reported that phosphorylation of ORF1p is 

required for LINE-1 retrotransposition [78]. ORF1p is phosphorylated on multiple serines and 

threonines and some of these sites are targets for proline-directed protein kinases (PDPKs), 

a kinase family which includes mitogen-activated protein kinases (MAPKs), cyclin-dependent 

kinases (CDKs), and glycogen synthase 3 (GSK3) [79]. In this regard, we have shown that 

HCB increases phosphorylation of ERK1/2 [70], p38 and JNK [27], whereas CPF activates 

ERK1/2 [67] in MDA-MB-231 cells, findings which could be linked to the increase in LINE-1 

retrotransposition induced by the pesticides. Accordingly, Ishizaka et al. [80] have found that 

strong AhR ligands such as 6-formylindolo[3,2-b]carbazole (FICZ), 3-methylcholantrene and 

benzopyrene induce LINE-1 retrotransposition mediated via p38 and JNK but not via the 

classical AhR pathway. In addition, Reyes-Reyes et al. [39] have reported that TGF-β1 

pathway mediates LINE-1 retrotransposition in hepatoma cells exposed to benzopyrene. In 

this line, the current work further shows that LINE-1 reactivation is also induced by weak AhR 

ligands such as HCB and CPF, and proposes an alternative mechanism of action which 

involves c-Src phosphorylation, triggering TGF-β1/Smad activation and LINE-1 mRNA 

expression in MDA-MB-231 breast cancer cells (Fig. 9A). Similar results were obtained in 

NMuMG mammary epithelial cells exposed to CPF, however in the presence of HCB, LINE-1 

mRNA levels are regulated by a TGF-β1/Smad independent mechanism (Fig. 9B).
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In sum, our results provide experimental evidence that pesticide exposure may modify LINE-

1 methylation levels and induce LINE-1 reactivation, suggesting that epigenetic mechanisms 

could contribute to pesticide-induced breast cancer progression.

Fig. 9. Model depicting molecular mechanisms of CPF and HCB action on LINE-1 reactivation. (A) MDA-MB-

231 cells: The pesticide (CPF or HCB) binds to AhR/c-Src complex and triggers c-Src activation, raising the 

phosphorylation of TGF-β1 canonical downstream pathway (Smad2/3). This effect results in the demethylation of 
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the LINE-1 internal promoter and leads the LINE-1 transcription, but without great changes in ORF1p expression. 

Then, ORF1p (possible forming a complex with ORF2p and LINE-1 mRNA) is imported to the nucleus by a 

mechanism that involves TGF-β1/Smad signaling. The ORF1p translocation to the nucleus after 50 µM CPF 

treatment is AhR-independent, suggesting that CPF could be activating Smad by an unknown mechanism (?). 

Finally, the LINE-1 reactivation along with other mechanisms could lead to an increase in genomic instability. (B) 

NMuMG cells: CPF activates AhR/c-Src and TGF-β1/Smad3 pathways, which results in LINE-1 transcription. HCB 

also enhances LINE-1 mRNA levels in an AhR-dependent manner but without involve TGF-β1/Smad3 signaling. 

In addition, both pesticides increase ORF1p expression and nuclear localization.
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Figure and table legends

Table 1. Primer sequences for qPCR analyses. 

Fig. 1. HCB and CPF action on LINE-1 mRNA expression levels in MDA-MB-231 cells. 

LINE-1 ORF1 and ORF2 mRNA levels were evaluated by RT-qPCR. Cells were exposed to 

(A) CPF (0.05, 0.5, 5, and 50 μM) for 48 h or (B) HCB (0.005, 0.05, 0.5, and 5 μM) for 24 h. 

Values are expressed as the mean ± SD of at least three independent experiments. Asterisks 

indicate significant differences vs. control (**p<0.01 and ***p<0.001; ANOVA and Dunnett's 

post hoc test). 

Fig. 2. Pesticide effects on LINE-1 methylation status in MDA-MB-231 cells. (A) Map of 

LINE-1 5´-UTR and its CpG island. Target sites for digestion by HpaII, BstUI and HinfI 

methylation-sensitive restriction enzymes are shown. Positions of PCR primers and their 

amplification products are indicated by arrows and lines, respectively.  IC: internal control 

region. We named 1 to the first nucleotide from 5´UTR. (B-G) Cells were exposed to 0.5 μM 

CPF for 48 h, 0.005 μM HCB for 24 h or vehicle. Graphs show the relative methylation status 

of (B) HpaII a site (87), (C) HpaII b site (152), (D) BstUI site (216), (E) HinfI a site (283), (F) 

HpaII c site (355), and (G)HinfI b site (422). Values are expressed as the mean ± SEM of at 

least three independent experiments (*p< 0.05, Mann Whitney U test).

Fig. 3. CPF action on AhR and TGF-β1 signaling pathways in MDA-MB-231 cells. (A) 

AhR, (B-C) phospho (P)- and total-c-Src, and (D-E) P- and total-Smad2 and 3 protein levels. 
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(A, D) Dose-response studies: cells were exposed to CPF (0.05, 0.5, 5, and 50 µM CPF) or 

vehicle for (A) 24 h or (C) 15 min. (B, E) Time-course studies: cells were treated with CPF (0.5 

μM) or vehicle for 5, 15 and 30 min, 2 and 6 h. (C) Cells were pretreated with PHE (5 μM) or 

vehicle (DMSO) for 1 h and then treated with CPF (0.5 μM) in the presence or absence of 

inhibitor for 15 min. Whole-cell lysates were used to analyze protein levels by Western blot. 

The AhR protein/β-Actin protein ratio or phosphorylated protein/total protein ratio were 

normalized to control values. A representative Western blot from at least three independent 

experiments is shown in the upper panels (Smad2 top band, Smad3 lower band). 

Quantification by densitometry scanning of the immunoblots is shown in the lower panels. 

Values are expressed as the mean ± SD of at least three independent experiments. Asterisks 

indicate significant differences vs control (*p < 0.05, **p < 0.01 and ***p < 0.001; ANOVA and 

Dunnett's post-hoc test).

Fig. 4: Pesticide-induced LINE-1 expression depends on AhR and TGF-β1 signaling. 

Cells were pretreated with SB431542 (2 μM), PHE (5 μM) or vehicle (DMSO) for 1 h and then 

treated with (A) CPF (0.5 μM) for 48 h or (B) HCB (0.005 μM) for 24 h, in the presence or 

absence of the inhibitors. LINE-1 ORF1 mRNA levels were evaluated by RT-qPCR. Values 

are expressed as the mean ± SD of at least three independent experiments. Asterisks indicate 

significant differences vs. control (***p<0.001) and crosses indicate significant differences vs. 

pesticide treatment (+p<0.05, ++p<0.01 and +++p<0.001; ANOVA and Tukey post hoc test).

Fig. 5. Pesticide effects on ORF1p protein expression and localization in MDA-MB-231 

cells. (A-B) ORF1p expression and (C-D) ORF1p cytoplasmic and nuclear localization and 

(E-F) ORF1p nuclear translocation analyzed by Western blot. Cells were exposed to (A, C) 

CPF (0.05, 0.5, 5, and 50 μM) or EtOH for 48 h, and (B, D) HCB (0.005, 0.05, 0.5 and 5 μM) 

or EtOH for 24 h. (E-F) Cells were pretreated with SB431542 (2 μM), PHE (5 μM) or vehicle 
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(DMSO) for 1 h and then exposed to (E) CPF (50 μM) for 48 h or (F) HCB (0.005 μM) for 24 

h, in the presence of inhibitors. To normalize values, we used (A-B) anti-β-Actin antibody for 

whole cell lysates, (C-F) anti-Histone 3 (H3) for nuclei and (C-D) anti-GAPDH for cytosol. A 

representative Western blot is shown in the upper panels. Quantification by densitometry 

scanning of the immunoblots is shown in the lower panels. Values are expressed as the mean 

± SD of at least three independent experiments. Asterisks indicate significant differences vs 

control (*p< 0.05 and **p< 0.01; ANOVA and Dunnett's post-hoc test) and crosses indicate 

significant differences vs. pesticide treatment (+p<0.05, ++p<0.01 and +++p<0.001; ANOVA 

and Tukey post hoc test). 

Figure 7: HCB and CPF modulate LINE-1 mRNA expression in non-tumorigenic 

mammary epithelial cells NMuMG. Role of AhR and TGF-β1 signaling. Cells were 

exposed to (A) CPF (0.05, 0.5, 5, and 50 μM) or (B) HCB (0.005, 0.05, 0.5, and 5 μM) for 48 

h and LINE-1 ORF1 mRNA levels were evaluated by RT-qPCR. β2-microglobulin (β2-M) 

expression was used as a control to normalize the data. (C) Phospho (P)- c-Src, and P- Smad3 

protein levels were determined by Western blot after 15 min of CPF treatment (0.05, 0.5, 5, 

and 50 μM). Values were normalized by immunoblotting using anti-β-Actin antibody. A 

Western blot from one representative experiment is shown in the upper panel. Quantification 

by densitometry scanning of the immunoblots is shown in the lower panels. (D-E) Cells were 

pretreated with SB431542 (2 μM), PHE (5 μM) or vehicle (DMSO) for 1 h and then exposed 

to (D) CPF (5 μM) or (E) HCB (0.005 μM) for 48 h, in the presence of the inhibitor. LINE-1 

ORF1 mRNA levels were evaluated by RT-qPCR. Values are expressed as the mean ± SD of 

at least three independent experiments. Asterisks indicate significant differences vs. control 

(*p<0.05, **p<0.01, ***p<0.001; ANOVA and Dunnett's post-hoc test) and crosses indicate 

significant differences vs. pesticide treatment (+p<0.05, ++p<0.01 and +++p<0.001; ANOVA 

and Tukey post hoc test). 
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Figure 8: Pesticide action on ORF1p expression and localization in NMuMG cells. (A-B) 

ORF1p expression levels and (C-D) ORF1p cytoplasmic and nuclear localization. NMuMG 

cells were exposed to (A, C) CPF (0.05, 0.5, 5, and 50 μM) or (B, D) HCB (0.005, 0.05, 0.5 

and 5 μM) for 48 h. Whole cell lysates and cytoplasmic and nuclear fractions were used to 

analyze ORF1p levels by Western blot. To normalize values, we used anti-β-Actin antibody 

for whole cell lysates and cytosol, and anti-Histone 3 (H3) for nuclei. A representative Western 

blot is shown in the upper panels. Quantification by densitometry scanning of the immunoblots 

is shown in the lower panels. Values are expressed as the mean ± SD of at least three 

independent experiments. Asterisks indicate significant differences vs control (*p<0.05, 

**p<0.01, ***p<0.001; ANOVA and Dunnett's post-hoc test).  

Fig. 9. Model depicting molecular mechanisms of CPF and HCB action on LINE-1 

reactivation. (A) MDA-MB-231 cells: The pesticide (CPF or HCB) binds to AhR/c-Src complex 

and triggers c-Src activation, raising the phosphorylation of TGF-β1 canonical downstream 

pathway (Smad2/3). This effect results in the demethylation of the LINE-1 internal promoter 

and leads the LINE-1 transcription, but without great changes in ORF1p expression. Then, 

ORF1p (possible forming a complex with ORF2p and LINE-1 mRNA) is imported to the 

nucleus by a mechanism that involves TGF-β1/Smad signaling. The ORF1p translocation to 

the nucleus after 50 µM CPF treatment is AhR-independent, suggesting that CPF could be 

activating Smad by an unknown mechanism (?). Finally, the LINE-1 reactivation along with 

other mechanisms could lead to an increase in genomic instability. (B) NMuMG cells: CPF 

activates AhR/c-Src and TGF-β1/Smad3 pathways, which results in LINE-1 transcription. HCB 

also enhances LINE-1 mRNA levels in an AhR-dependent manner but without involve TGF-

β1/Smad3 signaling. In addition, both pesticides increase ORF1p expression and nuclear 

localization.



46

Noelia V Miret: Conceptualization, Methodology, Formal analysis, Investigation, Data 
Curation, Writing - Original Draft, Visualization
C. Daniel Zappia: Formal analysis, Investigation, Data Curation
Gabriela Altamirano: Formal análisis, Investigation, Data Curation
Carolina Pontillo: Formal análisis, Investigation, Writing - Review & Editing
Lorena V. Zárate: Investigation, Writing - Review & Editing
Ayelén Gómez: Investigation, Visualization
Marianela Lasagna: Investigation, Visualization
Claudia Cocca: Writing - Review & Editing, Supervision, Funding acquisition
Laura Kass: Methodology, Validation, Resources, Supervision
Federico Monczor: Methodology, Resources, Supervision
Anrea S. Randi: Conceptualization, Methodology, Validation, Resources, Writing - Original 
Draft, Supervision, Project administration, Funding acquisition

Name Sense (5’-3’) Antisense (5’-3’) Product size

HpaII (a) GAGGAGCCAAGATGGCCGAA AATCACCGTCTTCTGCGTCG 75 pb

HpaII (b) GTGAGCGACGCAGAAGACGG CCCACTGTCTGGCACTCCCT 82 pb

HpaII (c) and IC 
(2) 

GTCGCACCTGGAAAATCGGG CCGAGCCAGGTGTGGGATAT 101 pb

BstUI /HinfI(a) 
and IC (1)

GTGGGCGCAGGCCAGTGTGT TCCAGGTGCGACCGTCACCC 133 pb

HinfI (b) TTAAGAAACGGCGCACCACG GCCGCCTTGCAGTTTGATCT 113 pb

LINE-1 ORF1 CAAGTTGGAAAACACTCTGCAG GGAGTATCTTTGTGGCGTTCT 109 pb

LINE-1 ORF2 TCGACACATACACTCTCCCAAG GCCACAATTTCAGAGCCTGTT 82 pb

Human β-Actin GGACTTCGAGCAAGAGATGG AGCACTGTGTTGGCGTACAG 234 pb

Mouse β2-
Microglobulin

CAAGTATACTCACGCCACCCA GCAGGCGTATGTATCAGTCTC 219 pb
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