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Abstract

Let d = (dj)j∈Im ∈ Nm be a finite sequence (of dimensions) and α = (αi)i∈In be a sequence of
positive numbers (of weights), where Ik = {1, . . . , k} for k ∈ N. We introduce the (α , d)-designs
i.e., m-tuples Φ = (Fj)j∈Im such that Fj = {fij}i∈In is a finite sequence in Cdj , j ∈ Im, and
such that the sequence of non-negative numbers (‖fij‖2)j∈Im forms a partition of αi, i ∈ In. We
characterize the existence of (α , d)-designs with prescribed properties in terms of majorization
relations. We show, by means of a finite-step algorithm, that there exist (α , d)-designs Φop =
(Fop

j )j∈Im that are universally optimal; that is, for every convex function ϕ : [0,∞) → [0,∞)
then Φop minimizes the joint convex potential induced by ϕ among (α , d)-designs, namely∑

j∈Im

Pϕ(Fop
j ) ≤

∑
j∈Im

Pϕ(Fj)

for every (α , d)-design Φ = (Fj)j∈Im , where Pϕ(F) = tr(ϕ(SF )); in particular, Φop minimizes
both the joint frame potential and the joint mean square error among (α , d)-designs. We show
that in this case Fop

j is a frame for Cdj , for j ∈ Im. This corresponds to the existence of optimal
encoding-decoding schemes for multitasking devices with energy restrictions.

AMS subject classification: 42C15, 15A60.
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1 Introduction

A finite sequence F = {fi}i∈In of vectors in Cd is a frame for Cd if F is a (possibly redundant) system
of generators for Cd. In this case, it is well known that there exist finite sequences G = {gi}i∈In in
Cd - the so called duals of F - such that

f =
∑
i∈In

〈f , fi〉 gi =
∑
i∈In

〈f , gi〉 fi for f ∈ Cd . (1)

Thus, we can encode/decode the vector f in terms of the inner products (〈f , fi〉)i∈In ∈ Cn: (see
[7, 12, 13] and the references therein). The frame operator SF ∈Md(C)+ is given by

SFf =
∑
i∈In

〈f , fi〉 fi for f ∈ Cd . (2)

If SF is invertible (i.e. if F is a frame) the canonical dual of F is given by gi = S−1
F fi for i ∈ In;

this dual plays a central role in applications since it has several optimal (minimal) properties within
the set of duals of F . Unfortunately, the computation of the canonical dual depends on finding
S−1
F , which is a challenging task from the numerical point of view. A way out of this problem is

to consider those frames F for which S−1
F is easy to compute (e.g. tight frames). In general, the

numerical stability of the computation of S−1
F depends on the spread of the eigenvalues of SF . In

[4] Benedetto and Fickus introduced a convex functional called the frame potential of a sequence
F = {fi}i∈In given by

FP (F) =
∑
i , j∈In

|〈fi , fj〉|2 ≥ 0 . (3)

In [4] the authors showed that under some normalization conditions, FP (F) provides an scalar
measure of the spread of the eigenvalues of F . More explicitly, the authors showed that the
minimizers of FP among sequences F = {fi}i∈In for which ‖fi‖ = 1, i ∈ In, are exactly the
n/d-tight frames. It is worth pointing out that these minimizers are also optimal for transmission
through noisy channels (in which erasures of the frame coefficients may occur, see [6, 20]).

In some applications of frame theory, we are drawn to consider frames F = {fi}i∈In such that
‖fi‖2 = αi, i ∈ In, for some prescribed sequence α = (αi)i∈In ∈ (R>0)n; this is known as the
(classical) frame design problem. In practice, we can think of frames with prescribed norms as
designs for encoding-decoding schemes to be applied by a device with some sort of energy restrictions
(e.g. a device with limited access to energy power): in this case, control of the norms of the frame
elements amounts to control the energy needed to apply the linear scheme.

It is then natural to wonder whether there are tight frames with norms prescribed by α. This
question has motivated the study of the frame design problem (see [1, 8, 10, 11, 14, 15, 16, 21]
and [17, 18, 23, 22, 25, 26, 27] for the more general frame completion problem with prescribed
norms). It is well known that in some cases there are no tight frames in the class of sequences in
Cd with norms prescribed by α; in these cases, it is natural to consider minimizers of the frame
potential within this class, since the eigenvalues of the frame operator of such minimizers have
minimal spread (thus, inducing more stable linear reconstruction processes). These considerations
lead to the study of optimal designs with prescribed structure. In [9], the authors compute the
structure of such minimizers and show it resembles that of tight frames.

It is worth pointing out that there are other measures of the spread of the spectra of frame operators
(e.g. the mean squared error (MSE)). It turns out that both the MSE and the FP lie within the
class of convex potentials introduced in [24]. It is shown in [24] that there are solutions Fop to the
frame design problem which are structural in the sense that they are minimizers of every convex
potential (e.g. MSE and FP) among frames with squared norms prescribed by α. A fundamental
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tool to show the existence of such structural optimal frame designs is the so-called majorization in
Rn, which is a partial order used in matrix analysis (see [5]).

Motivated originally in the study of optimal finitely generated shift invariant systems with norm
restrictions, for a finitely generated shift invariant subspace of L2(Rd) (see [2, Section 4.2.] and
also [3]), in the present paper we consider extensions of the (classical) frame design problems as
follows: given a finite sequence (of dimensions) d = (dj)j∈Im ∈ Nm and a sequence (of weights)
α = (αi)i∈In ∈ Rn>0, we consider the set D(α , d) of (α , d)-designs. i.e. m-tuples Φ = (Fj)j∈Im
such that each Fj = {fij}i∈In is a finite sequence in Cdj , and∑

j∈Im

‖fij‖2 = αi for i ∈ In . (4)

Notice that the restrictions on the norms above involve vectors in the (possibly different) spaces
fij ∈ Cdj for j ∈ Im. The (α , d)-designs appear as the discretizations in the context of finitely
generated shift invariant systems (see [2]). On the other hand, as in the case of frames with
prescribed norms, (α , d)-designs can be considered as encoding-decoding schemes to be applied by
a multitasking device with some sort of energy restriction (e.g. due to isolation, or devices that
are far from energy networks); in case Fj is a frame for Cdj for j ∈ Im, then Φ = (Fj)j∈Im induces
linear schemes in the spaces (Cdj )j∈Im that run in parallel. In this case, we want to control the
overall energy needed (in each step of the encoding-decoding scheme) to apply simultaneously the
m linear schemes, through the restrictions in Eq.(4).

It is natural to consider those (α , d)-designs that give rise to the more stable multitasking processes.
In order the measure the overall stability of the family Φ = (Fj)j∈Im we can consider the joint frame
potential of Φ or the joint MSE of Φ given by

FP (Φ) =
∑
j∈Im

FP (Fj) , MSE(Φ) =
∑
j∈Im

MSE(Fj) respectively .

More generally, given a convex function ϕ : [0,∞)→ [0,∞) we introduce the joint convex potential
Pϕ(Φ) induced by ϕ (see Section 3.1 for details); this family of convex potentials (that contains
the joint frame potential and joint MSE) provides natural measures of numerical stability of the
family Φ = (Fj)j∈Im . We remark that they are the same potentials considered in the previously
mentioned context of finitely generated shift invariant systems in [2].

Given (α , d) as above, in this work we characterize the sequences of positive operators Sj ∈
Mdj (C)+ for j ∈ Im, for which there exist (α , d)-designs Φ = (Fj)j∈Im such that SFj = Sj , for
j ∈ Im. Our characterization is obtained in terms of the spectra of the operators Sj and majorization
relations, and it extends the well known solution of the classical frame design problem.

Then, we construct (α , d)-designs Φop that are optimal in D(α , d); in this setting, optimality is
measured in terms of joint convex potentials, as discussed above. The kernel of this problem is the
computation of the optimal spectral structure among sequences in D(α , d).

We point out that our approach to these problems is constructive; indeed, we describe a finite
step algorithm that produces designs Φ ∈ D(α , d) with prescribed spectral structure and optimal
designs Φop ∈ D(α , d) as above. Moreover, we include several numerical examples of optimal
(α , d)-designs obtained with the implementation of our algorithm in MATLAB. We further obtain
the uniqueness of the spectral structure of optimal (α , d)-designs. Moreover, we show that the
optimal spectral structure does not depend on the particular choice of the convex potential. As a
consequence, our results generalize the results in [4, 9, 24].

The existence of optimal (α , d)-designs as above settles in the affirmative a conjecture in [2, Sec-
tion 4.2.] regarding the existence of optimal finitely generated shift invariant systems (for a finitely
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generated shift invariant subspace of L2(Rd)) with norm restrictions, with respect to convex po-
tentials (see also [3]). On the other hand, our results have potential applications in comunication
theory, e.g. in the study of the capacity of Multiple Input Multiple Output (MIMO) Additive White
Gaussian Noise (AWGN) channels (see [19]).

The paper is organized as follows. In Section 2 we recall the notion of majorization together with
some fundamental results about this pre-order. We also include some notions and results related
with finite frame theory and convex potentials. In Section 3 we formalize the notion of (α , d)-
designs and describe in detail our main goals. In Section 3.2 we state and prove our main results,
that include an effective characterization of the existence of (α, d)-designs with prescribed spectral
structure as well as the existence of (universal) optimal designs. The paper ends with Section 4,
in which we present some general comments about the problems we studied, and several numerical
examples that exhibit the properties of the optimal (α , d)-designs computed with a finite step
algorithm.

2 Preliminaries

In this section we introduce the notation, terminology and results from matrix analysis and frame
theory that we will use throughout the paper. General references for these results are the texts [5]
and [7, 12, 13]. In what follows we adopt the following

Notation and terminology. We let Mk,d(S) be the set of k × d matrices with coefficients in
S ⊂ C and write Md,d(C) = Md(C) for the algebra of d × d complex matrices. We denote by
H(d) ⊂ Md(C) the real subspace of selfadjoint matrices and by Md(C)+ ⊂ H(d) the cone of
positive semidefinite matrices. We let U(d) ⊂ Md(C) denote the group of unitary matrices. For
d ∈ N, let Id = {1, . . . , d} and let 1d = (1)i∈Id ∈ Rd be the vector with all its entries equal to 1.

Given x = (xi)i∈Id ∈ Rd we denote by x↓ = (x↓i )i∈Id (respectively x↑ = (x↑i )i∈Id) the vector obtained
by rearranging the entries of x in non-increasing (respectively non-decreasing) order. We denote
by (Rd)↓ = {x↓ : x ∈ Rd}, (Rd≥0)↓ = {x↓ : x ∈ Rd≥0} and analogously for (Rd)↑ and (Rd≥0)↑.

Given a matrix A ∈ H(d) we denote by λ(A) = λ↓(A) = (λi(A))i∈Id ∈ (Rd)↓ the eigenvalues of
A counting multiplicities and arranged in non-increasing order, and by λ↑(A) the same vector but
ordered in non-decreasing order. If x, y ∈ Cd we denote by x ⊗ y ∈ Md(C) the rank-one matrix
given by (x⊗ y) z = 〈z , y〉 x, for z ∈ Cd.

2.1 Majorization

Next we recall the notion of majorization between vectors, that will play a central role throughout
our work.

Definition 2.1. 1. Let x, y ∈ Rd. We say that x is submajorized by y, and write x ≺w y, if∑
i∈Ij

x↓i ≤
∑
i∈Ij

y↓i for every 1 ≤ j ≤ d .

If x ≺w y and trx =
∑
i∈Id

xi =
∑
i∈Id

yi = tr y, then x is majorized by y, and write x ≺ y.

2. Let x ∈ Rn≥0 and y ∈ Rd≥0 with n > d. Then we define the notions of ≺ and ≺w between the
vectors x and y (of different size) by changing y by y ⊕ 0n−d := (y , 0 , . . . , 0) ∈ Rn. Then

x ≺ y if
∑
i∈In

xi =
∑
i∈Id

yi and
∑
i∈Ij

x↓i ≤
∑
i∈Ij

y↓i for 1 ≤ j ≤ d . (5)

and similarly one defines y ≺ x. 4
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It is well known that majorization is related with the class DS(d) of doubly stochastic matrices
i.e., formed by D ∈Md(C) with real non-negative entries such that each row sum and column sum
equals one.

Theorem 2.2 (See [5]). Let x, y ∈ Rd. Then

x ≺ y ⇐⇒ there exists D ∈ DS(d) such that x = Dy . �

Remark 2.3. Let x, y ∈ Rd be such that x ≺ y. Using [5, Theorem II.1.10] we get a finite step
algorithm (based on the so-called T-transformations) that constructs D ∈ DS(d) such that x = Dy.

Majorization is intimately related with tracial inequalities of convex functions. The following result
summarizes these relations (see for example [5]): 4

Theorem 2.4. Let x, y ∈ Rd. If ϕ : I → R is a convex function defined on an interval I ⊆ R such
that x, y ∈ Id then:

1. If x ≺ y, then trϕ(x)
def
=

∑
i∈Id

ϕ(xi) ≤
∑
i∈Id

ϕ(yi) = trϕ(y) .

2. If only x ≺w y, but ϕ is an increasing convex function, then still trϕ(x) ≤ trϕ(y).

3. If x ≺ y and ϕ is a strictly convex function such that tr ϕ(x) = tr ϕ(y) then, x↓ = y↓.

2.2 Frames and convex potentials

In what follows we adopt the following

Notation and terminology: let F = {fi}i∈In be a finite sequence in Cd. Then,

1. TF ∈Md,n(C) is the synthesis operator given by TF x =
∑

i∈In xi fi, for x = (xi)i∈In ∈ Cn.

2. T ∗F ∈Mn,d(C) is the analysis operator and it is given by T ∗F f = (〈f, fi〉)i∈In , for f ∈ Cd.

3. SF ∈Md(C)+ denotes the frame operator of F and it is given by SF = TF T
∗
F . Hence,

SF f =
∑
i∈In

〈f, fi〉fi =
∑
i∈In

(fi ⊗ fi) f for f ∈ Cd .

4. We say that F is a frame for Cd if it spans Cd; equivalently, F is a frame for Cd if SF is a
positive invertible operator acting on Cd.

In several applied situations it is desired to construct a finite sequence G = {gi}i∈In ∈ (Cd)n, in
such a way that the spectra of the frame operator of G is given by some λ ∈ (Rd≥0)↓ and the squared
norms of the frame elements are prescribed by a sequence of positive numbers α = (αi)i∈In . This
is known as the (classical) frame design problem and it has been studied by several research groups
(see for example [1, 8, 10, 11, 14, 15, 16, 21]). The following result characterizes the existence of
such frame designs in terms of majorization relations.

Theorem 2.5 ([1, 23]). Let λ ∈ Rd≥0 and consider a = (ai)i∈In ∈ (Rn>0)↓. Then there exists a

sequence G = {gi}i∈In in Cd such that λ(SG) = λ↓ and ‖gi‖2 = ai for i ∈ In if and only if a ≺ λ. �

The previous result shows the flexibility of structured frame designs, which is important in applied
situations. Also, numerical stability of the encoding-decoding scheme induced by a frame plays
a role in applications; hence, a central problem in this area is to described the structured frame
designs that maximize the stability of their encoding-decoding scheme. One of the most important
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(scalar) measures of stability is the so-called frame potential introduced by Benedetto and Fickus
in [4] given by

FP (F) =
∑
i , j∈In

|〈fi , fj〉|2 = tr(S2
F ) for F = {fi}i∈In ∈ (Cd)n .

Benedetto and Fickus have shown that (under certain normalization conditions) minimizers of
the frame potential induce the most stable encoding-decoding schemes. More generally, we can
measure the stability of the scheme induced by the sequence F = {fi}i∈In ∈ (Cd)n in terms of
convex potentials. In order to introduce these potentials we consider the sets

Conv(R≥0) = {ϕ : R≥0 → R≥0 : ϕ is a convex function }

and Convs(R≥0) = {ϕ ∈ Conv(R≥0) : ϕ is strictly convex }.

Definition 2.6. Following [24] we consider the convex potential Pϕ associated to ϕ ∈ Conv(R≥0),
given by

Pϕ(F) = tr ϕ(SF ) =
∑

i∈Id ϕ(λi(SF ) ) for F = {fi}i∈In ∈ (Cd)n ,

where the matrix ϕ(SF ) is defined by means of the usual functional calculus. 4

Convex potentials allow us to model several well known measures of stability considered in frame
theory. For example, in case ϕ(x) = x2 for x ∈ R≥0 then Pϕ is the Benedetto-Fickus frame
potential; in case ϕ(x) = x−1 for x ∈ R>0 then Pϕ is known as the mean squared error (MSE).

Going back to the problem of stable designs, it is worth pointing out the existence of structured
designs that are optimal with respect to every convex potential. Indeed, given α = (αi)i∈In ∈ Rn≥0

and d ∈ N with d ≤ n, the α-torus is the set:

Bα , d = {F = {fi}i∈In ∈ (Cd)n : ‖fi‖2 = αi , i ∈ In} . (6)

We endow Bα , d (which is a product space) with the product metric. The structure of (local)
minimizers of convex potentials in Bα , d has been extensively studied. The first results were obtained
for the frame potential in [4] and in a more general context in [9]. The case of general convex
potentials was studied in [17, 18, 22, 23, 24, 25, 26, 27] (in some cases in the more general setting
of frame completion problems with prescribed norms).

3 On (α , d)-design problems

We begin this section by introducing notation and terminology that allow us to model the (α , d)-
design problems, including the optimal design problem with prescribed weights. Then, we state
and prove our main results for (α , d)-designs.

3.1 Modeling the problem

Now we generalize the α-torus to the multi-frames:

Definition 3.1. Let α = (αi)i∈In ∈ Rn>0 and d = (dj)j∈Im ∈ (Nm)↓ be such that d1 ≤ n.

1. An (α , d)-design is an m-tuple

Φ = (Fj)j∈Im , where Fj = {fij}i∈In ∈ (Cdj )n for j ∈ Im

and such that
∑
j∈Im
‖fij‖2 = αi, for i ∈ In .
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2. We denote by D(α , d) the set of all (α , d)-designs. We point out that (in order to simplify
our description of the model) we consider (α , d)-designs in a broad sense; namely, if Φ =
(Fj)j∈Im ∈ D(α , d) then Fj is not necessarily a frame for Cdj , for j ∈ Im .

3. In order to compare the overall stability of the linear encoding-decoding schemes induced by
an (α , d)-design we introduce the following potentials: Given ϕ ∈ Conv(R≥0) we consider
the joint potential induced by ϕ on Φ = (Fj)j∈Im ∈ D(α , d) given by

Pϕ(Φ) =
∑
j∈Im

Pϕ(Fj) =
∑
j∈Im

tr ϕ(SFj ) =
∑
j∈Im

∑
i∈Idj

ϕ(λi(SFj ) ) . 4

Consider the notation and terminology of Definition 3.1. We can now describe the main problems
that we consider in this work as follows:

P1. Determine necessary and sufficient conditions for the existence of (α , d)-designs with pre-
scribed spectral structure and describe algorithmic procedures to construct such designs, in
case they exist.

P2. Given ϕ ∈ Conv(R≥0) determine the existence and structure of those Φϕ ∈ D(α , d) that
minimize the joint convex potential Pϕ in D(α , d), that is

Pϕ(Φϕ) = min{Pϕ(Φ) : Φ ∈ D(α , d)} . (7)

In this case we say that Φϕ is an Pϕ-optimal (α , d)-design. Determine whether these Pϕ-
optimal (α , d)-designs depend on the particular choice of Pϕ, for strictly convex functions
ϕ ∈ Convs(R≥0).

P3. Describe an algorithmic procedure that computes Pϕ-optimal (α , d)-designs.

P4. Characterize the Pϕ-optimal (α , d)-designs in terms of some structural properties.

We will solve problems P1.-P4. In particular, we will show that if Φϕ = (Fj)j∈Im is an Pϕ-optimal
(α , d)-design for ϕ ∈ Convs(R≥0) then, Fj is a frame for Cdj for each j ∈ Im (see Section 3.2).
Moreover, we will show that Pϕ-optimal (α , d)-designs do not depend on the particular choice of
Pϕ, for strictly convex functions ϕ ∈ Convs(R≥0).

3.2 Main results

In this section we state and prove our main results; these include the existence of (α , d)-designs
with prescribed spectral structure, and designs with some special structure which turn out to be
optimal designs in the sense of Problem (P2). We further show the uniqueness of the spectral
structure of optimal (α , d)-designs.

Our first main result characterizes the existence of (α , d)-designs with prescribed spectral structure.
We formalize problem P1. in terms of the following

Definition 3.2. Let d = (dj)j∈Im ∈ (Nm)↓ and α = (αi)i∈In ∈ (Rn≥0)↓ be such that d1 ≤ n. Let

µj = (µi,j)i∈Idj ∈ (Rdj≥0)↓ for j ∈ Im and set M := {µj}j∈Im ∈
∏
j∈Im

(Rdj≥0)↓ .

We say that the pair (α ,M) is admissible if there exists Φ = (Fj)j∈Im ∈ D(α , d) such that

λ(SFj ) = µj for every j ∈ Im .

In this case we denote M =MΦ . 4
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In order to obtain an effective characterization of admissibility, we introduce the notion of (α , m)-
weight partition matrix.

Remark 3.3. Let d = (dj)j∈Im ∈ (Nm)↓ and α = (αi)i∈In ∈ (Rn≥0)↓ be such that d1 ≤ n.

1. We consider the set of (α , m)-weight partitions given by

Pα ,m = {A = (aij)i∈In, j∈Im ∈Mn,m(C) : aij ≥ 0 and
∑
j∈Im

aij = αi for i ∈ In } .

2. A sequence (Fj)j∈Im ∈ D(α , d) ⇐⇒ its matrix of weights

A =
{
‖fij‖2

}
i∈In j∈Im

∈ Pα ,m .

Lemma 3.4 (A first characterization of admissible pairs). Consider a pair (α ,M) as in Definition
3.2 above. Then the following conditions are equivalent.

1. The pair (α ,M) is admissible.

2. There exists a matrix A ∈ Pα ,m such that

cj(A) ≺ µj for every j ∈ Im , (8)

where cj(A) ∈ Rn≥0 denotes the j-th column of A.

In particular, the set of sequences M such that (α ,M) is admissible is convex in
∏
j∈Im

Rdj .

Proof. If the pair (α ,M) is admissible, let (Fj)j∈Im ∈ D(α , d) be such that λ(SFj ) = µj , for
j ∈ Im. Let A ∈ Pα ,m be given by cj(A) = (‖fij‖2)i∈In , where Fj = {fij}i∈In , for j ∈ Im. Then,
by the Theorem 2.5, cj(A) ≺ µj for j ∈ Im.

Conversely, assume that there exists A ∈ Pα,m with cj(A) ≺ µj , for j ∈ Im. Then, again by
Theorem 2.5, for each j ∈ Im there exists Fj = {fij}i∈In ∈ (Cdj )n such that cj(A) = (‖fij‖2)i∈In
and λ(SFj ) = µj . Hence, (Fj)j∈Im ∈ D(α , d) which shows that the pair (α ,M) is admissible. �

The following result provides an effective method to determine whether a given pair is admissible
or not.

Theorem 3.5. Let d = (dj)j∈Im ∈ (Nm)↓ and α = (αi)i∈In ∈ (Rn≥0)↓ be such that d1 ≤ n. Given a

sequence M = {µj}j∈Im ∈
∏
j∈Im (Rdj≥0)↓, set

σM :=
∑
j∈Im

(µj ⊕ 0d1−dj ) ∈ (Rd1≥0)↓ . (9)

Then, the pair (α ,M) is admissible if and only if α ≺ σM.

Proof. Assume first that the pair (α ,M) is admissible. Then, by Lemma 3.4, there exists A ∈ Pα ,m
such that cj(A) = (aij)i∈In ≺ µj = (µi,j)i∈Idj ∈ (Rdj≥0)↓, for j ∈ Im . Fix an index j ∈ Im . Note

that n ≥ d1 = min{n , d1}. Hence, by hypothesis, for k ∈ Id1 we have that

k∑
i=1

aij ≤
k∑
i=1

(cj(A)↓)i ≤
min{k , dj}∑

i=1
µi,j =⇒

k∑
i=1

αi =
∑
j∈Im

k∑
i=1

aij ≤
∑
j∈Im

min{k , dj}∑
i=1

µi,j . (10)
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Notice that

σM = (σi)i∈Id1 =
∑
j∈Im

(µj ⊕ 0d1−dj ) =⇒
∑
j∈Im

min{k , dj}∑
i=1

µi,j =

k∑
i=1

σi , k ∈ Id1 .

Then, Eq. (10) shows that α ≺ σM (the equality tr σM = tr α is clear).

For the converse, in order to show that (α ,M) is admissible, we prove that there exists A ∈ Pα,m
such that cj(A) ≺ µj , for j ∈ Im (see Lemma 3.4). Indeed, since α ≺ σM, by Theorem 2.2
there exists a doubly stochastic matrix D ∈ DS(n), such that D(σM ⊕ 0n−d1) = α. Consider
A ∈ Mn ,m(R≥0) determined by cj(A) = D(µj ⊕ 0n−dj ), for j ∈ Im. Notice that in this case by
construction, cj(A) ≺ µj ⊕ 0n−dj =⇒ cj(A) ≺ µj for j ∈ Im and

A1m =
∑
j∈Im

cj(A) =
∑
j∈Im

D(µj ⊕ 0n−dj ) = D(σM ⊕ 0n−d1) = α .

Thus, A ∈ Pα,m and the pair (α ,M) is admissible.

Remark 3.6 (Finite-step algorithm for constructing (α , d)-designs with prescribed spectral struc-
ture). With the notation of Theorem 3.5, assume that α ≺ σM . Hence, in this case the pair
(α ,M) is admissible. By Remark 2.3, there is a finite step algorithm that constructs D ∈ DS(n)
such that α = D (σM⊕0n−d1). From the previous proof we see that if we consider A ∈Mn ,m(R≥0)
determined by cj(A) = D(µj ⊕ 0n−dj ), for j ∈ Im, then A ∈ Pα,m. Moreover, by construction we
have that cj(A) ≺ µj ⊕ 0n−dj ( =⇒ cj(A) ≺ µj) for j ∈ Im .

We can now apply finite step algorithms (such as the one-sided Bendel-Mickey algorithm, see
[10, 11, 14, 16]) and obtain Fj = {fij}i∈In ∈ (Cdj )n such that (‖fij‖2)i∈In = cj(A) and such that
λ(SFj ) = µj for j ∈ Im. Therefore, we get Φ = (Fj)j∈Im ∈ D(α , d) such that M = MΦ in a
constructive way. 4

The following definition introduces an m-tuple of vectors (of eigenvalues), associated to every
(α , d)-design, and a large vector constructed from the juxtaposition of the elements of this set.
These are going to be useful in proving the existence of optimal designs in terms of majorization
relations, related with problem P2 above. (see Theorem 3.14 below).

Definition 3.7. Let d = (dj)j∈Im ∈ (Nm)↓ and α = (αi)i∈In ∈ (Rn≥0)↓ be such that d1 ≤ n. Let
Φ = (Fj)j∈Im ∈ D(α , d) and let Sj = SFj ∈Mdj (C)+ denote the frame operators of Fj , for j ∈ Im.
We define

MΦ = {λ(Sj)}j∈Im ∈
∏
j∈Im

(Rdj≥0)↓ and ΛΦ =
(
λ(S1) , . . . , λ(Sm)

)
∈ Rd≥0 , (11)

where d = tr d =
∑
j∈Im

dj and each λ(Sj) ∈ (Rdj≥0)↓ is the vector of eigenvalues of Sj , for j ∈ Im.

Recall that given a generic sequenceM∈
∏
j∈Im (Rdj≥0)↓, we say that the pair (α ,M) is admissible

if there exists Φ ∈ D(α , d) such that M = MΦ , which in turns is equivalent to σM ≺ α. We
also remark that ΛΦ is not an ordered vector. We shall use the specific order of its entries given in
Eq.(11) in order to preserve the convexity properties given by Lemma 3.4. 4

Remark 3.8. Consider the notation in Definition 3.7. If ϕ ∈ Conv(R≥0) and Pϕ denotes the joint
convex potential induced by ϕ (see Definition 2.6) then,

Pϕ(Φ) =
∑
j∈Im

Pϕ(Fj) =
∑
j∈Im

tr(ϕ(λ(Sj))) =
∑
`∈I|d|

ϕ((ΛΦ)`) =: tr(ϕ(ΛΦ)) . (12)

9



Therefore, by Theorem 2.4 and Eq. (12), the existence of an (optimal) (α , d)-design satisfying Eq.
(7) for every ϕ ∈ Conv(R≥0) is equivalent to the existence of Ψ = (Gj)j∈Im ∈ D(α , d) such that

ΛΨ ≺ ΛΦ for every Φ = (Fj)j∈Im ∈ D(α , d) . 4

Remark 3.9. Consider the notation in Definition 3.7. In the rest of this section we shall show the
existence of (α , d)-designs Φop = (Fop

j )j∈Im that are optimal with respect to every joint convex
potential (see Theorem 3.15). It turns out that these optimal designs have some special features.

In this remark we describe the special structure of the associated sequenceMΦop (and introduce the
necessary notation to describe this structure) in order to make more intelligible the next statements,
which are intended to construct admissible pairs with this (optimal) structure. Let

µop
j = (µop

ij )i∈Idj = λ(SFop
j

) ∈ (Rdj≥0)↓ for every j ∈ Im .

denote the eigenvalues of the frame operators of Fop
j . Then they must have the following structure:

Each vector µop
j ∈ (Rdj≥0)↓ is a (truncated) copy of the first vector µop

1 ∈ (Rd1≥0)↓, i.e.

µop
ij = µop

i1 for every i ∈ Ij and every j ∈ Im . (13)

In detail, let σ(SFop
1

) = {γ1, . . . , γp}, with γ1 > . . . > γp ≥ 0. Then there exist indexes g0 = 0 <
g1 < . . . < gp = d1 (that we shall construct looking for admissibility) such that

{i ∈ Id1 : µi1 = γ`} = {i : g`−1 + 1 ≤ i ≤ g`} for ` ∈ Ip .

We define the following constants, which only depend on the data d = (dj)j∈Im ∈ (Nm)↓:

hi := #{j ∈ Im : dj ≥ i} for i ∈ Id1 . (14)

Notice that,

h := (hi)i∈Id1 =
m∑
i=1

1di ⊕ 0d1−di . (15)

Using the relations in Eq. (13) we get that

Λ↓Φop = (γ` 1r`)`∈Ip where r` =

g∑̀
i=g`−1+1

hi , ` ∈ Ip . (16)

We give an example of this situation for m = 4 and d = (6, 5, 4, 2) in Figure 1.

Figure 1: A graphic example of the structure of (µop
j )j∈I4 .
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For example, if we assume that

µop
11 = µop

21 = µop
31 = γ1 , µop

41 = µop
51 = γ2 and µop

61 = γ3 with γ1 > γ2 > γ3

then we have: g0 = 0, g1 = 3, g2 = 5 and hence, r1 = 11, r2 = 5, r3 = 1; therefore, we compute
Λ↓Φop = (γ1 111 , γ2 15 , γ3 11) ∈ R17

>0 in this case. 4

In order to obtain the our next main result, we consider the following

Notation 3.10. Let d = (dj)j∈Im ∈ (Nm)↓ and α = (αi)i∈In ∈ (Rn≥0)↓ be such that d1 ≤ n. Let
h = (hi)i∈Id1 be defined as in Eq. (14). For 1 ≤ s ≤ t ≤ d1, denote by Ps,t and Qt the ratios

Ps , t =

t∑
i=s

αi

t∑
i=s

hi

and Qt =

n∑
i=t

αi

d1∑
i=t

hi

. (17)

The following result is a technical construction that we will use to build optimal (α , d)-designs
with a spectral picture as in Remark 3.9.

Theorem 3.11. Let d = (dj)j∈Im ∈ (Nm)↓ and α = (αi)i∈In ∈ (Rn≥0)↓ be such that d1 ≤ n.
Consider the vector h = (hi)i∈Id1 as in Eq. (15). Then, there exist

p ∈ Id1 and g1, . . . , gp ∈ N with 0 = g0 < g1 < · · · < gp = d1

such that, if we define γi = Pgi−1+1 , gi, for i ∈ Ip−1 and γp = Qgp−1+1 according with Eq. (17), then

1. γ1 > . . . > γp > 0;

2. They satisfy the following “block” majorizations:

(γi hk)
gi
k=gi−1+1 � (αi)

gi
k=gi−1+1 for i ∈ Ip−1 and

(γp hk)
d1
k=gp−1+1 � (αi)

n
k=gp−1+1 .

(18)

In particular,
(γ1 1g1−g0 , γ2 1g2−g1 , . . . , γp 1gp−gp−1) ◦ h � α , (19)

where ◦ denotes the entry-wise product.

Proof. First note that d1 clearly satisfies Qd1 ≥ Pd1 , d1 . Then we can define the index

s∗ = min{j ∈ Id1 : Qj ≥ Pj , k for every j ≤ k ≤ d1} (20)

We denote c = Qs∗ . Therefore, by Eq. (17),

c

k∑
i=s∗

hi ≥
k∑

i=s∗

αi for every s∗ ≤ k ≤ d1 .

In other words, (αk)
n
k=s∗ ≺ (hk c)

d1
k=s∗ . If s∗ = 1 then we set p = 1, g0 = 0, g1 = d1 and γ1 = c > 0.

Then items 1. and 2. of the statement are satisfied in this case.

Otherwise, s∗ > 1 and we proceed to find the step g1. First, we define γ1:

γ1 = max{P1,k : 1 ≤ k ≤ s∗ − 1} ,
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and then we define g1 as:
g1 = max{j ∈ Is∗−1 : P1,j = γ1} .

By construction, we obtain that
(γ1hi)

g1
i=1 � (αi)

g1
i=1 .

Now, if g1 = s∗ − 1 then we set p = 2, g0 = 0, g2 = d1 and γ2 = c > 0.

Otherwise, g1 < s∗ − 1 (and having the index s∗ fixed), we define g2 in a similar way:

γ2 = max{Pg1+1,k : g1 < k ≤ s∗ − 1}

and then,
g2 = max{g1 + 1 ≤ j ≤ s∗ − 1 : Pg1+1,j = γ2} .

Again, by construction we have that

(γ2hi)
g2
i=g1+1 � (αi)

g2
i=g1+1 .

We claim that γ1 > γ2. Indeed, suppose that Pg1+1,g2 = γ2 ≥ γ1 = P1,g1 . Then,

P1,g2 − P1,g1 =

∑g1
i=1 αi +

∑g2
i=g1+1 αi∑g1

i=1 hi +
∑g2

i=g1+1 hi
−
∑g1

i=1 αi∑g1
i=1 hi

=

=
(
∑g1

i=1 hi)
(∑g2

i=g1+1 αi

)
−
(∑g2

i=g1+1 hi

)
(
∑g1

i=1 αi)∑g1
i=1 hi

(∑g1
i=1 hi +

∑g2
i=g1+1 hi

)
=

(
∑g1

i=1 hi)
(∑g2

i=g1+1 hi

)
(γ2 − γ1)∑g1

i=1 hi

(∑g1
i=1 hi +

∑g2
i=g1+1 hi

) ≥ 0 .

Hence, P1,g2 = P1,g1 = γ1 which contradicts the definition of g1, so the claim is proved.

We can continue inductively with this process, that is, once we find gk−1 < s∗− 1 we compute first
γk as the maximum among Pgk−1+1,l, with gk−1 + 1 ≤ l ≤ s∗ − 1 and then define gk ≤ s∗ − 1 as
the maximum index gk−1 + 1 ≤ l ≤ s∗ − 1 such that Pgk−1+1,l = γk. As before, this construction
guarantees the corresponding block majorization.

Notice that in the last step, corresponding to the p− 1 iteration of the process, we necessarily have
gp−1 = s∗ − 1. Define γp = Qgp−1+1 = c > 0 and gp = d1.

By construction, and the previous remarks we have that γ1 > γ2 > . . . > γp−1 and item 18 is
satisfied. It remains to prove that γp−1 > γp .

Suppose, on the contrary, that γp ≥ γp−1. Consider c = Qgp−2+1. Clearly, c is a convex combination
of γp and γp−1, say c = tγp−1 + (1− t)γp . In particular, γp−1 ≤ c ≤ γp . Therefore, we have that

Pgp−2+1,l ≤ γp−1 ≤ c , for gp−2 + 1 ≤ l ≤ gp−1 (21)

Let gp−1 + 1 ≤ l < d1, and denote by A =
∑gp−1

i=gp−2+1 hi, B =
∑l

i=gp−1+1 hi and C =
∑d1

i=l+1 hi.

Notice that, with this notation, in the convex combination that generates c, we have t = A
A+B+C .

Then, since γp−1 ≤ γp ,

A

A+B
γp−1 +

B

A+B
γp ≤

A

A+B + C
γp−1 +

B + C

A+B + C
γp

12



Hence, since by definition of γp we have Pgp−1+1 , l ≤ γp , we obtain

A

A+B
γp−1 +

B

A+B
Pgp−1+1 , l ≤

A

A+B + C
γp−1 +

B + C

A+B + C
γp (22)

since A
A+B γp−1 + B

A+B Pgp−1+1 , l = Pgp−2+1 , l and A
A+B+C γp−1 + B+C

A+B+C γp = c, we deduce

Pgp−2+1 , l ≤ c , for gp−1 + 1 ≤ l ≤ d1 (23)

Therefore, Eqs. (21), (23) imply that, for j = gp−2 + 1 < s∗ = gp−1 + 1,

Pj , l ≤ Qj , for l = j, . . . , d1

which contradicts the construction of s∗. So we can conclude that γp−1 > γp and the theorem is
proved.

Next, we introduce the following vectors associated to a pair (α , d).

Definition 3.12. Let d = (dj)j∈Im ∈ (Nm)↓ and α = (αi)i∈In ∈ (Rn≥0)↓ be such that d1 ≤ n. Let
0 = g0 < · · · < gp = d1 and γ1 > · · · > γp > 0 be as in Theorem 3.11. Then, we set:

1. µop
1 = (µop

i 1)i∈Id1 = (γk1gk−gk−1
)pk=1 ∈ (Rd1>0)↓;

2. For j > 1 set µop
j = (µop

i j )i∈Idj ∈ (Rdj>0)↓ such that µop
i j = µop

i 1 for i ∈ Idj .

3. Denote Mop = {µop
j }j∈Im ∈

∏
j∈Im (Rdj>0)↓.

At this point, the vector µop
1 (and so the sequence Mop) depends on the choice of the indexes

0 = g0 < · · · < gp = d1 from Theorem 3.11. Nevertheless, we shall see now that, when rearranged,
Mop has minimality properties for majorization, so that they are univocally determined. 4

Remark 3.13. Let γ1 ≥ . . . ≥ γp ∈ R and consider λ = (γ1 1r1 , . . . , γp 1rp) = (λi)i∈Ir ∈ (Rr)↓,
where r

def
=
∑

i∈Ip ri . Set sk =
∑

j∈Ik rj , for k ∈ Ip . Given β ∈ (Rr)↓ such that tr(λ) = tr(β) then

λ ≺ β ⇐⇒
∑
i∈Ik

γi ri ≤
∑
j∈Isk

βj , for k ∈ Ip−1 . (24)

Indeed, if the right conditions hold and there exists 0 ≤ k ≤ p− 1 with sk < t < sk+1 (s0 = 0) and
such that

∑
j∈It

λj >
∑
j∈It

βj , it is easy to see that

t∑
j=sk+1

βj <

t∑
j=sk+1

λj = (t− sk) γk+1 =⇒ βt < γk+1 =⇒
∑

j∈Isk+1

βj <
∑
i∈Ik+1

γi ri ,

which contradicts our assumption (24). Therefore λ ≺ β. 4

We can now state our second main result.

Theorem 3.14. Let d = (dj)j∈Im ∈ (Nm)↓ and α = (αi)i∈In ∈ (Rn≥0)↓ be such that d1 ≤ n.

1. If we let Mop be as in Definition 3.12 then, (α ,Mop) is admissible. In particular, there
exists Φop = (Fop

j )j∈Im ∈ D(α , d) such that Mop =MΦop .

2. If Φ = (Fj)j∈Im ∈ D(α , d), then
ΛΦop ≺ ΛΦ ,

where ΛΦop , ΛΦ ∈ Rd≥0 are as in Definition 3.7.
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Proof. 1. By Definition 3.12, each vector µop
i ⊕ 0d1−di = µop

1 ◦
(
1di ⊕ 0d1−di

)
. Then

σMop =
∑
i∈Im

(µop
i ⊕ 0d1−di) = µop

1 ◦
m∑
i=1

(
1di ⊕ 0d1−di

) (15)
= µop

1 ◦ h ,

using the vector h = (hi)i∈Id1 defined from d as in Eqs. (14) and (15). Therefore, by Eq. (19) in
Theorem 3.11, σMop � α, so the statement follows from Theorem 3.5.

2. Let Φ = (Fj)j∈Im ∈ D(α , d) be such that Fj = {fij}i∈In , for j ∈ Im. Then∑
j∈Im

‖fij‖2 = αi for i ∈ In . (25)

On the other hand, if we denote λij = λi(SFj ) for j ∈ Im and i ∈ Idj , we also have that

(‖fij‖2)i∈In ≺ λ(SFj ) = (λij)i∈Idj for j ∈ Im .

Hence, we conclude that

∑
i∈Is

‖fij‖2 ≤
min{s , dj}∑

i=1

λij for s ∈ In and j ∈ Im . (26)

Let Φop ∈ D(α , d) be as in item 1. We also consider p ∈ N, g0 = 0 < g1 < . . . < gp = d1 and

γ1 > . . . > γp > 0 as in Theorem 3.11. Let r1, . . . , rp ∈ N such that Λ↓Φop = (γ` 1r`)`∈Ip as in Eq.
(16). By Remark 3.13, in order to prove that ΛΦop ≺ ΛΦ it is sufficient to check that∑

`∈Iq

r` γ` ≤
∑
i∈Isq

(ΛΦ)↓i , where sq =
∑
`∈Iq

r` , for every q ∈ Ip−1 , (27)

because tr ΛΦop = tr α = tr ΛΦ . Fix q ∈ Ip−1 and consider the set

Sq = {(i , j) : 1 ≤ i ≤ min{gq , dj} , j ∈ Im} .

It is easy to see, using Eq. (15) (or looking at the rows and columns of the Figure 1), that

#Sq =
∑
j∈Im

min{gq , dj}
(15)
=
∑
i∈Igq

hi =
∑
`∈Iq

 g∑̀
i=g`−1+1

hi

 (16)
=
∑
`∈Iq

r` = sq . (28)

Therefore we can show Eq. (27) as follows: For every q ∈ Ip−1 ,

∑
(i , j)∈Sq

λij =
∑
j∈Im

min{gq , dj}∑
i=1

λij
(26)

≥
∑
j∈Im

∑
i∈Igq

‖fij‖2
(25)
=
∑
i∈Igq

αi

=
∑
`∈Iq

 g∑̀
i=g`−1+1

αi

 (18)
=
∑
`∈Iq

 g∑̀
i=g`−1+1

γ` hi

 (16)
=
∑
`∈Iq

r` γ` .

Since
∑
i∈Isq

(ΛΦ)↓i
(28)

≥
∑

(i , j)∈Sq

λij , then Eq. (27) follows, and ΛΦop ≺ ΛΦ .

Theorem 3.14 together with the argument in Remark 3.8 allow us to obtain our third main result.

Theorem 3.15. Let d = (dj)j∈Im ∈ (Nm)↓ and α = (αi)i∈In ∈ (Rn≥0)↓ be such that d1 ≤ n.
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1. Let Φop = (Fop
j )j∈Im ∈ D(α , d) be as in Theorem 3.14. If ϕ ∈ Conv(R≥0) then we have that

Pϕ(Φop) ≤ Pϕ(Φ) for every Φ = (Fj)j∈Im ∈ D(α , d) . (29)

2. Moreover, if Φ = (Fj)j∈Im ∈ D(α , d) is such that there exists ϕ ∈ Convs(R≥0) for which Φ
is a global minimum for Pϕ (i.e., if equality holds in Eq. (29) ), then

ΛΦ = ΛΦop and MΦ =Mop , so that λ(SFj ) = µop
j ∈ (Rdj>0)↓ , (30)

and, in particular, Fj is a frame for Cdj for every j ∈ Im .

Proof. Let Φ = (Fj)j∈Im ∈ D(α , d), then by Theorem 3.14 we know that ΛΦop ≺ ΛΦ . Therefore,
by Remark 3.8 we get that for every ϕ ∈ Conv(R≥0),

Pϕ(Φop) =
∑
j∈Im

Pϕ(Fop
j ) = tr(ϕ(ΛΦop)) ≤ tr(ϕ(ΛΦ)) =

∑
j∈Im

Pϕ(Fj) = Pϕ(Φ) .

If ϕ ∈ Convs(R≥0) and Φ = (Fj)j∈Im ∈ D(α , d) is such that equality holds in Eq. (29), let

C = {ΛΨ : Ψ = (Gj)j∈Im ∈ D(α , d)} ⊆ Rd≥0 .

By Lemma 3.4 it follows that C is a convex set. We finally introduce Fϕ : C → R≥0, Fϕ(Λ) =

tr(ϕ(Λ)) for Λ ∈ C. Since ϕ is strictly convex we immediately see that F - which is defined on the
convex set C - is strictly convex as well. Hence, there exists a unique Λϕ ∈ C such that

F (Λϕ) = min{F (Λ) : Λ ∈ C} .

Notice that by hypothesis, we have that F (ΛΦ) = F (ΛΦop) = min{F (Λ) : Λ ∈ C} so then

(λ(SFj ))j∈Im = ΛΦ = Λϕ = ΛΦop = (λ(SFop
j

))j∈Im . �

Remark 3.16. As a consequence of Eq.’s (29) and (30), the sequence Mop of Definition 3.12 and
the indexes (gi)i∈Ip of Theorem 3.11 are univocally determined.

On the other hand, with the notation of Theorem 3.15, if we assume that m = 1, then the previous
theorem recovers the main results from [9, 24, 25, 26]. In this case, the optimal spectra µop is
obtained in terms of the water-filling construction. Hence, our results can be considered as a
multivariated extension of the water-filling construction (see [26]). 4

4 Final comments and examples

4.1 On the weight partitions

By Theorem 3.15 and Remark 3.16, the spectral structure of all (α , d)-designs that minimize a
strictly convex potential on D(α , d) is unique. It is natural to wonder whether the (α , m)-weight
partitions corresponding to such minimizers also coincide. It turns out that this is not the case, as
we shall see in the following example:

Let α = 16 ∈ (R6
>0)↓, m = 2 and let d = (4, 2) ∈ N2. In this case Mop is given by

µop
1 = 14 and µop

2 = 12 ,

since α = 16 ≺ (2 , 2 , 1 , 1) = σMop (so thatMop is (α , d)-admissible), and because the associated
vector Λop = (µop

1 , µop
2 ) = 16 is minimal for majorization. Let

A1 =

(
4

6
16 ,

2

6
16

)
∈ Pα , 2 ⊆M6 , 2(C) and A2 =

(
c1(A2) , c2(A2)

)
∈ Pα , 2
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where c1(A2) = (14 , 02) and c2(A2) = (04 , 12) . It is easy to see that both matrices satisfy Eq.
(8) in Lemma 3.4. Thus, we can construct Φ1 = (F1

1 , F1
2 ) ∈ D(α , d) with weight partition A1 ,

in such a way that F1
1 is a Parseval frame for C4 and F1

2 is a Parseval frame for C2 (both of 6

vectors). On the other hand, if we let {e(k)
` }`∈Ik denote the canonical basis of Ck for k ∈ N and let

Φ2 = (F2
1 , F2

2 ) ∈ D(α , d) with

F2
1 = {e(4)

1 , . . . , e
(4)
4 , 0, 0} ∈ (C4)6 and F2

2 = {0, 0, 0, 0, e(2)
1 , e

(2)
2 } ∈ (C2)6 ,

then Φ2 has weight partition A2 . Clearly MΦ1 = MΦ2 = Mop. That is, A1 and A2 are both
associated to optimal (α , d)-designs. Thus, weight partitions inducing optimal (α , d)-designs are
not unique. Note that the (α , d)-designs Φ1 and Φ2 are qualitatively different.

Remark 4.1. The fact that there are many (α , m)-partition matrices A ∈ Pα ,m that are associated
to minimizers, as in the previous example, shows that the construction of optimal (α , d)-designs
can not be reduced to a convex optimization problem in the space Pα ,m of (α , m)-weight partitions.

We remark that in a previous version of this paper we constructed an algorithm which produced
a particular matrix Aop ∈ Pα ,m associated to a minimizer. That is, once Aop was constructed we
considered the so-called water-filling of the columns cj(A

op) in dimension dj (see [27]), which lead
to the optimal spectra µop

j , for j ∈ Im .

Our new strategy, based on Theorem 3.5, allow us to compute directly the optimal spectra µop
j for

j ∈ Im (and to show the existence of (α , d)-designs with these spectra). Once the optimal spectra
are computed then, using Remark 3.6, we can compute several associated weight partitions that in
turn allow us to compute optimal (α , d)-designs in an effective way (see Section 4.3 below). This
new approach has decreased considerably the length of the exposition of our results herein. 4

4.2 A compact description of the problem

There is a reformulation of the problems of this paper in a more concise model. Let α and d be
as in Definition 3.1. Set d = tr d and assume that H = Cd =

⊕
j∈Im Hj for some subspaces with

dim Hj = dj , for j ∈ Im . Let us denote by Pj : H → Hj ⊆ H the corresponding projections.

Notice that a sequence G = {gi}i∈In ∈ Bα , d ⊆ Hn ⇐⇒ the sequence Φ = (Fj)j∈Im determined by
Fj = Pj(G) (i.e. fij = Pj(gi) ∈ Hj ∼= Cdj , i ∈ In) for j ∈ Im, satisfies that Φ ∈ D(α , d).

Consider the pinching map Cd : Md(C) → Md(C) given by Cd(A) =
∑

j∈Im Pj APj , for every
A ∈Md(C). Then, for each ϕ ∈ Conv(R≥0) we can define a d-pinched potential

Pϕ ,d(G)
def
= trϕ(Cd(SG) ) for every G ∈ Hn ,

which describes simultaneously the behavior of the projections of G to each subspace Hj . Actually,
with the previous notations,

Pϕ ,d(G) =
∑
j∈Im

trϕ(Pj SG Pj) =
∑
j∈Im

Pϕ(Fj) = Pϕ(Φ) .

Therefore the problem of finding optimal (α , d)-designs (and studying their properties) translates
to the study of sequences G ∈ Bα , d which minimize the d-pinched potentials Pϕ ,d .

We point out that for ϕ ∈ Conv(R≥0) and G ∈ Hn

Pϕ ,d(G) ≤ tr ϕ(SG) but Pϕ ,d(G) 6= tr ϕ(SG) in general

(see Definition 2.6). Therefore, previous results related with the structure of minimizers of convex
potentials in Bα , d (e.g. [24]) do not apply to the d-pinched potential and we require a new approach
to study this problem, as shown in Example 4.3. In the paper we use the more complicated notation
of sequences because it has proved to be more useful for all the computations detailed before.
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4.3 Examples

Theorems 3.5, 3.14 and 3.15, combined with Remark 3.6 allow us to describe a finite step algorithmic
process for the effective construction of optimal designs Φop ∈ D(α , d) from the initial data (α,d).

A possible scheme for the algorithmic procedure would be as follows:

Algorithm 4.2. IMPUT DATA: (α , d).

STEP 1. Along with the computation of the vector h, by means of an iterative process, we compute
the value of s∗ defined in Theorem 3.11. If s∗ = 1, we set p = 1, g1 = 1 and γ1 = Q1. In this
case, γ11d1 ◦ h � α and go to STEP 3. Otherwise, set j = 1 and continue with

STEP 2. By computing the maximum among the means Pj,k, j ≤ k ≤ s∗ − 1 we compute gj and
γj as it is indicated in Theorem 3.11. If gj = s∗− 1, rename j = p− 1, and γp = Qgp−1+1 and
go to STEP 3. Otherwise, set j = gj + 1 and repeat STEP 2. This step produces the set of
optimal spectra Mop = {µop

j }j∈Im , such that (α ,M) is admissible.

STEP 3. Apply the finite step algorithm described in Remark 3.6 and obtain Φop = (Fop
j )j∈Im

(as described in Theorem 3.14) as output.

The following examples were obtained via an implementation of Algorithm 4.2 using MATLAB.

Example 4.3. Consider the family of weights given by α = {9, 8, 7, 5, 4, 2.5, 2, 2, 1.5, 0.6, 0.5} and
suppose that the dimensions to be considered are d = (7 , 5 , 3). In this case, the optimal spectra
Mop are determined, as in Definition 3.12, by

µop
1 = (3, 2.7583, 2.7583, 2.7583, 2.7583, 2.7583, 2.7583) .

If σMop ∈ R7 is defined as in Theorem 3.5, then, α ≺ σMop by Theorem 3.14. Using Remark
3.6 we construct D ∈ DS(11) such that D(σMop ⊕ 04) = α. Setting A ∈ M11,3(R≥0), such that
cj(A) = D (µop

j ⊕ 011−dj ) ∈ R11
≥0, for j = 1, 2, 3, we get (for example) the following partition of α:

A =



3 3 3
2.7583 2.7583 2.4833
2.7583 2.7583 1.4833
2.7583 1.8135 0.4282
2.5267 1.1307 0.3425
1.5792 0.7067 0.2141
1.2634 0.5654 0.1713
1.2634 0.5654 0.1713
0.9475 0.4240 0.1285
0.3790 0.1696 0.0514
0.3158 0.1413 0.0428


∈ Pα , 3 .

Once we have the partitions and optimal spectra, we can construct examples of frames using these
data, applying known algorithms like one-sided Bendel-Mickey algorithm (see [10, 11, 14, 16]):

F1 =


0.0705 0.1956 −0.0616 −0.6865 −0.6865 0.3994 −0.0845 −0.3230 −1.1553 0.2649 −0.3180
0.2804 −0.2311 −0.2142 0.2434 0.2434 −0.4716 1.2808 0.2534 −0.4197 0.3309 −0.5206
0.0380 −0.1106 −0.5728 −0.8134 −0.8134 −0.2257 0.3005 0.0342 0.9482 0.1009 −0.2125
−0.0004 −0.1760 −0.3643 −0.2125 −0.2125 −0.3592 0.2804 0.2989 −0.4753 −1.0345 0.9956
−0.4655 −0.4260 −0.5815 0.0796 0.0796 −0.8695 −0.8294 0.3134 −0.3310 0.0127 −0.6235
0.1120 0.2501 0.3128 −0.1034 −0.1034 0.5106 −0.0368 1.2019 0.0419 −0.6107 −0.7246
0.0391 −0.0112 0.0316 0.0949 0.0949 −0.0229 0.1448 −0.9781 0.1061 −1.0607 −0.8232



F2 =

[
0.1841 0.2017 0.3189 0.0682 −0.2093 −0.2340 −0.2960 0.6595 0.5432 0.0340 1.3437
0.0249 0.0273 0.0432 0.6049 0.6893 0.7707 0.9748 0.0893 0.4598 0.3451 0.1842
−0.1947 −0.2132 −0.3372 −0.3744 −0.1430 −0.1599 −0.2022 −0.6973 1.2517 0.5169 −0.1238
−0.2625 −0.2876 −0.4547 −0.2253 0.1440 0.1610 0.2037 −0.9404 −0.4997 −0.3351 1.0506
−0.0015 −0.0016 −0.0025 −0.0619 −0.0723 −0.0808 −0.1022 −0.0053 −0.6598 1.5029 0.2041

]

F3 =
[ −0.0342 −0.0375 −0.0593 −0.3714 −0.3952 −0.4419 −0.5590 −0.6249 −1.1632 −0.2605 −0.3888
−0.1953 −0.2139 −0.3383 −0.1805 0.0479 0.0536 0.0678 0.0758 0.1410 −1.4873 0.5519
0.0592 0.0649 0.1026 −0.0281 −0.1129 −0.1263 −0.1597 −0.1786 −0.3324 0.4511 1.5950

]
17



Let Φop = (F1 , F2 , F3) ∈ D(α , d). Then, by Theorem 3.15 we have that

min{Pϕ(Φ) : Φ ∈ D(α , d)} = Pϕ(Φop) = 3 ϕ(3) + 12 ϕ(2.7583) .

Now, with the notation and terminology of Section 4.2, we get the following lower bound for the
d-pinched potential (notice that d = d1 + d2 + d3 = 15)

min{tr ϕ(SG) : G ∈ Bα , 15} ≥ min{Pϕ ,d(G) : G ∈ Bα , 15} = 3 ϕ(3) + 12 ϕ(2.7583) . (31)

Indeed, since d = 15 > n = 11, we have that (see [24])

min{tr ϕ(SG) : G ∈ Bα , 15} =
∑
j∈I11

ϕ(αj) + 4ϕ(0) . (32)

Moreover, in case ϕ ∈ Convs(R≥0) then the minimizers of the potential G 7→ tr ϕ(SG) in Bα , 15 are
sequences G = {gi}i∈I11 ∈ H11 of mutually orthogonal vectors. If we further choose ϕ(x) = x2,
x ≥ 0, then the reader can check that nor the minimal value, nor the geometric structure of
minimizers of Eqs. (31) and (32) coincide. 4

Example 4.4. When α = {20, 19.5, 10, 5, 4.5, 3, 2.4, 2} and d = {5, 4, 4, 3, 2}, Algorithm 4.2 con-
structs the optimal spectra given by

µop
1 = (4, 3.9, 3.3625, 3.3625, 3.3625)

µop
2 = (4, 3.9, 3.3625, 3.3625)

µop
3 = (4, 3.9, 3.3625, 3.3625)

µop
4 = (4, 3.9, 3.3625)

µop
5 = (4, 3.9)

where the smaller spectrum does not have the constant 3.3625. As before, using Remark 3.6, we
obtain the following partition:

A =



4 4 4 4 4
3.9 3.9 3.9 3.9 3.9

3.3625 2.8875 2.5 1.25 0
1.9896 1.1354 1.25 0.625 0
1.7907 1.0218 1.125 0.5625 0
1.1938 0.6812 0.75 0.375 0
0.955 0.545 0.6 0.3 0

0.7959 0.4541 0.5 0.25 0


∈ Pα , 5 .
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