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Abstract

We prove new spectral enclosures for the non-real spectrum of a class of 2×2 block operator matrices with
self-adjoint operators A and D on the diagonal and operators B and −B∗ as off-diagonal entries. One of
our main results resembles Gershgorin’s circle theorem. The enclosures are applied to J-frame operators.
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1. Introduction

We consider block operator matrices S acting in the orthogonal sum H := H+⊕H− of two Hilbert
spaces,

S =

[
A B
−B∗ D

]
, (1.1)

where A and D are (possibly unbounded) self-adjoint operators in H+ and H−, respectively, and B is a
bounded operator from H− to H+.

Such operators play an important role in various applications. For instance, they appear in the study
of so-called floating singularities [6, 14, 15, 19, 21], in the perturbation theory for equations of indefinite
Sturm–Liouville type [5], and also in frame theory [12, 13].

Clearly, S is not self-adjoint in H unless B = 0. However, it is self-adjoint if we introduce the
indefinite inner product[[

x+
x−

]
,

[
y+
y−

]]
= (x+,y+)− (x−,y−),

[
x+
x−

]
,

[
y+
y−

]
∈H ; (1.2)

for bounded S this means that [Sx,y] = [x,Sy] for all x,y ∈H . The indefinite inner product [·, ·] turns H
into a Krein space, i.e. it is the orthogonal sum of a Hilbert space and an anti-Hilbert space. Actually,
every bounded self-adjoint operator in a Krein space can be written in the form (1.1).
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Of particular interest is the location of the spectrum of S. In [18, 23, 30] spectral enclosures were
obtained via the quadratic numerical range, and in [4, 5] in terms of the spectra of A and D. Gershgorin-
type results for more general operator matrices were presented in [9] and [28]. Moreover, in [1, 14, 20, 21]
the essential spectrum was investigated, and in [19] variational principles and estimates for eigenvalues
were proved. Invariant subspaces and factorizations of Schur complements were considered in [24] and
[2], and in [3] conditions were presented for an operator of the form (1.1) to be similar to a self-adjoint
operator in a Hilbert space. For an overview we refer to the monograph [29].

In general, the spectrum of block operator matrices as in (1.1) is not contained in the real line. The
self-adjointness of S in the Krein space with the inner product (1.2) implies only that the spectrum of S
is symmetric with respect to the real axis. The aim of this paper is to prove enclosures for the (non-real)
spectrum of S in terms of (spectral) quantities of the operators A, B, and D.

We start with a general enclosure for the (closure) of the quadratic numerical range of S, formulated
in terms of the numerical ranges of A and D and the norm of B; see Proposition 3.1 below. The quadratic
numerical range of a block operator matrix was introduced in [22] and its closure contains the spectrum of
S; see (2.2). Although similar enclosures for the spectrum of S were already known, one of the advantages
of having a spectral enclosure for the quadratic numerical range is that it leads also to estimates of the
norm of the resolvent; see the discussion in Remark 3.2. Moreover, Proposition 3.1 is sharp in the sense
that the enclosures for the quadratic numerical range cannot be improved if just the numerical ranges of A
and D and the norm of B are known; see Theorem 3.3.

The main contribution of this paper is a spectral enclosure for the operator matrix S, which is connected
with the Schur complements. It is well known and follows from a relatively simple Neumann series type
argument applied to the first and second Schur complement that

σ(S)\R ⊆
{

λ ∈ C\R : ‖B∗(A−λ )−1B(D−λ )−1‖ ≥ 1 and ‖B(D−λ )−1B∗(A−λ )−1‖ ≥ 1
}

; (1.3)

see [9, Theorem 1.1], [4, Lemma 5.2 (ii)] or [29, Section 2.3]. Here we prove that

σ(S)\R ⊆
{

λ ∈ C\R : ‖(A−λ )−1B‖ ≥ 1 and ‖(D−λ )−1B∗‖ ≥ 1
}

; (1.4)

see Theorem 4.3 below. The enclosures (1.3) and (1.4) are independent of each other in the sense that
none of the sets in the right-hand sides of (1.3) and (1.4) is strictly contained in the other one. However,
since the norm inequalities in (1.4) deal separately with the resolvent functions of A and D it is easy to
construct examples where the enclosure in (1.4) is strictly contained in the one in (1.3), see Example 4.9.

Note that the spectral enclosures in (1.3) and (1.4) are not explicitly formulated in terms of the spectra
of A and D. However, it is one of our main observations that (1.4) allows a reformulation in a more geo-
metric manner. In particular, given λ ∈ C\R, ‖(A−λ )−1B‖ ≥ 1 if and only if for all positive continuous
functions f : R→ R with some specific behaviour at infinity we have

λ ∈
⋃

t∈σB(A)

B f (t)−1‖ f (A)B‖(t),

where σB(A) is a specific closed subset of σ(A) and Br(t) stands for the closed ball of radius r around t;
for details we refer to Proposition 4.7 below. A similar interpretation can be obtained for the inequality
‖(D−λ )−1B∗‖ ≥ 1 in terms of continuous functions defined in a closed subset σB∗(D) of the spectrum
of D. Therefore, the enclosure for the non-real part of the spectrum of S in (1.4) implies a family of
enclosures which resemble Gershgorin’s circle theorem: for any two positive continuous functions f and
g with some specific behaviour at infinity we have that

σ(S)\R ⊆

 ⋃
t∈σB(A)

B f (t)−1‖ f (A)B‖(t)

 ∩
 ⋃

s∈σB∗ (D)

Bg(s)−1‖g(D)B∗‖(s)

 ; (1.5)
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see Theorem 4.8 below.
Maybe the most interesting situations appear when one chooses the functions f and g explicitly. For

instance, if A is boundedly invertible and f (t) = |t|−1 then (1.5) implies

σ(S)\R⊆
⋃

a∈σB(A)

B|a|‖A−1B‖(a). (1.6)

Moreover, if ‖A−1B‖ < 1 then these balls are contained in a double-sector with half opening angle
arcsin‖A−1B‖, see Figure 1 below.

Figure 1: The spectral enclosure for σ(S)\R given in (1.6) (in orange) and the set σB(A) (in blue).

It is worth mentioning that (1.4) also improves the following spectral enclosure obtained in [5]: if
Br(∆) = {z ∈ C : dist(z,∆)≤ r} then

σ(S)\R ⊆ B‖B‖(σ(A)) ∩B‖B‖(σ(D)).

In fact, ‖(A− λ )−1B‖ ≥ 1 obviously implies ‖(A− λ )−1‖‖B‖ ≥ 1 and the latter is equivalent to λ ∈
B‖B‖(σ(A)). A similar argument with D and B∗ instead of A and B completes the proof.

Finally, in Section 5 we apply the spectral enclosures obtained in Section 4 to operator matrices of the
form (1.1) which appear in frame theory. The so-called J-frame operators were introduced in [13] and
further investigated in [12]. Our findings lead to significant improvements of the spectral enclosures for
J-frame operators obtained in [12].

2. Preliminaries

If H and K are Hilbert spaces, we denote by L(H ,K ) the space of all bounded linear operators
mapping from H to K . As usual, we set L(H ) := L(H ,H ). For r ≥ 0 and ∆⊆ C we set

Br(∆) := {z ∈ C : dist(z,∆)≤ r}.

If a ∈ C, we also write Br(a) := Br({a}) for the closed disc with centre a and radius r.
The numerical range of a linear operator T in the Hilbert space H is defined by

W (T ) := {(T x,x) : x ∈ dom T, ‖x‖= 1}.

It is well known that the numerical range W (T ) is convex and that C \W (T ) has at most two (open)
connected components (see [16, V.3.2]). Moreover, it is immediate from the definition of W (T ) that
σp(T ) ⊆W (T ), where σp(T ) stands for the point spectrum of T . If T is closed, λ ∈ C \W (T ) and
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x ∈ dom T , ‖x‖= 1, then

‖(T −λ )x‖ ≥ |(T x,x)−λ | ≥ dist(λ ,W (T )).

This shows that ran(T −λ ) is closed and ker(T −λ ) = {0}. Hence, if each of the (at most two) compo-
nents of C\W (T ) contains points from the resolvent set ρ(T ), then σ(T )⊆W (T ). This holds in particular
if T is bounded. The next lemma is now immediate.

Lemma 2.1. Let T = A+B, where A is a self-adjoint operator in a Hilbert space H and B ∈ L(H ).
Then σ(T )⊆W (T ) and for λ /∈W (T ) we have

‖(T −λ )−1‖ ≤ 1

dist(λ ,W (T ))
.

Let us also recall the definition of the quadratic numerical range, which was introduced in [22]; see
also [29, Definition 1.1.1]. Assume that the Hilbert space H is the orthogonal sum of two Hilbert spaces,
H+ and H−. Let S be a bounded operator in H decomposed as

S =

[
A B
C D

]
,

where A ∈ L(H+), B ∈ L(H−,H+), C ∈ L(H+,H−), and D ∈ L(H−). For f ∈H+ and g ∈H− with
‖ f‖= ‖g‖= 1 we introduce the 2×2 matrix

S f ,g =

[
(A f , f ) (Bg, f )

(C f ,g) (Dg,g)

]
. (2.1)

The set
W 2(S) :=

⋃
f∈H+,g∈H−
‖ f‖=‖g‖=1

σp(S f ,g)

is called the quadratic numerical range of S. It is no longer a convex subset of C, but it has at most two
connected components.

One of the advantages of the quadratic numerical range is that it is contained in the numerical range:
W 2(S)⊆W (S) and that we have the following refined spectral inclusions

σp(S)⊆W 2(S) and σ(S)⊆W 2(S); (2.2)

see [29, Theorem 1.3.1]. Moreover, the resolvent can be estimated in terms of the distance to W 2(S):

‖(S−λ )−1‖ ≤ ‖S‖+ |λ |
[dist(λ ,W 2(S))]2

, λ /∈W 2(S); (2.3)

see [29, Theorem 1.4.1]. If W 2(S) = F1∪F2 with disjoint non-empty closed sets F1 and F2, then

‖(S−λ )−1‖ ≤ ‖S‖+ |λ |
dist(λ ,F1)dist(λ ,F2)

, λ /∈W 2(S); (2.4)

see [29, Theorem 1.4.5].
The quadratic numerical range definition can be easily extended to unbounded block operator matrices,

restricting the vectors f and g in (2.1) to the proper domains (dom A)∩ (dom C) and (dom B)∩ (dom D),
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respectively. For details see [29, Definition 2.5.1].

In the following we recall the definition of the Schur complements of a block operator matrix, which
are powerful tools to study the spectrum and spectral properties. Let A and D be closed operators in H+

and H−, respectively, B ∈ L(H−,H+), and C ∈ L(H+,H−). For the block operator matrix

S =

[
A B
C D

]
, dom S = dom A⊕dom D,

the first and second Schur complements of S are defined by:

S1(λ ) := A−λ −B(D−λ )−1C, λ ∈ ρ(D), (2.5)

S2(λ ) := D−λ −C(A−λ )−1B, λ ∈ ρ(A). (2.6)

These are analytic operator functions defined on the resolvent sets of D and A, respectively.
In the next sections we shall make use of the following auxiliary result from [25]; see also [29, Theo-

rem 2.3.3].

Lemma 2.2 ([25, Theorem 2.4]). Let A and D be closed operators in H+ and H−, respectively, let
B ∈ L(H−,H+) and C ∈ L(H+,H−), and consider the block operator matrix

S =

[
A B
C D

]
, dom S = dom A⊕dom D.

Then the following statements hold:

(i) For λ ∈ ρ(D) one has λ ∈ σ(S) if and only if 0 ∈ σ(S1(λ )).

(ii) For λ ∈ ρ(A) one has λ ∈ σ(S) if and only if 0 ∈ σ(S2(λ )).

Moreover, if λ ∈ ρ(D)∩ρ(S), then

(S−λ )−1 =

[
I 0

−(D−λ )−1C I

][
S1(λ )

−1 0
0 (D−λ )−1

][
I −B(D−λ )−1

0 I

]
.

3. Sharp enclosures for the quadratic numerical range

Let S be as in (1.1) with bounded operators

A ∈ L(H+), B ∈ L(H−,H+), D ∈ L(H−),

where A and D are self-adjoint in the Hilbert spaces H+ and H−, respectively. Hence, the numerical
ranges W (A) and W (D) are real intervals. We introduce the following numbers, which are used for the
description of the enclosures that are proved below:

a− := inf W (A), a+ := sup W (A), (3.1)
d− := inf W (D), d+ := sup W (D), (3.2)

m− :=
a−+d−

2
, m+ :=

a++d+
2

, (3.3)

c :=
1
2
[
min{a+,d+}+max{a−,d−}

]
and ` :=

1
2

dist
(
W (A),W (D)

)
(3.4)
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If W (A)∩W (D) = ∅, then c is the midpoint of the gap between W (A) = [a−,a+] and W (D) = [d−,d+],
and ` is half the length of the gap; e.g. if d+ < a−, then

c = 1
2 (d++a−) and `= 1

2 (a−−d+).

The following proposition contains enclosures of the closure of the quadratic numerical range of oper-
ators of the form (1.1). Due to (2.2) these yield also enclosures for the spectrum. Note that the enclosures
in Proposition 3.1 depend only on W (A), W (D) and ‖B‖. They are illustrated in Figures 2–5 below.

Proposition 3.1. Given a Hilbert space H = H+⊕H−, consider the block operator matrix

S :=
[

A B
−B∗ D

]
(3.5)

where B ∈ L(H−,H+), and A and D are bounded self-adjoint operators in H+ and H−, respectively.
Further, let the constants a±, d±, m±, c and ` be as in (3.1)–(3.4). Then

W 2(S)∩R⊆
[
min{a−,d−},max{a+,d+}

]
, (3.6)

W 2(S)\R⊆B‖B‖
(
[a−,a+]

)
∩B‖B‖

(
[d−,d+]

)
∩ {z ∈ C : m− ≤ Re z≤ m+}. (3.7)

Moreover, in the special case where

W (A)∩W (D) =∅ and ‖B‖ ≤ `, (3.8)

we have

W 2(S)⊆

[
min{a−,d−}, c−

√
`2−‖B‖2

]
∪

[
c+
√

`2−‖B‖2, max{a+,d+}

]
; (3.9)

in particular, both the quadratic numerical range and the spectrum of S are real.

Proof. Inclusion (3.6) follows from [29, Proposition 1.2.6]. It is sufficient to show (3.7) and (3.9) without
the closures on the left-hand sides because the right-hand sides are closed sets. Let z ∈W 2(S). Then there
exist f ∈H+ and g ∈H− with ‖ f‖= ‖g‖= 1 such that z is an eigenvalue of the matrix S f ,g =

(
α β

−β δ

)
in

(2.1) with α = (A f , f ) ∈ [a−,a+], δ = (Dg,g) ∈ [d−,d+] and β = (Bg, f ), which satisfies |β | ≤ ‖B‖. By
[18, Theorem 2.1] and [5, Theorem 3.5] the inclusion (3.7) holds for W 2(S) replaced by σ(S). Applying
this to the matrix S f ,g we obtain that in the case when z is non-real, z is contained in

B|β |({α})∩B|β |({δ})∩{z ∈ C : m− ≤ Re z≤ m+}.

and hence in the right-hand side of (3.7).
It remains to show (3.9). We assume without loss of generality that d+ < a−, in which case c =

1
2 (a−+d+) and `= 1

2 (a−−d+). By (3.7), z ∈ R, and hence z = z+ or z = z− where

z± :=
α +δ

2
±
√(

α−δ

2

)2
−|β |2.

It is easy to see that z+ is increasing in α and decreasing in δ . Therefore

z+ ≥
a−+d+

2
+

√(a−−d+
2

)2
−|β |2 ≥ c+

√
`2−‖B‖2

6



and, similarly, z− ≤ c−
√

`2−‖B‖2. Together with (3.6), this shows the inclusion (3.9).

Remark 3.2. (a) Parts of Proposition 3.1 are known: inclusion (3.6) is from [29, Proposition 1.2.6].

(b) Inclusion (3.7) is an improvement of a similar result in [29, Proposition 1.2.6]. To be more precise,
in [29, Proposition 1.2.6] the following inclusion is proved, when ‖B‖> `,

W 2(S)\R⊆
{

z ∈ C : | Im z| ≤
√
‖B‖2− `2

}
∩
{

z ∈ C : m− ≤ Re z≤ m+

}
; (3.10)

cf. also [29, Proposition 1.3.9]. It is easy to see that the right-hand side of (3.7) is contained in the
right-hand side of (3.10), and in most cases the inclusion is strict; see also Figures 2–5 below.

(c) Inclusion (3.9) improves [29, Proposition 1.2.6] significantly, namely, the former implies that the
interval (

c−
√

`2−‖B‖2 ,c+
√

`2−‖B‖2

)
has empty intersection with W 2(S) if ‖B‖ < `. A similar result for the spectrum of S (which is, in
general, a smaller set) can be found in [8, Theorem 4.2] and, in a somehow different form, in [3,
Theorem 5.8] and [4, Theorem 5.4].

(d) For enclosures for the quadratic numerical range and the spectrum where all entries A, B, and D are
allowed to be unbounded see [23, Proposition 4.10 and Theorem 4.13].

Figures 2–5 below show the enclosures for W 2(S) from Proposition 3.1. In Figures 2 and 3 the situation
where W (A)∩W (D) 6=∅ is considered. If ‖B‖ is less than or equal to

τ := min
{

m+−min{a+,d+}, max{a−,d−}−m−
}
,

the non-real spectrum is contained in B‖B‖([a−,a+])∩B‖B‖([d−,d+]) = B‖B‖(W (A)∩W (D)). When
‖B‖> τ then the enclosure in {z ∈C : m− ≤ Re z≤m+}, the third set on the right-hand side of (3.7), has
to be taken into account as well.

The case when there is a gap between W (A) and W (D) is considered in Figures 4 and 5. When ‖B‖ is
small, then W 2(S) is contained in the union of the two real intervals on the right-hand side of (3.9). When
‖B‖ is larger, then the spectrum may be non-real, and the right-hand sides of (3.6) and (3.7) have to be
used.

d− m− a− d+ m+ a+

Figure 2: The region (indicated in orange) given by the union of the sets on the right-hand sides of (3.6) and (3.7) that contains
W 2(S), when W (A) and W (D) overlap and ‖B‖< τ .
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d− m− a− d+ m+ a+

Figure 3: The region (indicated in orange) given by the union of the sets on the right-hand sides of (3.6) and (3.7) that contains
W 2(S), when W (A) and W (D) overlap and ‖B‖> τ .

d− d+ c a− a+

Figure 4: The two intervals (indicated in orange) on the right-hand side of (3.9) whose union contains W 2(S), when W (A) and W (D)
are separated and ‖B‖< τ .

d− d+m− c m+a− a+

Figure 5: The region (indicated in orange) given by the union of the sets on the right-hand sides of (3.6) and (3.7) that contains
W 2(S), when W (A) and W (D) are separated and ‖B‖> τ .

The next theorem shows that Proposition 3.1 is sharp in the sense that given [a−,a+] =W (A), [d−,d+] =
W (D) and ‖B‖, the enclosures for the spectrum and the quadratic numerical range of S cannot be improved,
i.e. an operator S is constructed for which equality holds in (3.6) and (3.7), and in (3.9) if (3.8) is satisfied.

Theorem 3.3. Let a+,a−,d+,d−,b∈R such that a−≤ a+, d−≤ d+, and b> 0. Then there exist separable
Hilbert spaces H±, self-adjoint operators A and D in H+ and H−, respectively, and B ∈ L(H−,H+)
such that

W (A) = [a−,a+], W (D) = [d−,d+], ‖B‖= b,

and (with the notation from (3.3)–(3.4)) the operator S from (3.5) satisfies

σ(S) =W 2(S) =
(
Bb
(
[a−,a+]

)
∩Bb

(
[d−,d+]

)
∩{z ∈ C : m− ≤ Re z≤ m+}

)
∪
[
min{a−,d−},max{a+,d+}

] (3.11)

8



if b > ` and

σ(S) =W 2(S) =

[
min{a−,d−}, c−

√
`2

4
−b2

]
∪

[
c+

√
`2

4
−b2, max{a+,d+}

]
(3.12)

if b≤ `.

Proof. Let H+ = H− = `2 and define the operators

A = diag(a1,a2, . . .), B = diag(b1,b2, . . .), D = diag(d1,d2, . . .)

with numbers
an ∈ [a−,a+], bn ∈ [0,b], dn ∈ [d−,d+], (3.13)

n ∈ N, which are chosen later. Let zn = xn + iyn, n ∈ N, be such that {zn : n ∈ N} is a dense subset of the
right-hand sides of (3.11) or (3.12), respectively. Below we construct an,bn,dn such that

zn = w+(an,bn,dn) or zn = w−(an,bn,dn), (3.14)

where

w±(an,bn,dn) :=
an +dn

2
±
√(an−dn

2

)2
−|bn|2. (3.15)

Since then zn is an eigenvalue of S and σ(S) is closed, this, together with the enclosures in Proposition 3.1,
shows equality in (3.11) and (3.12).

Let us first consider the case when zn /∈R. Then zn is in the right-hand side of (3.11). If xn ∈ [a−,a+]∩
[d−,d+], then set

an := dn := xn, bn := |yn|.

Clearly,
an ∈ [a−,a+], dn ∈ [d−,d+], bn = |yn|= dist(zn, [a−,a+])≤ b,

and (3.14) is satisfied. Now assume that xn /∈ [a−,a+]∩ [d−,d+]. Without loss of generality we can assume
that

dist
(
xn, [a−,a+]

)
≤ dist

(
xn, [d−,d+]

)
, (3.16)

which implies that xn /∈ [d−,d+]. Let us consider the case when xn < d−; the case xn > d+ is analogous.
Set

an = 2xn−d−, dn = d−, bn =
√

y2
n +(xn−d−)2.

Clearly, dn ∈ [d−,d+]. From xn ≥ m− we obtain that

an = 2xn−d− ≥ 2m−−d− = 2
a−+d−

2
−d− = a−.

If xn ≤ a+, then an = xn +(xn−d−)< xn ≤ a+ and hence an ∈ [a−,a+]. If xn > a+, then the inequality in
(3.16) is equivalent to xn−a+ ≤ d−− xn, which implies that

an = 2xn−d− ≤ a+;

hence also in this case we have an ∈ [a−,a+]. Moreover,

bn =
√

y2
n +(xn−d−)2 = |zn−d−|= dist

(
zn, [d−,d+]

)
≤ b.

9



It is easy to check that (3.14) is satisfied.
Next we consider the case when zn ∈ R. If zn ∈ [a−,a+], then choose an = zn, dn arbitrary in [d−,d+]

and bn = 0. Then

w+(an,bn,dn) = max{zn,dn}, w−(an,bn,dn) = min{zn,dn},

and hence (3.14) holds. The case when zn ∈ [d−,d+] is similar. If [a−,a+]∩ [d−,d+] 6= ∅, then all
cases of real zn are covered. Finally, assume that [a−,a+]∩ [d−,d+] = ∅ and zn /∈ [a−,a+]∪ [d−,d+].
Without loss of generality we can assume that d+ < a−; then zn ∈ (d+,a−). Let us consider the case when
zn ≥ c = 1

2 (d++a−); the other case is similar. Set

an = a−, dn = d+, bn =

√( `
2

)2
− (zn− c)2.

It is easy to check that zn = w+(an,bn,dn). If b > 1
2 dist([a−,a+], [d−,d+]) = `

2 , then bn ≤ `
2 < b. If b≤ `

2 ,
then the form of the right-hand side of (3.12) implies that

zn ≥ c+

√( `
2

)2
−b2,

which yields

bn ≤

√( `
2

)2
−
(( `

2

)2
−b2

)
= b.

The relations in (3.13) imply that the operators A, B and D are bounded with ‖B‖ ≤ b. If we had
‖B‖ < b, then we would obtain a strictly smaller enclosure for the spectrum from Proposition 3.1, which
contradicts the already obtained equality in (3.11) or (3.12), respectively.

4. Gershgorin-type enclosure for the spectrum of block operator matrices

In this section we provide another spectral enclosure for the non-real spectrum of the block operator matrix

S =

[
A B
−B∗ D

]
, dom S = dom A⊕dom D. (4.1)

As already indicated by (4.1), we also allow unbounded entries A and D. The operator B remains bounded
in our considerations. The result has similarities with Gershgorin’s circle theorem for matrices [11] and
block operator matrices [27, 28, 29, 9] since we show that the non-real spectrum of the operator matrix S
is contained in the union of a family of closed balls, centred along parts of the spectrum of the block A in
the diagonal of S (see (4.3)). To formulate the result, for a closed set M ⊆ R define the following class of
continuous functions:

C+(M) =
{

f ∈C(M) : f (t)> 0 for t ∈M, sup
t∈M

f (t)< ∞, inf
|t|≥1
|t| f (t)> 0

}
. (4.2)

The last two conditions obviously only matter if M is unbounded. If M is compact, then C+(M) is the set
of positive continuous functions on M. Note that any positive constant function is contained in C+(M)
and also |t|−1 ∈C+(M) if 0 /∈M.

Theorem 4.1. Given a Hilbert space H = H+⊕H−, consider the block operator matrix S in (4.1),
where B ∈ L(H−,H+) and A and D are self-adjoint operators in H+ and H−, respectively. Then, for
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any f ∈C+(σ(A)) and g ∈C+(σ(D)) we have

σ(S)\R ⊆

 ⋃
t∈σ(A)

B f (t)−1‖ f (A)B‖(t)

 ∩
 ⋃

s∈σ(D)

Bg(s)−1‖g(D)B∗‖(s)

 . (4.3)

Remark 4.2. If we set f = g = 1 in Theorem 4.1, then the spectral inclusion (4.3) becomes

σ(S)\R ⊆ B‖B‖(σ(A)) ∩B‖B‖(σ(D)), (4.4)

which was already proved in [5, Theorem 3.5].

Theorem 4.1 will follow from Theorem 4.3 below, which is an improvement of [5, Theorem 3.5]. The
spectral inclusion (4.4) means that a non-real point in the spectrum of S satisfies dist(λ ,σ(A))≤ ‖B‖ and
dist(λ ,σ(D)) ≤ ‖B‖. This is equivalent to ‖(A−λ )−1‖‖B‖ ≥ 1 and ‖(D−λ )−1‖‖B∗‖ ≥ 1. Hence, the
spectral enclosure given in (4.5) is sharper.

Theorem 4.3. Given a Hilbert space H = H+⊕H−, consider the block operator matrix S in (4.1),
where B ∈ L(H−,H+) and A and D are self-adjoint operators in H+ and H−, respectively. Then

σ(S)\R ⊆
{

λ ∈ C\R : ‖(A−λ )−1B‖ ≥ 1 and ‖(D−λ )−1B∗‖ ≥ 1
}
. (4.5)

Moreover, given λ ∈ C\R then

‖(S−λ )−1‖ ≤ 1+‖(A−λ )−1B‖+‖(A−λ )−1B‖2

| Im λ | · (1−‖(A−λ )−1B‖2)
if ‖(A−λ )−1B‖< 1, (4.6)

‖(S−λ )−1‖ ≤ 1+‖(D−λ )−1B∗‖+‖(D−λ )−1B∗‖2

| Im λ | · (1−‖(D−λ )−1B∗‖2)
if ‖(D−λ )−1B∗‖< 1. (4.7)

Before we prove Theorem 4.3, we provide a couple of remarks and an example.

Remark 4.4. (a) The same conclusions as in Theorem 4.3 hold, if we drop the boundedness assumption
on B and, instead, assume that B is D-bounded with D-bound less than one and B∗ is A-bounded with
A-bound less than one. The arguments in the proof are essentially the same.

(b) Note that both σ(S)\R and the right-hand side of (4.5) are sets which are symmetric with respect
to the real axis.

(c) There is another spectral enclosure for the operator matrix S that results from a relatively simple
argument (see [9, Theorem 1.1] or [4, Lemma 5.2 (ii)]). Consider the second Schur complement S2(λ ) =
D−λ +B∗(A−λ )−1B for λ ∈ C\R. Applying (D−λ )−1 from the right and from the left, respectively,
we obtain

S2(λ )(D−λ )−1 = I +B∗(A−λ )−1B(D−λ )−1 and

(D−λ )−1S2(λ ) = I +(D−λ )−1B∗(A−λ )−1B|dom D.

That is, if one of

NS(λ ) := ‖B∗(A−λ )−1B(D−λ )−1‖ or NS(λ ) = ‖(D−λ )−1B∗(A−λ )−1B‖
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is less than 1, then the Schur complement S2(λ ) is boundedly invertible and so λ ∈ ρ(S). Hence,

σ(S) ⊆
{

λ ∈ ρ(D) : NS(λ )≥ 1 and NS(λ )≥ 1
}
.

A similar reasoning applies to the first Schur complement S1(λ ) = A−λ +B(D−λ )−1B∗ and gives

σ(S) ⊆
{

λ ∈ ρ(A) : MS(λ )≥ 1 and MS(λ )≥ 1
}
,

where MS(λ ) := ‖B(D−λ )−1B∗(A−λ )−1‖. This implies that

σ(S)\R ⊆
{

λ ∈ C\R : min{NS(λ ),NS(λ ),MS(λ ),MS(λ )} ≥ 1
}
. (4.8)

(d) The spectral enclosures (4.5) and (4.8) are independent of each other, meaning that, in general, none
of the corresponding sets on the right-hand sides of the two relations contains the other. Consequently, if
we intersect the right-hand side of the already known enclosure (4.8) with the new one (4.5), we obtain a
better bound for the non-real spectrum of S, as illustrated in Example 4.5 below. However, Example 4.9
shows a situation, where (4.5) is in fact strictly better than (4.8).

(e) Both spectral enclosures (4.5) and (4.8) require complete knowledge about the functions ‖(A−
·)−1B‖, ‖(D− ·)−1B∗‖, NS and MS. In contrast, Theorem 4.1 basically only requires knowledge about
σ(A) and σ(D) and is therefore better suited for computations.

Example 4.5. We let H− = H+ = C2 and

A =

[
2 1+ i

1− i −1

]
, D =

[
1 0
0 −5

]
, B =

[
i 1+ i

2

−1− i − 2
5

]
.

The four eigenvalues of S ∈ C4×4 are depicted as black dots in the figure below. Note that two of them
are real. They are (approximately) −4.73166, 2.38898, −0.328657± 1.03244 i. The region from (4.8)
is bounded by the three red curves, while the two blue curves bound the region on the right-hand side of
(4.5). The orange filled region is the intersection of the two enclosures.

Figure 6: The spectral enclosures (4.5), bounded with blue curves, and (4.8), bounded with orange curves, for the matrix in Exam-
ple 4.5.

Proof of Theorem 4.3. We use the first Schur complement S1 of the block operator matrix S in (4.1), which
is given by

S1(λ ) = A−λ +B(D−λ )−1B∗, dom S1(λ ) = dom A,

for λ ∈ ρ(D); see (2.5).
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For λ ∈ C\R we have S1(λ )
∗ = S1(λ ) and, setting T := (D−λ )−1B∗ we obtain

S1(λ )−S1(λ ) = λ −λ +B
[
(D−λ )−1− (D−λ )−1]B∗ = (λ −λ )(T ∗T − I).

If Im λ > 0, then for arbitrary h ∈ dom A with ‖h‖= 1 we have

Im(S1(λ )h,h) =
1
2i

(
(S1(λ )−S1(λ ))h,h

)
= (Im λ ) · (‖T h‖2−1) ≤ (Im λ )(‖T‖2−1). (4.9)

In particular, if ‖T‖< 1, then 0 /∈W (S1(λ )) and therefore 0 /∈σ(S1(λ )); see Lemma 2.1. Now Lemma 2.2
implies that λ /∈ σ(S). A similar reasoning applies to the case Im λ < 0. This proves that

σ(S)\R ⊆
{

λ ∈ C\R : ‖(D−λ )−1B∗‖ ≥ 1
}
.

Applying the same arguments to the second Schur complement S2, we obtain

σ(S)\R ⊆
{

λ ∈ C\R : ‖(A−λ )−1B‖ ≥ 1
}
,

which completes the proof of the inclusion (4.5).
Note also that (4.9) implies that

dist
(
0,W (S1(λ ))

)
≥ | Im λ |(1−‖T‖2) (4.10)

if ‖T‖ < 1. Let us now prove the estimate (4.7) for the resolvent of S. For this, let λ ∈ C \R such that
‖T‖< 1, where T = (D−λ )−1B∗ as above. By Lemma 2.2 we have

(S−λ )−1 =

[
I 0

(D−λ )−1B∗ I

][
S1(λ )

−1 0
0 (D−λ )−1

][
I −B(D−λ )−1

0 I

]
. (4.11)

Denote the first factor by L. Then

‖L‖2 = ‖L∗L‖=
∥∥∥∥[ I T ∗

0 I

][
I 0
T I

]∥∥∥∥= ∥∥∥∥[ I +T ∗T T ∗

T I

]∥∥∥∥
≤
∥∥∥∥[ I 0

0 I

]∥∥∥∥+∥∥∥∥[ T ∗T 0
0 0

]∥∥∥∥+∥∥∥∥[ 0 T ∗

T 0

]∥∥∥∥
= 1+‖T‖2 +‖T‖.

Since (D−λ )−1 is normal, we have

‖B(D−λ )−1‖= ‖(D−λ )−1B∗‖= ‖(D−λ )−1B∗‖= ‖T‖,

which implies that for the last factor in (4.11) we have the same estimate as for the first one. It remains to
estimate the middle factor M in (4.11). To this end, note that Lemma 2.1 and (4.10) yield

‖S1(λ )
−1‖ ≤ dist

(
0,W (S1(λ ))

)−1 ≤ | Im λ |−1(1−‖T‖2)−1.

Since ‖(D−λ )−1‖ ≤ | Im λ |−1, we obtain

‖M‖= max
{
‖S1(λ )

−1‖, ‖(D−λ )−1‖
}
≤ | Im λ |−1(1−‖T‖2)−1.
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Hence

‖(S−λ )−1‖ ≤ 1+‖T‖+‖T‖2

| Im λ |(1−‖T‖2)
.

The estimate (4.6) can be derived similarly by using the second Schur complement.

In the following we are going to show that Theorem 4.1 is just a consequence of Theorem 4.3. How-
ever, since the enclosure in Theorem 4.1 is expressed in terms of the spectral quantities of A and D,
compared with Theorem 4.3 it gives a more intuitive and explicit insight into the location of the spectrum
of S.

Lemma 4.6. Let c > 0. Then there exists C > 0 (depending on c) such that∣∣x1+1/n− x
∣∣≤ C

n

for all x ∈ [0,c] and all n ∈ N.

Proof. Let x∈ (0,c]. By the mean value theorem applied to the function t 7→ xt there exists a ξ ∈ (1,1+ 1
n )

such that
x1+1/n− x =

1
n

xξ logx.

If x≤ 1, then ∣∣x1+1/n− x
∣∣≤ 1

n
x| logx| ≤ 1

en
.

If c > 1 and x ∈ (1,c], then

∣∣x1+1/n− x
∣∣≤ 1

n
x1+1/n logx≤ 1

n
x2 logx≤ c2 logc

n
.

This proves the lemma.

Let H1 and H2 be Hilbert spaces, T a self-adjoint operator in H1 and V ∈ L(H2,H1). Then by σV (T )
we denote the support of the positive operator-valued measure V ∗ET (·)V , where ET stands for the spectral
measure of T . Clearly, σV (T ) is a closed subset of σ(T ). It is compact if and only if ran V ⊆ ET (∆)H
for some bounded set ∆⊆ R.

Proposition 4.7. Let T be a self-adjoint operator in H1 and V ∈ L(H2,H1). Then for λ ∈ C \R the
following statements are equivalent:

(a) ‖(T −λ )−1V‖ ≥ 1;

(b) for all f ∈C+(σ(T )) we have λ ∈
⋃

t∈σV (T )B f (t)−1‖ f (T )V‖(t).

Proof. (b)⇒ (a). Let f (t) := |t − λ |−1, t ∈ σ(T ). Then f ∈ C+(σ(T )) and thus, by (b), we have λ ∈
B f (t0)−1‖ f (T )V‖(t0) for some t0 ∈ σV (T ). This means that

|t0−λ | ≤ f (t0)−1‖ f (T )V‖= |t0−λ | · ‖(T −λ )−1V‖,

which is (a).
(a)⇒ (b). Let f ∈ C+(σ(T )). It is obvious that f can be extended to a function in C+(R). Choose

such an extension and also denote it by f . For n ∈ N we set

gn(t) := f (t)|t−λ |1+1/n, t ∈ R.
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Then each gn is continuous and positive. Note that for |t| ≥ 2|µ|, where µ = Re λ , we have |t − λ | ≥
|t−µ| ≥ |t|− |µ| ≥ 1

2 |t| and hence |t−λ | f (t)≥ 1
2 |t| f (t), which is bounded below by a positive constant.

This implies that lim|t|→∞ |gn(t)| = ∞. Thus, for each n ∈ N there exists tn ∈ σV (T ) such that |gn(tn)| =
δ (gn) := inft∈σV (T ) |gn(t)|.

On the other hand, dom |T − λ |1+1/n ⊆ dom gn(T ) and f (T ) = gn(T )|T − λ |−1−1/n ∈ L(H1). For
arbitrary h∈H2 with ‖h‖= 1 define the positive measure µh := ‖ET (·)V h‖2, which has support contained
in σV (T ). Then,

‖ f (T )V h‖2 = ‖gn(T )|T −λ |−1−1/nV h‖2 =
∫

σV (T )

|gn(t)|2

|t−λ |2+2/n dµh(t)

≥ δ
2(gn)

∥∥|T −λ |−1−1/nV h
∥∥2
,

and hence

‖ f (T )V‖ ≥ δ (gn)
∥∥|T −λ |−1−1/nV

∥∥= |gn(tn)|
∥∥|T −λ |−1−1/nV

∥∥
= |tn−λ | f (tn) · |tn−λ |1/n∥∥|T −λ |−1−1/nV

∥∥. (4.12)

Now, consider the functions hn(t) := |t − λ |−1−1/n, n ∈ N, and h(t) := |t − λ |−1. Since |t − λ |−1 ≤
| Im λ |−1 for all t ∈ R, it follows from Lemma 4.6 that there exists C > 0 such that |hn(t)− h(t)| ≤C/n
for all t ∈ R. This, together with (a), implies that

1−
∥∥|T −λ |−1−1/nV

∥∥≤ ∥∥(T −λ )−1V
∥∥−∥∥|T −λ |−1−1/nV

∥∥
= ‖h(T )V‖−‖hn(T )V‖ ≤

∥∥h(T )V −hn(T )V
∥∥≤ C‖V‖

n
,

which, for sufficiently large n, yields

∥∥|T −λ |−1−1/nV
∥∥n ≥

(
1− C‖V‖

n

)n

.

As the right-hand side tends to e−C‖V‖ as n→ ∞, there exists γ > 0 such that
∥∥|T −λ |−1−1/nV

∥∥ ≥ γ1/n

for all n ∈ N. Hence, if there exists some n ∈ N such that |tn − λ | ≥ 1/γ , we find from (4.12) that
‖ f (T )V‖ ≥ |tn−λ | f (tn), which means that λ ∈B f (tn)−1‖ f (T )V‖(tn). Otherwise, there exists a subsequence
(tnk) such that tnk → t0 as k→∞ with t0 ∈ σV (T ). In this case, replacing n by nk in (4.12) and letting k→∞

we obtain
‖ f (T )V‖ ≥ |t0−λ | f (t0) · ‖(T −λ )−1V‖ ≥ |t0−λ | f (t0),

that is, λ ∈B f (t0)−1‖ f (T )V‖(t0).

Proposition 4.7 and Theorem 4.3 now immediately imply the following slight improvement of Theo-
rem 4.1.

Theorem 4.8. Let S be the block operator matrix in (4.1). Then, for any f ∈C+(σ(A)) and g∈C+(σ(D))
we have

σ(S)\R⊆

( ⋃
t∈σB(A)

B f (t)−1‖ f (A)B‖(t)

)
∩

( ⋃
s∈σB∗ (D)

Bg(s)−1‖g(D)B∗‖(s)

)
. (4.13)

We shall now check the performance of several spectral enclosures for block operator matrices from
above and from the literature on a specific example. The result is illustrated in Figure 7 below.
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Example 4.9. Let H+ = H− = C2, consider the matrices

A =

[
1 0
0 2

]
, B =

[
1
3 0
0 2

3

]
, D =

[
1 0
0 1

]
,

and let S be as in (4.1). The eigenvalues of S are given by

1± 1
3

i and
3
2
±
√

7
6

i. (4.14)

1. The spectral enclosure from [28, Theorem 2.7] states that

σ(S)\R⊆ {λ ∈ ρ(A) : ‖(A−λ )−1‖−1 ≤ ‖B‖} ∪ {λ ∈ ρ(D) : ‖(D−λ )−1‖−1 ≤ ‖B‖}

= B 2
3
(1)∪B 2

3
(2).

2. The spectral enclosure from [27, Theorem 6.4] is slightly better than the previous one:

σ(S)\R⊆ {λ ∈ ρ(A) : ‖(A−λ )−1B‖ ≥ 1} ∪ {λ ∈ ρ(D) : ‖(D−λ )−1B∗‖ ≥ 1}.

However, since

‖(A−λ )−1B‖= 1
3

max{|1−λ |−1,2|2−λ |−1} and ‖(D−λ )−1B∗‖= 2
3|1−λ |

, (4.15)

this yields the same enclosure as before: σ(S)\R⊆B 2
3
(1)∪B 2

3
(2).

3. The enclosure in [5, Theorem 3.5] (see also (4.4)) yields the estimate

σ(S)\R⊆ (B 2
3
(1)∪B 2

3
(2))∩B 2

3
(1) = B 2

3
(1).

4. The next enclosure that we check is (4.8). Since all matrices are diagonal, we have N(λ ) = N(λ ) =
M(λ ) = M(λ ). Thus (4.8) is

σ(S)\R ⊆
{

λ ∈ C\R : ‖B(D−λ )−1B∗(A−λ )−1‖ ≥ 1
}
. (4.16)

We have

B(D−λ )−1B∗(A−λ )−1 =
1
9

 (1−λ )−2 0

0 4(1−λ )−1(2−λ )−1


and hence

‖B(D−λ )−1B∗(A−λ )−1‖= 1
9

max
{

1
|λ −1|2

,
4

|λ −1| |λ −2|

}
.

Therefore a non-real complex number λ is in the right-hand side of (4.16) if and only if

9|λ −1|2 ≤ 1 or 9|λ −1| |λ −2| ≤ 4.

Since the first inequality implies the second, we obtain that (4.16) is equivalent to

σ(S)\R⊆
{

λ ∈ C\R : |λ −1| |λ −2| ≤ 4
9

}
. (4.17)
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5. To compute (4.5) in Theorem 4.3, we use (4.15) to get

σ(S)\R ⊆ (B 1
3
(1)∪B 2

3
(2))∩B 2

3
(1) = B 1

3
(1)∪ (B 2

3
(1)∩B 2

3
(2)). (4.18)

6. Let us now discuss our spectral enclosure from Theorem 4.1. Choose g(t) = f (t) = |t|−1, which is
valid since A and D are invertible. Then

‖ f (A)B‖= ‖A−1B‖= 1
3

and ‖g(D)B∗‖= ‖D−1B∗‖= 2
3
.

Hence, (4.3) yields

σ(S)\R⊆
(
B 1

3
(1)∪B 2

3
(2)
)
∩B 2

3
(1) = B 1

3
(1)∪

(
B 2

3
(1)∩B 2

3
(2)
)
, (4.19)

which is the same as (4.18).

The right-hand side of (4.18) (or (4.19)) is obviously contained in the right-hand side of (4.17); actually,
it is significantly smaller (e.g. the interval ( 5

3 ,
7
3 ) is in the right-hand side of (4.17) but not in the right-

hand side of (4.19)). Note that the first four enclosing sets have the eigenvalues 1± 1
3 i in their interior,

while all four eigenvalues of S lie on the boundary of the region given in (4.18).

1 2

Figure 7: The spectral enclosure for σ(S) \R in (4.18) for the operator in Example 4.9 is a union of a disc and the intersection of
two discs (filled orange region). The boundary of the set on the right-hand side of (4.17) is the blue dashed line. The eigenvalues of
S (see (4.14)) are indicated with black dots.

In the following corollary we consider a useful special case of Theorem 4.1. We denote by C+ and C−
the open right and left half-planes, respectively. The enclosure described in Corollary 4.10 is illustrated in
Figure 1.

Corollary 4.10. Let S be the block operator matrix in (4.1) and assume that 0 ∈ ρ(A). Then

σ(S)\R⊆
⋃

a∈σB(A)

B|a|‖A−1B‖(a). (4.20)

Assume, in addition, that ‖A−1B‖< 1. Then the right-hand side of (4.20) is contained in the set{
z ∈ C : | Im z| ≤ ‖A−1B‖√

1−‖A−1B‖2
|Re z|

}
, (4.21)
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which is a double-sector with half opening angle arcsin‖A−1B‖; moreover,

(
σ(S)\R

)
∩C+ ⊆

{{
z ∈ C : Re z≥

(
1−‖A−1B‖

)
min
(
σ(A)∩ (0,∞)

)}
, σ(A)∩ (0,∞) 6=∅

∅, otherwise,

and

(
σ(S)\R

)
∩C− ⊆

{{
z ∈ C : Re z≤

(
1−‖A−1B‖

)
max

(
σ(A)∩ (−∞,0)

)}
, σ(A)∩ (−∞,0) 6=∅

∅, otherwise.

Proof. Since 0 ∈ ρ(A), the inclusion (4.20) follows from Theorem 4.1 by setting f (t) = |t|−1. Now
assume also that ‖A−1B‖< 1. It is elementary to check that the lines

Im z =± ‖A−1B‖√
1−‖A−1B‖2

Re z

touch the discs B|a|‖A−1B‖(a), a ∈ σ(A), tangentially. Further, these discs are contained in the double
sector enclosed by the two lines (see (4.21)). Hence, the right-hand side of (4.20) is contained in (4.21).

Finally, if σ(A)∩ (0,∞) 6=∅, then, for every a ∈ σ(A)∩ (0,∞) and z ∈Ba‖A−1B‖(a), we have

Re z≥ a−a‖A−1B‖ ≥
(
1−‖A−1B‖

)
min
(
σ(A)∩ (0,∞)

)
.

Similarly, if σ(A)∩ (−∞,0) 6=∅, then, for every a ∈ σ(A)∩ (−∞,0) and z ∈Ba‖A−1B‖(a), we have

Re z≤
(
1−‖A−1B‖

)
min
(
σ(A)∩ (−∞,0)

)
.

This shows the inclusions for (σ(S)\R)∩C+ and (σ(S)\R)∩C−.

A similar result holds when one replaces A and B by D and B∗, respectively. More precisely, if
0 ∈ ρ(D) then

σ(S)\R⊆
⋃

d∈σB∗ (D)

B|d|‖D−1B∗‖(d). (4.22)

If it is also assumed that ‖D−1B∗‖< 1, then

σ(S)\R⊆

{
z ∈ C : | Im z| ≤ ‖D−1B∗‖√

1−‖D−1B∗‖2
|Re z|

}
, (4.23)

which is a double-sector with half opening angle arcsin‖D−1B∗‖; moreover,

(
σ(S)\R

)
∩C+ ⊆


{

z ∈ C : Re z≥
(
1−‖D−1B∗‖

)
min
(
σ(D)∩ (0,∞)

)}
, σ(D)∩ (0,∞) 6=∅

∅, otherwise,

and

(
σ(S)\R

)
∩C− ⊆


{

z ∈ C : Re z≤
(
1−‖D−1B∗‖

)
max

(
σ(D)∩ (−∞,0)

)}
, σ(D)∩ (−∞,0) 6=∅

∅, otherwise.
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5. Application to J-frame operators

Originally, frame theory has been developed for Hilbert spaces; see, e.g. [7] and the references therein.
A frame for a Hilbert space (H ,(., .)) is a family of vectors F = { fi}i∈I for which there exist constants
0 < α ≤ β < ∞ such that

α ‖ f‖2 ≤∑
i∈I
|〈 f , fi〉|2 ≤ β ‖ f‖2, for every f ∈H . (5.1)

The optimal constants α and β for which (5.1) holds are known as the frame bounds of F .
Recently, various approaches have been suggested to introduce frame theory also to Krein spaces; see

[10, 13, 26]. In this section we apply our results to J-frame operators as introduced in [13]; see also [12].
In particular, we improve the enclosure for the non-real spectrum of J-frame operators obtained in [12];
see Theorem 5.2 below.

An indefinite inner product space (H , [· , ·]) is a (complex) vector space H endowed with a Hermitian
sesquilinear form [., .]. Given a subspace S of H , the orthogonal subspace to S is defined by

S [⊥] = {x ∈H : [x,s] = 0 for every s ∈S },

and S is called non-degenerate if S ∩S [⊥] = {0}. If S and T are subspaces of H , the notation
S [⊥]T stands for S ⊆T [⊥].

A Krein space is a non-degenerate indefinite inner product space (H , [· , ·]) which admits a decompo-
sition H = H+ u H− such that H+ [⊥]H− and (H±,±[· , ·]) are Hilbert spaces. Such a decomposition
is often called a fundamental decomposition and it is denoted H = H+ [u]H−.

The Hilbert spaces (H±,±[· , ·]) induce in a natural way a positive definite inner product (., .) on H
such that (H ,(., .)) is a Hilbert space. Observe that the inner products [., .] and (., .) of H are related by
means of a fundamental symmetry, i.e. a unitary self-adjoint operator J ∈ L(H ) that satisfies

( f ,g) = [J f ,g] , f ,g ∈H .

Although the fundamental decomposition is not unique, the norms induced by different fundamental de-
compositions turn out to be equivalent; see, e.g. [17, Proposition I.1.2]. Therefore, the (Hilbert space)
topology in H does not depend on the chosen fundamental decomposition.

Let us now introduce J-frames. Given a Krein space (H , [., .]), consider a frame F = { fi}i∈I for the
associated Hilbert space (H ,(., .)) and set

I+ := {i ∈ I : [ fi, fi]≥ 0} and I− := {i ∈ I : [ fi, fi]< 0}.

Then F is called a J-frame for H if M+ := span{ fi : i ∈ I+} and M− := span{ fi : i ∈ I−} are non-
degenerate subspaces of H and there exist constants 0 < α± ≤ β± such that

α±(±[ f , f ])≤ ∑
i∈I±

∣∣[ f , fi]
∣∣2 ≤ β±(±[ f , f ]) for f ∈M±; (5.2)

see [13, Theorem 3.9]. The spaces (M±,±[· , ·]) are then Hilbert spaces by [13, Proposition 3.8] and the
optimal constants 0 < α± ≤ β± are called the J-frame bounds of F .

Note that (5.2) says that F+ = { fi}i∈I+ and F−= { fi}i∈I− are frames for the Hilbert spaces (M+, [., .])
and (M−,−[., .]), respectively. Moreover, the frame bounds for F+ and F− are α+,β+ and α−,β−,
respectively. Also note that not necessarily M+ [⊥]M−.
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The J-frame operator associated with F is defined by

S f = ∑
i∈I+

[ f , fi] fi− ∑
i∈I−

[ f , fi] fi, f ∈H .

It plays a fundamental role in the indefinite reconstruction formula (see [13]). The operator S is an in-
vertible, bounded, self-adjoint operator in the Krein space H . The following representation for J-frame
operators was obtained in [12, Theorems 3.1 and 3.2].

Theorem 5.1. Given a bounded self-adjoint operator S in a Krein space (H , [., .]), the following condi-
tions are equivalent.

(i) S is a J-frame operator.

(ii) There exists a fundamental decomposition

H = H+[
.
+]H− (5.3)

such that S admits a representation with respect to (5.3) of the form

S =

[
A −AK

K∗A D

]
(5.4)

where A is a uniformly positive operator in the Hilbert space (H+, [., .]), K : H−→H+ is a uniform
contraction1 (i.e. ‖K‖< 1), and D is a self-adjoint operator such that D+K∗AK is uniformly positive
in the Hilbert space (H−,−[., .]).

(iii) There exists a fundamental decomposition

H = K+[
.
+]K− (5.5)

such that S admits a representation with respect to (5.5) of the form

S =

[
A′ LD′

−D′L∗ D′

]
(5.6)

where D′ is a uniformly positive operator in (K−,−[., .]), L : K−→K+ is a uniform contraction1,
and A′ is a self-adjoint operator such that A′+LD′L∗ is uniformly positive in (K+, [., .]).

The representations for the J-frame operator given in Theorem 5.1 were used to show that the J-frame
bounds for F are related to the boundary of the spectrum of the uniformly positive operators D+K∗AK
and A′+LD′L∗. More precisely, [12, Proposition 4.1] says that if S is represented as in (5.4), then

α− = min σ(D+K∗AK) and β− = max σ(D+K∗AK). (5.7)

On the other hand, if S is represented as in (5.6), then

α+ = min σ(A′+LD′L∗) and β+ = max σ(A′+LD′L∗). (5.8)

Given a J-frame F = { fi}i∈I for H with J-frame operator S, the canonical dual J-frame of F is
defined as F ′ = {S−1 fi}i∈I . It is also a J-frame for H such that F ′

± = {S−1 fi}i∈I± are frames for

1The operator norm used depends on the norm induced by the respective fundamental decomposition (5.3) or (5.5).
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(M
[⊥]
∓ ,±[., .]), i.e. there exist constants 0 < γ± ≤ δ± such that

γ±(±[ f , f ])≤ ∑
i∈I±

∣∣[ f ,S−1 fi]
∣∣2 ≤ δ±(±[ f , f ]) for every f ∈M

[⊥]
∓ .

The J-frame bounds of F ′ are also related to the representations in Theorem 5.1: if S is represented as in
(5.6) then

γ− = min σ
(
(D′)−1)= (max σ(D′)

)−1 and δ− = max σ
(
(D′)−1)= (min σ(D′)

)−1
, (5.9)

and if S is represented as in (5.4) then

γ+ = min σ(A−1) =
(
max σ(A)

)−1 and δ+ = max σ(A−1) =
(
min σ(A)

)−1; (5.10)

see [12, Proposition 4.2].
The following theorem gives an enclosure for the non-real spectrum of the J-frame operator S of a

J-frame F in terms of the J-frame bounds associated with F and its canonical dual J-frame F ′.

Theorem 5.2. Let F be a J-frame for (H , [., .]) with J-frame operator S. Then,

σ(S)\R ⊆

 ⋃
a∈[δ−1

+ ,γ−1
+ ]

Ba‖K‖(a)

 ∩
 ⋃

b∈[α−,β−]
B b‖K‖

1−‖K‖2

(
b

1−‖K‖2

) , (5.11)

where K is the angular operator appearing in (5.4). Also,

σ(S)\R ⊆

 ⋃
d∈[δ−1

− ,γ−1
− ]

Bd‖L‖(d)

 ∩
 ⋃

b∈[α+,β+]

B b‖L‖
1−‖L‖2

(
b

1−‖L‖2

) , (5.12)

where L is the angular operator appearing in (5.6). The sets on the right-hand sides of (5.11) and
(5.12) are contained in sectors of the form {z ∈ C+ : | Im z| ≤ tanϕ ·Re z} with half opening angles
ϕ = arcsin‖K‖ and ϕ = arcsin‖L‖, respectively.

Proof. Let σB(A) be defined as before Proposition 4.7. Obviously we have σB(A) ⊆ σ(A) ⊆ [a−,a+],
where the constants a± are defined in (3.1). Applying Corollary 4.10 to S represented as in (5.4) we obtain
that

σ(S)\R ⊆
⋃

a∈[a−,a+]
Ba‖K‖(a). (5.13)

Moreover, according to (5.10) we have that a− = δ
−1
+ and a+ = γ

−1
+ . On the other hand, S−1 is also a

J-frame operator and it is easy to check that

S−1 =

[
A−1−KZK∗ KZ
−ZK∗ Z

]
,

where Z := (D+K∗AK)−1 is a uniformly positive operator; cf. Theorem 5.1. Therefore Corollary 4.10
applied to S−1 represented as above implies

σ(S−1)\R ⊆
⋃

r∈[r−,r+]
Br‖K∗‖ (r) ,
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where [r−,r+] is the closure of the numerical range of Z. Also, (5.7) says that r− = β
−1
− and r+ = α

−1
− .

With b := 1
r it follows that

σ(S−1)\R ⊆
⋃

b∈[α−,β−]
B ‖K‖

b

( 1
b

)
.

Recall that λ ∈ σ(S)\{0} if and only if 1
λ
∈ σ(S−1)\{0}. Moreover, observe that for r > 0

1
λ
∈B ‖K‖

r

( 1
r

)
if and only if λ ∈B r‖K‖

1−‖K‖2

(
r

1−‖K‖2

)
.

Therefore,
σ(S)\R ⊆

⋃
b∈[α−,β−]

B b‖K‖
1−‖K‖2

(
b

1−‖K‖2

)
, (5.14)

and (5.11) follows by intersecting (5.13) and (5.14).
The proof of (5.12) is similar. It follows from Corollary 4.10 applied to S represented as in (5.6), and

also to S−1 represented as

S−1 =

[
Z′ −Z′L

L∗Z′ (D′)−1−L∗Z′L

]
,

with Z′ = (A′+LD′L∗)−1.
The statement about the sectors is clear from Corollary 4.10.

In the following, we compare Theorem 5.2 with the enclosure for the non-real spectrum of J-frame
operators obtained in [12].

Let F be a J-frame for a Krein space (H , [., .]) with J-frame operator S and J-frame bounds 0 <
α± ≤ β±. Assume also that 0 < γ± ≤ δ± are the J-frame bounds of its canonical dual J-frame F ′. In [12,
Corollary 5.3] it was shown that

σ(S)\R ⊆ B̊min{γ−1
+ ,γ−1

− }
(
min{γ−1

+ ,γ−1
− }
)
∩
{

λ ∈ C : Re λ ≥ max{α+,α−}
2

}
. (5.15)

Here, B̊r(a) denotes the interior of Br(a). Let us show that the intersection of the sets on the right-hand
sides of (5.11) and (5.12) are (strictly) contained in the right-hand side of (5.15).

For every a ∈ [δ−1
+ ,γ−1

+ ] it is easy to see that Ba‖K‖(a) is strictly contained in B̊
γ
−1
+
(γ−1

+ ). Therefore,

⋃
a∈[δ−1

+ ,γ−1
+ ]

Ba‖K‖(a)⊆ B̊
γ
−1
+
(γ−1

+ ).

On the other hand, given r > 0, if λ ∈B r‖K‖
1−‖K‖2

(
r

1−‖K‖2

)
, then Re λ ≥ r

1+‖K‖ >
r
2 . Thus,

⋃
b∈[α−,β−]

B b‖K‖
1−‖K‖2

(
b

1−‖K‖2

)
⊆
{

λ ∈ C : Re λ ≥ α−
2

}
.

Similarly, it is easy to see that ⋃
d∈[δ−1

− ,γ−1
− ]

Bd‖L‖(d)⊆ B̊
γ
−1
−
(γ−1
− ),
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and  ⋃
b∈[α+,β+]

B b‖L‖
1−‖L‖2

(
b

1−‖L‖2

)⊆ {λ ∈ C : Re λ ≥ α+

2

}
.

Hence, Theorem 5.2 improves the enclosure (5.15) for the non-real spectrum of the J-frame operator S
obtained in [12].
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