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Abstract

We study three well-known minimization problems in Hilbert spaces: the weighted least squares problem
and the related problems of abstract splines and smoothing. In each case we analyze the solvability
of the problem for every point of the Hilbert space in the corresponding data set, the existence of an
operator that maps each data point to its solution in a linear and continuous way and the solvability of
the associated operator problem in a fixed p-Schatten norm.
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1. Introduction

In this work we focus our attention on the following well-known approximation and interpolation
problems: the weighted least squares problem and the related problems of abstract splines and smoothing.
Weighted least squares problems were studied in [12] and some applications include Sard’s approximation,
least squares and curve fitting processes on a closed subspace [25], signal processing [16, 17] and sampling
theory [3, 32]. Regarding the abstract spline and smoothing problems, Atteia [5] obtained an abstract
formulation which resumed most of the spline-type functions. This theory was developed by many authors,
see for example Anselone and Laurent [4], Shekhtman [30], de Boor [6], Izumino [20] and the surveys
by Champion, Lenard and Mills [7, 8]. The abstract spline and smoothing problems were generalized to
bounded linear operators in [14] and have been applied in many areas, such as approximation theory,
numerical analysis and statistics, among others. See, for example [28], [29] and [19].

We study the conditions under which these minimization problems admit a bounded global solution,
i.e., when it is possible to guarantee not only the existence of solutions for every point (of a Hilbert space)
but also the existence of an operator that assigns to each point a solution in a linear and continuous way.
We also study operator versions of these problems when the p-Schatten norms are considered and we
relate the existence of solutions of such problems to the existence of bounded global solutions. Let us
fix some notations: H, E ,F are separable complex Hilbert spaces, L(H,F) is the set of bounded linear
operators from H to F and L(H) := L(H,H).
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The weighted least squares problem

Given A ∈ L(H,F), W ∈ L(F) positive (semidefinite) and x ∈ F , a weighted least squares solution
(or W -LSS) of the equation Az = x is a vector u ∈ H such that

‖Au− x‖W ≤ ‖Az − x‖W , for every z ∈ H, (WLSP)

where ‖x‖W = 〈Wx, x 〉 is the seminorm associated to W .
Our main concern is to determine conditions for the existence of global solutions of (WLSP). First,

we analyze the existence of solutions of (WLSP) for every x ∈ F . Also, we study the existence of a
bounded global solution of (WLSP) or a W -inverse of A, i.e., when there exists an operator G ∈ L(F ,H)
such that, for each x ∈ F , Gx is a W -LSS of Az = x, see [26, 9]. Finally, we study the following operator
least squares problem: given A ∈ L(H,F) (not necessarily with closed range) and W ∈ L(F) positive
such that W 1/2 ∈ Sp for some 1 ≤ p < ∞, analyze the existence of

min
X∈L(F ,H)

‖AX − I‖p,W , (OWLSP)

where ‖Y ‖p,W = ‖W 1/2Y ‖p, for Y ∈ L(F). Problem (OWLSP) was studied in [11] when A ∈ L(H) is a
closed range operator.

Spline and smoothing problems

A similar approach as in the case of the weighted least squares problem will be done for the spline
and the smoothing problems. Consider T ∈ L(H, E) and V ∈ L(H,F).

The classical spline problem: given f0 ∈ R(V ), determine whether there exists

min ‖Th‖, subject to V h = f0.

The classical smoothing problem: given f0 ∈ F , analyze if there exists

min
h∈H

(‖Th‖2 + ‖V h− f0‖
2).

For each of the above two problems we study the existence of different global solutions as in the case
of the weighted least squares problem.

In conclusion, for each of the three problems presented, we give conditions for the existence of solutions
for every point in the corresponding data set, the existence of an operator that provides the solution at
every data point in a continous way and the solution of the operator version of each of these problems
considering the p-Schatten norms. We compare the different approaches and establish necessary and
sufficient conditions for the existence of the described global solutions.

The paper is organized as follows. In Section 2 we recall the notion of compatibility between a positive
operator and a closed subspace of F . Also, we collect certain properties of the Schatten class operators
that will be used along the paper. In Section 3, we study global solutions of the weighted least squares
problem (WLSP), where the range of A is not necessarily closed. It is proved that A admits a W -inverse
if and only if R(A)+N(W ) is closed and the pair (W,R(A)+N(W )) is compatible. This generalizes the
fact that the classical least squares problem min

z∈H
‖Az − x‖ admits a solution for every x ∈ F if and only

if R(A) is closed. Also, we show that (WLSP) admits a solution for every x ∈ F if and only if A admits
a W -inverse, or equivalently, if (OWLSP) admits a solution.

In Section 4, conditions for the existence of bounded global solutions in both the spline and the
smoothing problems are given. The solutions of these problems are compared to the solutions of the
corresponding operator problems in the p-Schatten class. Finally, W -optimal inverses are compared to
W -inverses and another connection between (WLSP) and the smoothing problem is given.

2. Preliminaries

Throughout H, E ,F are separable complex Hilbert spaces, L(H,F) is the set of bounded linear op-
erators from H to F , L(H) := L(H,H), and L(H)+ denotes the cone of semidefinite positive operators.
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The symbol ≤ stands for the order in L(H) induced by L(H)+, i.e., given A,B ∈ L(H), A ≤ B if
B − A ∈ L(H)+. For any A ∈ L(H,F), its range and nullspace are denoted by R(A) and N(A), respec-
tively. Finally, A† denotes the Moore-Penrose inverse of the operator A ∈ L(H,F).

Given two closed subspaces M and N of H, M+̇N denotes the direct sum of M and N . Moreover,
M⊕N stands for their (direct) orthogonal sum and M⊖N := M∩ (M∩N )⊥.

Consider also, the classical inner product on E ⊕H

〈 (e, h), (e′, h′) 〉 = 〈 e, e′ 〉+ 〈 h, h′ 〉 , for e, e′ ∈ E , h, h′ ∈ H, (2.1)

together with the associated norm ‖(e, h)‖2 = 〈 e, e 〉+ 〈h, h 〉 , for (e, h) ∈ E ⊕H.

If H is decomposed as a direct sum of closed subspaces H = M+̇N , the projection onto M with
nullspace N is denoted by PM//N and PM = PM//M⊥ . Also, Q denotes the subset of L(H) of oblique
projections, i.e. Q = {Q ∈ L(H) : Q2 = Q}.

Given W ∈ L(F)+ and a (non necessarily closed) subspace S of F , the W -orthogonal complement of
S is S⊥W = {x ∈ F : 〈Wx, y 〉 = 0, y ∈ S} = W−1(S⊥) = W (S)⊥. If S is a closed subspace of F , the
pair (W,S) is compatible if there exists Q ∈ Q with R(Q) = S such that WQ = Q∗W.

The next proposition, proved in [13, Prop. 3.3], characterizes the compatibility of the pair (W,S).

Proposition 2.1. Consider W ∈ L(F)+ and a closed subspace S ⊆ F . Then the pair (W,S) is compat-
ible if and only if F = S + S⊥W .

The notion of Schur complement of W to S, for an operator W ∈ L(F)+ and a closed subspace
S ⊆ F , was introduced by M. G. Krein in [22] and later rediscovered by Anderson and Trapp [2]. They
proved that the set {X ∈ L(F) : 0 ≤ X ≤ W and R(X) ⊆ S⊥} has a maximum element. The Schur
complement of W to S is defined by

W/S := max {X ∈ L(F) : 0 ≤ X ≤ W and R(X) ⊆ S⊥}.

Let T ∈ L(H, E) be a compact operator. By {λk(T )}k≥1 we denote the eigenvalues of |T | :=
(T ∗T )1/2 ∈ L(H), where each eigenvalue is repeated according to its multiplicity. Let 1 ≤ p < ∞,

we say that T belongs to the p-Schatten class Sp(H, E), if
∑

k≥1 λk(T )
p < ∞ and, the p-Schatten norm

is given by ‖T ‖p := (
∑

k≥1 λk(T )
p)1/p. For short, we write Sp := Sp(H,H). The set Sp(H, E) is a vector

space and T ∈ Sp(H, E) if and only if |T | ∈ Sp (see [33, Theorem 7.6 and Theorem 7.8]). If T ∈ Sp(H, E),
then

‖T ‖pp = tr(|T |p),

where tr denotes the trace of an operator.
Observe that, |T |X ∈ Sp for every X ∈ L(H) and ‖TX‖p = ‖|T |X‖p. The reader is referred to

[27, 31, 33] for further details on these topics.

The following result will be useful along this paper, for its proof see [11, Proposition 2.9]. A more
general result can be found in [21, Proposition 2.5].

Proposition 2.2. Let S, T ∈ Sp for some 1 ≤ p < ∞. If T ∗T ≤ S∗S then ‖T ‖p ≤ ‖S‖p.

The Fréchet derivative will be instrumental to prove some results. We recall that, for a Banach space
(E , ‖ · ‖) and an open set U ⊆ E , a function F : E → R is said to be Fréchet differentiable at X0 ∈ U if
there exists DF (X0) a bounded linear functional such that

lim
Y→0

|F (X0 + Y )− F (X0)−DF (X0)(Y )|

‖Y ‖
= 0.

If F is Fréchet differentiable at every X0 ∈ E , F is called Fréchet differentiable on E and the function
DF which assigns to every point X0 ∈ E the derivative DF (X0), is called the Fréchet derivative of the
function F. If, in addition, the derivativeDF is continuous, F is said to be a class C1-function, in symbols,
F ∈ C1(E ,R).
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Theorem 2.3. Let Gp : Sp → R
+, 1 < p < ∞, Gp(X) = ‖X‖pp, and let X,Y ∈ Sp. Then, for 1 < p < ∞,

Gp has a Fréchet derivative given by

DGp(X)(Y ) = p Re [tr(|X |p−1U∗Y )],

where Re(z) is the real part of a complex number z and X = U |X | is the polar decomposition of the
operator X, with U the partial isometry such that N(U) = N(X).

Proof. See [1, Theorem 2.1]. �

Observe that, if p = 2. Then, G2(X) = tr(X∗X) and

DG2(X)(Y ) = 2 Re tr(X∗Y ), X, Y ∈ S2.

3. Global solutions of weighted least squares problems

Given A ∈ L(H,F), W ∈ L(F)+ and x ∈ F , a weighted least squares solution (or W -LSS) of the
equation Az = x is a vector u ∈ H such that

‖Au− x‖W ≤ ‖Az − x‖W , for every z ∈ H, (WLSP)

where ‖x‖W = 〈Wx, x 〉 is the seminorm associated to W . The related problem is the classical weighted
least squares problem.

If W = I, then problem (WLSP) is the well-known least squares problem. Given A ∈ L(H,F) and
x ∈ F , it can be proved that u is a least squares solution of Az = x if and only if Au − x ∈ R(A)⊥ (see
[24, Theorem 3.1]). As a consequence, it is not difficult to prove the following result.

Proposition 3.1. Let A ∈ L(H,F), W ∈ L(F)+ and x ∈ F . Then u is a W -LSS of Az = x if and only
if Au− x ∈ W (R(A))⊥ or, equivalently, A∗W (Au− x) = 0.

To study the existence of solutions of problem (WLSP) for every x ∈ F in the finite dimensional
case, Rao and Mitra introduced the notion of W -inverse [26]. Later on, the W -inverse was studied for
operators in [9] and [11].

Definition 1. Given A ∈ L(H,F) and W ∈ L(F)+. An operator G ∈ L(F ,H) is called a W -inverse of
A (or a bounded global solution of problem (WLSP)) if for each x ∈ F , Gx is a W -LSS of Az = x, i.e.

‖AGx− x‖W ≤ ‖Az − x‖W , for every z ∈ H.

Observe that A has a W -inverse if the problem (WLSP) admits a solution for every x ∈ F and,
moreover, it is possible to assign a W -LSS to each x ∈ F in a linear and continuous way.

The following result gives necessary and sufficient conditions for problem (WLSP) to admit a bounded
global solution, when A is not necessarily a closed range operator (cf. [11]).

Theorem 3.2. Let A ∈ L(H,F) and W ∈ L(F)+. Then the following statements are equivalent:

i) Az = x admits a W -LSS for every x ∈ F ,

ii) R(A) +W (R(A))⊥ = F ,

iii) the normal equation
A∗W (AX − I) = 0 (3.1)

admits a solution,

iv) the operator A admits a W -inverse.

In this case, the set of W -inverses of A is the set of solutions of (3.1).
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Proof. Along the proof we will use that W (R(A))⊥ = N(A∗W ).
i) ⇒ ii) : By Proposition 3.1, Problem (WLSP) admits a solution for every x ∈ F if and only if there

exists u such that A∗WAu = A∗Wx for every x ∈ F or, equivalently R(A∗W ) = R(A∗WA). Then

F = (A∗W )−1(R(A∗W )) = (A∗W )−1(A∗W (R(A))) = R(A) +W (R(A))⊥.

ii) ⇒ iii) : Suppose that R(A) + W (R(A))⊥ = F . Then R(A∗W ) = R(A∗WA) and the assertion
follows by applying Douglas’ Lemma [15].

iii) ⇒ iv) : There exists X0 ∈ L(F ,H) such that A∗WAX0 = A∗W if and only if A∗W (AX0x−x) = 0
for every x ∈ F or AX0x − x ∈ W (R(A))⊥ for every x ∈ F . Therefore, by Proposition 3.1, X0 is a W -
inverse of A.

iv) ⇒ i) : It is straightforward.
In this case, we have also proved that the set of W -inverses of A is the set of solutions of (3.1). �

Corollary 3.3. Let A ∈ L(H,F) and W ∈ L(F)+. If A admits a W -inverse then (W,R(A)) is compat-
ible.

Proof. If A admits a W -inverse then, by Theorem 3.2 and the identity W (R(A))⊥ = W (R(A))⊥, we
get that

F = R(A) +W (R(A))⊥ ⊆ R(A) +W (R(A))⊥.

Therefore, by Proposition 2.1, the pair (W,R(A)) is compatible. �

A non closed range operator can admit a W -inverse, as the following example shows.

Example 1. Consider W ∈ L(F)+ with infinite dimensional nullspace and A = PN(W )⊥ + A2PN(W ),

where A2 ∈ L(N(W )) and R(A2) is not closed. Then R(A) is not closed and

R(A) +W (R(A))⊥ = R(A) +W (N(W )⊥)⊥ = R(A) +R(W )⊥ ⊇ N(W )⊥ +R(W )⊥ = F ,

so that, by Theorem 3.2, it holds that A admits a W -inverse.

If W = I, it is well known that the least squares problem Az = x admits a solution for every x ∈ F
if and only if R(A) is closed. More generally:

Proposition 3.4. Let A ∈ L(H,F) and W ∈ L(F)+. Then A admits a W -inverse if and only if R(A)+
N(W ) is closed and the pair (W,R(A) +N(W )) is compatible.

Proof. Suppose that A admits a W -inverse. Then, by Theorem 3.2, it holds that F = R(A) +
W (R(A))⊥ = R(A) + W−1((R(A))⊥). Applying W 1/2, it follows that R(W 1/2) = W 1/2(R(A)) +
W 1/2(W−1(R(A)⊥)) = W 1/2(R(A)) + W 1/2(R(A))⊥ ∩ R(W 1/2). Therefore, W 1/2(R(A)) is closed in
R(W 1/2). Hence, R(A) + N(W ) = R(A) + N(W 1/2) = W−1/2(W 1/2(R(A)) is closed. Since F =
R(A)+W (R(A))⊥ = R(A)+N(W )+W (R(A)+N(W ))⊥, by Proposition 2.1, the pair (W,R(A)+N(W ))
is compatible. Conversely, suppose that R(A)+N(W ) is closed and the pair (W,R(A)+N(W )) is compat-
ible. Then F = R(A)+N(W )+W (R(A)+N(W ))⊥ = R(A)+W (R(A))⊥, because N(W ) ⊆ W (R(A))⊥.
Therefore, by Theorem 3.2, A admits a W -inverse. �

Proposition 3.5. Let A ∈ L(H,F) and W ∈ L(F)+. If A admits a W -inverse then R(A) is closed if
and only if R(A) ∩N(W ) is closed.

Proof. If A admits a W -inverse then, by Theorem 3.2, it holds that F = R(A) +W (R(A))⊥. Since
W ∈ L(F)+, it is not difficult to see that R(A)∩W (R(A))⊥ = R(A)∩N(W ). Suppose that R(A)∩N(W )
is closed, then F = R(A) +W (R(A))⊥ = R(A)+̇[W (R(A))⊥ ⊖ (R(A)∩N(W ))]. Hence, by [18, Theorem
2.3], it follows that R(A) is closed. The converse is straightforward. �
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Operator weighted least squares problems

In this subsection we are interested in studying weighted least squares problems for operators consid-
ering Schatten p-norms.

Given A ∈ L(H,F) and W ∈ L(F)+ such that W 1/2 ∈ Sp for some 1 ≤ p < ∞, the problem is to
determine if there exists

min
X∈L(F ,H)

‖AX − I‖p,W , (OWLSP)

where ‖Y ‖p,W = ‖W 1/2Y ‖p, for Y ∈ L(F).
We will refer to problem (OWLSP) as the operator weighted least squares problem.

In order to study problem (OWLSP), we introduce the following associated problem: given A ∈
L(H,F) and W ∈ L(F)+, analyze the existence of

min
X∈L(F ,H)

(AX − I)∗W (AX − I), (3.2)

in the order induced in L(F) by the cone of positive operators. By studying problems (OWLSP) and
(3.2) we will relate the existence of solutions of (OWLSP) to the existence of bounded global solutions
of (WLSP).

In [11], problems (OWLSP) and (3.2) were studied for A ∈ L(H) such that R(A) is closed. The results
obtained in [11] are also valid in the general case.

Proposition 3.6. Let A ∈ L(H,F) and W ∈ L(F)+ such that W 1/2 ∈ Sp for some 1 ≤ p < ∞. Then
the following statements are equivalent:

i) there exists min
X∈L(F ,H)

‖AX − I‖p,W ,

ii) R(A) +W (R(A))⊥ = F ,

iii) there exists min
X∈L(F ,H)

(AX − I)∗W (AX − I).

In this case,

min
X∈L(F ,H)

‖AX − I‖p,W = ‖W
1/2

/R(A)
‖p and min

X∈L(F ,H)
(AX − I)∗W (AX − I) = W/R(A).

Proof. The equivalence between i), ii) and iii) follows by similar arguments as those in the proofs of
[11, Theorem 4.3] and [11, Theorem 4.5], using Proposition 3.1.

In this case. Let X0 be a solution of problem (3.2), i.e., (AX0 − I)∗W (AX0 − I) = min
X∈L(F ,H)

(AX −

I)∗W (AX − I). Then, in particular, 0 ≤ (AX0 − I)∗W (AX0 − I) ≤ W and, by similar arguments as
those found in [11, Proposition 4.4], A∗W (AX0 − I) = 0. Therefore, since A∗[(AX0 − I)∗W (AX0 − I)] =
A∗X∗

0A
∗W (AX0 − I) − A∗W (AX0 − I) = 0, we have that R((AX0 − I)∗W (AX0 − I)) ⊆ R(A)⊥. Let

Z ∈ L(F)+ such that Z ≤ W and R(Z) ⊆ R(A)⊥.Then,

Z = (AX0 − I)∗Z(AX0 − I) ≤ (AX0 − I)∗W (AX0 − I).

Therefore min
X∈L(F ,H)

(AX − I)∗W (AX − I) = (AX0 − I)∗W (AX0 − I) = max {Z ∈ L(F) : 0 ≤ Z ≤

W and R(Z) ⊆ R(A)⊥} = W/R(A).

Finally, by Proposition 2.2, ‖AX0 − I‖p,W = ‖W
1/2

/R(A)
‖p and

min
X∈L(F ,H)

‖AX − I‖p,W = ‖AX0 − I‖p,W = ‖W
1/2

/R(A)
‖p.

�

The next corollary summarizes the results of the section.
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Corollary 3.7. Let A ∈ L(H,F) and W ∈ L(F)+ such that W 1/2 ∈ Sp for some 1 ≤ p < ∞. Then the
following statements are equivalent:

i) Az = x admits a W -LSS for every x ∈ F ,

ii) A admits a W -inverse, i.e., for every x ∈ F , Az = x admits a W -LSS Gx with G ∈ L(F ,H),

iii) there exists min
X∈L(F ,H)

‖AX − I‖p,W .

4. Global solutions of spline and smoothing problems

Following similar ideas as those presented in Section 3, we will study under which conditions the
classical spline and smoothing problems admit global solutions. Moreover, we will relate bounded global
solutions to the solutions of the associated operator minimization problems.

Splines problems

Let T ∈ L(H, E), V ∈ L(H,F) and f0 ∈ R(V ), we study the existence of

min ‖Th‖, subject to V h = f0. (4.1)

Suppose that V h0 = f0, problem (4.1) is equivalent to study when the set

sp(T,N(V ), h0) = {h ∈ h0 +N(V ) : ‖Th‖ = min
z∈N(V )

‖T (h0 + z)‖} (SP)

is not empty. We will refer to problem (SP) as the classical spline problem and any element of the set
sp(T,N(V ), h0) is an abstract spline or a (T,N(V ))-spline interpolant to h0.

In order to obtain solutions of (SP) that depend continuously on h we give the following definition.

Definition 2. Let T ∈ L(H, E) and V ∈ L(H,F). An operator G ∈ L(H) is a bounded global solution of
(SP) if

Gh ∈ sp(T,N(V ), h) for every h ∈ H. (4.2)

We are also interested in comparing the bounded global solution of (SP) to the operator spline problem:
given T ∈ Sp(H, E) for some 1 ≤ p < ∞, V ∈ L(H,F) and B0 ∈ L(H,F) such that R(V ) ⊆ R(B0),
analyze the existence of

min
VX=B0

‖TX‖p, (OSP)

where X ∈ L(H).

We begin by studying problem (OSP). The next result characterizes the existence of solutions of
(OSP) and describes the operators where the minimum is attained.

Proposition 4.1. Let T ∈ Sp(H, E) for some 1 ≤ p < ∞, V ∈ L(H,F) and B0 ∈ L(H,F) such that
R(B0) ⊆ R(V ). Then the following statements are equivalent:

i) there exists min
VX=B0

‖TX‖p,

ii) R(V †B0) ⊆ N(V ) + [T ∗T (N(V ))]
⊥
,

iii) the normal equation
PN(V )T

∗T (PN(V )X + V †B0) = 0 (4.3)

admits a solution.
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In this case,
min

VX=B0

‖TX‖p = ‖[(T ∗T )/N(V )]
1/2V †B0‖p = ‖TX0‖p,

where X0 is any solution of equation (4.3).

Proof. i) ⇔ ii) : Note that if V X = B0 then V †V X = PN(V )⊥X = V †B0 ∈ L(H) (see Douglas’

Lemma [15]). Then, X = PN(V )X + V †B0 and, since ‖TX‖p = ‖X‖p,T∗T , we get that

min
V X=B0

‖TX‖p = min
X∈L(H)

‖PN(V )X + V †B0‖p,T∗T . (4.4)

Then, by [11, Theorem 4.5], problem (OSP) admits a solution if only if

R(V †B0) ⊆ N(V ) + [T ∗T (N(V ))]
⊥
.

ii) ⇔ iii) : It follows from [11, Theorem 2.4].
In this case, by [11, Theorem 4.5] and [11, Theorem 2.4],

min
VX=B0

‖TX‖p = ‖[(T ∗T )/N(V )]
1/2V †B0‖p = ‖TX0‖p,

where X0 is any solution of equation (4.3).
�

Proposition 4.2. Let T ∈ Sp(H, E) for some 1 ≤ p < ∞, V ∈ L(H,F) and B0 ∈ L(H,F) such that
R(B0) ⊆ R(V ). Then X0 ∈ L(H) is a solution of (OSP) if and only if

X0x ∈ sp(T,N(V ), V †B0x) for every x ∈ H.

Proof. Suppose X0 ∈ L(H) is a solution of (OSP). Then there exists Y0 ∈ L(H) such that X0 =
PN(V )Y0+V †B0 and X0 is a solution of (4.3). Then, Y0 is a solution of (4.3) too. So, by [11, Proposition
4.4],

(PN(V )Y0 + V †B0)
∗T ∗T (PN(V )Y0 + V †B0) ≤ (PN(V )Y + V †B0)

∗T ∗T (PN(V )Y + V †B0),

for every Y ∈ L(H). Or, equivalently,

‖T (PN(V )Y0 + V †B0)x‖ ≤ ‖T (PN(V )Y + V †B0)x‖, for every x ∈ H and Y ∈ L(H).

Let z ∈ H be arbitrary. For every x ∈ H \ {0}, there exists Y ∈ L(H) such that z = Y x. Therefore

‖T (PN(V )Y0 + V †B0)x‖ ≤ ‖T (PN(V )z + V †B0x)‖, for every x, z ∈ H.

Then X0x ∈ V †B0x+N(V ),

‖TX0x‖ ≤ ‖Th‖, for every h ∈ V †B0x+N(V )

and X0x ∈ sp(T,N(V ), V †B0x).
Conversely, suppose that X0x ∈ sp(T,N(V ), V †B0x) for every x ∈ H. Then, for every x ∈ H, X0x ∈

V †B0x+N(V ) and
‖TX0x‖ ≤ ‖Th‖, for every h ∈ V †B0x+N(V ).

It follows that V X0 = B0 and

‖TX0x‖ ≤ ‖T (PN(V )z + V †B0x)‖, for every x, z ∈ H.

In particular, given Y ∈ L(H), consider z = Y x. Then

‖TX0x‖ ≤ ‖T (PN(V )Y + V †B0)x‖ for every x ∈ H and Y ∈ L(H),
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or, equivalently,

X∗
0T

∗TX0 ≤ (PN(V )Y + V †B0)
∗T ∗T (PN(V )Y + V †B0), for every Y ∈ L(H).

Then, by Proposition 2.2,

‖TX0‖p = ‖|T |X0‖p ≤ ‖|T |(PN(V )Y + V †B0)‖p = ‖PN(V )X + V †B0‖p,T∗T

for every Y ∈ L(H). Therefore, X0 is a solution of (OSP). �

The following result gives necessary and sufficient conditions for the operator spline problem (OSP)
to have a solution for every B0 ∈ L(H,F). Moreover, it shows that this is equivalent to the condition
that guarantees the existence of a bounded global solution of the classical spline problem (SP).

Theorem 4.3. Let T ∈ Sp(H, E) for some 1 ≤ p < ∞ and V ∈ L(H,F). Then the following statements
are equivalent:

i) there exists min
VX=B0

‖TX‖p for every B0 ∈ L(H,F) such that R(B0) ⊆ R(V ),

ii) there exists a bounded global solution of (SP),

iii) the pair (T ∗T,N(V )) is compatible,

iv) sp(T,N(V ), h0) is nonempty for every h0 ∈ H.

Proof. i) ⇔ ii) : Suppose that X0 ∈ L(H) is a solution of (OSP) for B0 = V. Consider G :=
X0PN(V )⊥ ∈ L(H). Then, by Proposition 4.2,

Gh = X0(PN(V )⊥h) ∈ sp(T,N(V ), PN(V )⊥h) for every h ∈ H.

Note that sp(T,N(V ), PN(V )⊥h) = sp(T,N(V ), h), because PN(V )⊥h+N(V ) = h+N(V ). Hence,

Gh ∈ sp(T,N(V ), h) for every h ∈ H,

so that G is a bounded global solution of (SP).
Conversely, suppose that G ∈ L(H) is a bounded global solution of (SP) and B0 ∈ L(H,F). Set

X0 := GV †B0 ∈ L(H), then

X0x = G(V †B0x) ∈ sp(T,N(V ), V †B0x) for every x ∈ H.

Therefore, by Proposition 4.2, X0 is a solution of (OSP).
i) ⇔ iii) : Suppose that (OSP) has a solution for every B0 ∈ L(H,F). Then, by Proposition 4.1,

R(V †B0) ⊆ N(V ) + [T ∗T (N(V )]
⊥

for every B0 such that R(B0) ⊆ R(V ). Consider B0 such that R(B0) = R(V ), then N(V )⊥ = R(V †B0) ⊆

N(V )+[T ∗T (N(V )]
⊥
, so that H = N(V )+[T ∗T (N(V )]

⊥
and, by Proposition 2.1, the pair (T ∗T,N(V ))

is compatible.
Conversely, let the pair (T ∗T,N(V )) be compatible. By Proposition 2.1, H = N(V )+ [T ∗T (N(V )]

⊥
.

Then, for every B0, R(V
†B0) ⊆ N(V ) + [T ∗T (N(V )]

⊥
and, by Proposition 4.1, (OSP) has a solution for

every B0 ∈ L(H,F) such that R(B0) ⊆ R(V ).
iii) ⇔ iv) : See [14, Theorem 3.2]. �
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Smoothing problems

Let T ∈ L(H, E), V ∈ L(H,F) and f0 ∈ F . A problem that is naturally associated with (SP) is to
find

min
h∈H

(‖Th‖2 + ‖V h− f0‖
2). (SMP)

We will refer to (SMP) as the classical smoothing problem and its solutions are called smoothing splines.
As before, we also study the problem of finding a bounded global solution of problem (SMP); i.e., we

analyze if there exists an operator G ∈ L(F ,H) such that

‖TGf‖2 + ‖V Gf − f‖2 = min
h∈H

(‖Th‖2 + ‖V h− f‖2), for every f ∈ F . (4.5)

Several properties of bounded global solutions of problem (SMP) were given in [10, Section 4] for
V ∈ L(H,F) with closed range.

We are interested in characterizing bounded global solutions of (SMP) in the general case and com-
paring them with the solutions of the following operator smoothing problem: given T ∈ S2(H, E),
V ∈ S2(H,F) and B0 ∈ S2(H,F), analyze the existence of

min
X∈L(H)

(‖TX‖22 + ‖V X −B0‖
2
2). (OSMP)

Define K,B′
0 : H → E ⊕ F ,

Kh = (Th, V h) for h ∈ H, (4.6)

B′
0h = (0, B0h) for h ∈ H. (4.7)

We will consider the inner product and the associated norm on E ⊕ F as in (2.1). It is straightforward
to check that the adjoint of K, K∗ : E ⊕ F → H, is K∗(e, f) = T ∗h+ V ∗f, for e ∈ E and f ∈ F and the
adjoint of B′

0, B
′∗
0 : E ⊕ F → H, is B′∗

0 (e, f) = B∗
0f, for e ∈ E and f ∈ F .

Lemma 4.4. Let T ∈ L(H, E), V ∈ L(H,F) and B0 ∈ L(H,F). Set K and B′
0 as in (4.6) and (4.7).

Then there exists X0 ∈ L(H) such that

(KX0 −B′
0)

∗(KX0 −B′
0) = min

X∈L(H)
(KX −B′

0)
∗(KX −B′

0),

where the order is the one induced in L(H) by the cone of positive operators, if and only if X0 is a solution
of the normal equation

(T ∗T + V ∗V )X = V ∗B0. (4.8)

Proof. This follows in a similar way as in the proof of Proposition 3.6 and Theorem 3.2 using the fact
that u is a least squares solution of the equation Kz = B′

0x for every x ∈ H if and only if u is a solution
of K∗(Ky −B′

0x) = 0, see Proposition 3.1. �

Proposition 4.5. Let T ∈ S2(H, E), V ∈ S2(H,F) and B0 ∈ S2(H,F). Then the following statements
are equivalent:

i) there exists min
X∈L(H)

(‖TX‖22 + ‖V X −B0‖22),

ii) the normal equation (T ∗T + V ∗V )X = V ∗B0 admits a solution.

Proof. Let K and B′
0 be as in (4.6) and (4.7). If X0 is a solution of the normal equation (4.8), then

by Lemma 4.4, (KX0 −B′
0)

∗(KX0 −B′
0) ≤ (KX −B′

0)
∗(KX −B′

0), for every X ∈ L(H). Observe that,
for every X ∈ L(H), |(KX − B′

0)|
2 = (KX − B′

0)
∗(KX − B′

0) = |TX |2 + |V X − B0|2. Then, for every
X ∈ L(H)

‖TX0‖
2
2 + ‖V X0 −B0‖

2
2 = tr(|(KX0 −B′

0)|
2) ≤ tr(|(KX −B′

0)|
2) = ‖TX‖22 + ‖V X −B0‖

2
2,
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see Proposition 2.2. Thus, (OSMP) admits a solution.
To prove the converse, consider F2 : L(H) → R

+,

F2(X) = ‖TX‖22 + ‖V X −B0‖22 = ‖TX‖22 + tr((V X −B0)
∗(V X −B0))

= ‖TX‖22 + ‖V X‖22 − 2Re [tr(B∗
0V X)] + ‖B0‖22

= ‖|T |X‖22 + ‖|V |X‖22 − 2Re [tr(B∗
0V X)] + ‖B0‖22

By Theorem 2.3, F2 has a Fréchet derivative and, furthermore, for every X,Y ∈ L(H)

DF2(X)(Y ) = DG2(|T |X)(|T |Y ) +DG2(|V |X)(|V |Y )− 2Re [tr(B∗
0V Y )]

= 2Re [tr((|T |X0)
∗|T |Y )] + 2Re [tr((|V |X0)

∗|V |Y )]− 2Re [tr(B∗
0V Y )],

where G2(X) = ‖X‖22 = tr(X∗X).
Suppose that X0 ∈ L(H) is a global minimum of ‖TX‖22+‖V X−B0‖22. Then X0 is a global minimum

of F2 and, since F2 is a C1-function

DF2(X0)(Y ) = 0, for every Y ∈ L(H).

Then, for every Y ∈ L(H),

Re [tr(((|T |X0)
∗|T |+ (|V |X0)

∗|V | −B∗
0V ) Y )] = 0.

Then, it follows that
X∗

0 |T |
2 +X∗

0 |V |2 −B∗
0V = 0

or, equivalently
(T ∗T + V ∗V )X0 = V ∗B0.

�

To study the existence of solutions of inconsistent linear systems under seminorms defined by positive
semidefinite matrices, Mitra defined the optimal inverses for matrices [23]. In [10], Mitra’s concept was
extended to Hilbert spaces:

Definition 3. Given operators A ∈ L(H,F) and W ∈ L(F ⊕ H)+, a W -optimal inverse of A is an
operator G ∈ L(F ,H) such that

‖

(

AGf − f

Gf

)

‖W = min
h∈H

‖

(

Ah− f

h

)

‖W ,

for every f ∈ F . Here ‖ · ‖W denotes the seminorm defined by W : ‖

(

f

h

)

‖W = ‖W 1/2

(

f

h

)

‖.

Consider W with the following block form

(

W11 W12

W ∗
12 W22

)

, (4.9)

where W11 ∈ L(F)+, W22 ∈ L(H)+ and W12 ∈ L(H,F). By [10, Theorem 2.1] and [23, Theorem 4.2],
A ∈ L(H,F) admits a W -optimal inverse if and only if the equation

(A∗W11A+A∗W12 +W ∗
12A+W22)X = A∗W11 +W ∗

12 (4.10)

admits a solution. In this case, the set of W -optimal inverses of A is the set of solutions of (4.10).

The following result relates the existence of a W -optimal inverse to the existence of a solution of
(OSMP). Some equivalences of the next proposition were proven in [10, Theorem 4.2] for V ∈ L(H,F)
with closed range. The proofs of such equivalences are included in order to remark that the range of V
need not be closed.
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Theorem 4.6. Let T ∈ S2(H, E) and V ∈ S2(H,F). Then the following are equivalent:

i) there exists min
X∈L(H)

(‖TX‖22 + ‖V X −B0‖22) for every B0 ∈ S2(H,F),

ii) R(V ∗) ⊆ R(T ∗T + V ∗V ),

iii) there exists min
h∈H

(‖Th‖2 + ‖V h− f0‖2) for every f0 ∈ F ,

iv) V admits a

(

I 0
0 T ∗T

)

-optimal inverse,

v) there exists a bounded global solution of the classical smoothing problem (SMP).

If R(V ) is closed, conditions i) to v) are also equivalent to

vi) the pair (T ∗T,N(V )) is compatible.

Proof. i) ⇔ ii) : Suppose that (OSMP) has a minimum for every B0 ∈ S2(H,F). Then, by Proposition
4.5 and Douglas’ Lemma, R(V ∗B0) ⊆ R(T ∗T +V ∗V ). Consider f0 ∈ F , then there exists B0 ∈ S2(H,F)
such that f0 = B0x, for some x ∈ H. Therefore

V ∗f0 = V ∗B0x ∈ R(V ∗B0) ⊆ R(T ∗T + V ∗V ).

Hence R(V ∗) ⊆ R(T ∗T + V ∗V ). Conversely, suppose that R(V ∗) ⊆ R(T ∗T + V ∗V ) and consider B0 ∈
S2(H,F). Then R(V ∗B0) ⊆ R(V ∗) ⊆ R(T ∗T + V ∗V ). Hence, by Douglas’ Lemma and Proposition 4.5,
(OSMP) has a solution for every B0 ∈ S2(H,F).

ii) ⇔ iii) : Let K be as in (4.6). Given f0 ∈ F , it holds that min
h∈H

(‖Th‖2+ ‖V h− f0‖2) = min
h∈H

‖Kh−

(0, f0)‖2 exists if and only if the normal equation K∗Kh = K∗(0, f0) has a solution; equivalently V ∗f0 =
(T ∗T + V ∗V )h has a solution. Therefore, min

h∈H
(‖Th‖2 + ‖V h− f0‖2) exists for every f0 ∈ H if and only

if R(V ∗) ⊆ R(T ∗T + V ∗V ).
ii) ⇔ iv) : It follows by (4.10) and Douglas’ Lemma.
iv) ⇔ v) : Consider the inner product and the associated norm on F⊕H as in (2.1). Then G ∈ L(F ,H)

is a

(

I 0
0 T ∗T

)

-optimal inverse of V if and only if for every f0 ∈ F , ‖V Gf0 − f0‖2 + ‖Gf0‖2T∗T ≤

‖V h− f0‖2 + ‖h‖2T∗T for every h ∈ H or, equivalently, ‖V Gf0 − f0‖2 + ‖TGf0‖2 ≤ ‖V h− f0‖2 + ‖Th‖2

for every h ∈ H, that is, G is a bounded global solution of (SMP).
ii) ⇔ vi) : Suppose that R(V ) is closed, then R(V ∗V ) = R(V ∗). It can be seen that R(V ∗) =

R(V ∗V ) ⊆ R(T ∗T + V ∗V ) if and only if R(T ∗T + V ∗V ) = R(T ∗T ) +R(V ∗V ). But this is equivalent to
(T ∗T,N(V )) being compatible, see [10, Theorem 3.2]. �

In Theorem 4.6, it was proved that the existence of a bounded global solution of the classical smoothing

problem (SMP) is equivalent to the existence of a W -optimal inverse for the weight

(

I 0
0 T ∗T

)

. In

a similar way, in Theorem 3.2, the equivalence between the existence of bounded global solutions for
(WLSP) and the existence of W -inverses was stated for a positive weight W . Motivated by this relation,
in what follows we are interested in comparing W -inverses to W -optimal inverses. We begin with the
following lemma.

Lemma 4.7. Let W ∈ L(F ⊕ H)+ with block form as in (4.9), A ∈ L(H,F) and Â ∈ L(H,F ⊕ H) be
defined by Âh = (Ah, h). Then, there exists a W -inverse of Â if and only if there exists a W -optimal
inverse of A and the equation

(A∗W11A+A∗W12 +W ∗
12A+W22)X = A∗W12 +W22 (4.11)

admits a solution.
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Proof. Suppose that Z ∈ L(F ⊕H,H) is a W -inverse of Â, then Â∗WÂZ(f, h) = Â∗W (f, h) for every
(f, h) ∈ F ⊕H, i.e.,

(A∗W11A+A∗W12 +W ∗
12A+W22)Z(f, h) = A∗W11f +A∗W12h+W ∗

12f +W22h,

for every (f, h) ∈ F ⊕H. In particular, if h = 0, then

(A∗W11A+A∗W12 +W ∗
12A+W22)Z(f, 0) = A∗W11f +W ∗

12f, for every f ∈ F .

Therefore Z1(f) := Z(f, 0) is a W -optimal inverse of A. In the same way, if f = 0, then

(A∗W11A+A∗W12 +A∗
12A+W22)Z(0, h) = A∗W12h+W22h, for every h ∈ H.

Therefore Z2(h) := Z(0, h) is a solution of (4.11).
Conversely, suppose that Z1 ∈ L(F ,H) is a W -optimal inverse of A and Z2 ∈ L(H) is a solution of

(4.11). Let Z : F ⊕H → H be defined by Z(f, h) := Z1(f) + Z2(h). Then, clearly

Â∗WÂZ = Â∗W.

Also,

‖Z(f, h)‖2 = ‖Z1(f) + Z2(h)‖
2 ≤ (‖Z1(f)‖+ ‖Z2(h)‖)

2 ≤ (‖Z1‖‖f‖+ ‖Z2‖‖h‖)
2

≤ (max{‖Z1‖, ‖Z2‖})
2(‖f‖+ ‖h‖)2 ≤ 2(max{‖Z1‖, ‖Z2‖})

2(‖f‖2 + ‖h‖2)

= 2(max{‖Z1‖, ‖Z2‖})
2‖(f, h)‖2.

Therefore Z ∈ L(F ⊕H,H) and Z is a W -inverse of Â. �

The next proposition shows that certain optimal inverses can be seen as the weighted inverse of an
associated operator.

Proposition 4.8. Let A ∈ L(H,F), w ∈ L(H)+ and Â ∈ L(H,F ⊕ H) be defined by Âh = (Ah, h).

Then, there exists a

(

I 0
0 w

)

-inverse of Â if and only if there exists a

(

I 0
0 w

)

-optimal inverse of

A.

Proof. Suppose that there exists a

(

I 0
0 w

)

-optimal inverse of A. By (4.10) and Douglas’ Lemma,

R(A∗) ⊆ R(A∗A + w). This is R(A∗A) ⊆ R(A∗A + w) and, this is equivalent to R(A∗A) + R(w) =
R(A∗A + w). Hence, R(w) ⊆ R(A∗A + w) and by Douglas’s Lemma, the equation (A∗A + w)X = w

admits a solution. Therefore, by Lemma 4.7, Â admits a

(

I 0
0 w

)

-inverse. The converse follows by

Lemma 4.7. �
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