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We study the se$' = {(a,b) € A x A : aba = a, bab = b} which pairs the relatively regular elements of a
Banach algebral with their pseudoinverses, and prove that it is an analytic submanifaltdofA. If Ais a
C*-algebra, insideS' lies a copy the sef of partial isometries, we prove that this set i€'& submanifold of

S (as well as a submanifold of). These manifolds carry actions from, respectivély, x G4 andU4 x Ua,
whereG 4 is the group of invertibles oA andU 4 is the subgroup of unitary elements. These actions define
homogeneous reductive structures fomndZ (in the differential geometric sense). Certain topological and
homotopical properties of these sets are derived. In particular, it is shown thas & von Neumann algebra
andp is a purely infinite projection ofi, then the connected componéhtof p in Z is simply connected. If

1 — pis also purely infinite, theff,, is contractible.
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This paper contains a study of the differential geometry of th& s#tall pairs(a, b) of elements of a Banach
algebraA such thab (resp.a) is a generalized inverse af(resp.b), and of the sef of all partial isometries of a
C*-algebraA. It can be seen as a continuation of [12] for the Banach algebra setting, and of [25] and [26] for the
C*-algebra setting. The first appearences of generalized inverse methods in analysis go back to Fredholm, Hilbert
and Hurwitz. In an explicit form, it was E. H. Moore who first considered what today is called de Moore-Penrose
inverse. It was only after 1950, when Bjerhammar [10], and Penrose [29]-[30] rediscovered the Moore-Penrose
pseudoinverse of a matrix, that the subject took great impulse (see the recent paper [9] by A. Ben Israel for an
account of this story). Its popularity came from the extremely vast and diversified field of its applications in
many scientific disciplines. The reader is referred to the book [27], edited by M. Z. Nashed, which contains many
developments, applications and a list of 1776 references related to generalized inverses.

We shall concentrate in some local and global topological-geometrical propertieamdZ. The first de-
scription of the connected componentsZofor the algebral(H) of all linear bounded operators on a Hilbert
spaceH was done by Halmos and McLaughlin [18]: they proved that two partial isometries L(H) belong
to the same connected componentZof and only if they have the same rank, nullity and co-rank. A simpli-
fication of their proof, found by R. G. Douglas (see [17], solution to problem 131) shows thdtelong to
the same component if and only if there exist unitaties in L(H) such thatuav* = ¢. Mbekhta and Skhiri
[25] extended these results to the Calkin algebra, and Mbekhta and Stratila [26] proved them for von Neumann
algebras. The topology of the s€thas been studied in part by J. L. Taylor [32]. B. Gramsch [16] studied the
set of Fredholm operators with fixed dimension of the kernel, and proved that it is an analytic homogeneous
manifold. He also extended some of these results to the context of Frechet algebras with open group of invertible
elements. In [12] there is a geometrical study of certain parfs @bserve thafa, b) belongs taS if and only
if aba = a andbab = b; in particularab andba belong toQ, the set of idempotents of. For a fixedr in Q,
consider the sef, = {(a,b) € S : ar = a, rb = b, ba = r}. There is a natural action @f 4 over S,. given by
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2 Andruchow, Corach, and Mbekhta: Generalized inverses

u. (a,b) = (ua,bu~') and this action describe%. as a discrete union of homogeneous spacésofOf course,
there are many natural actions@f; over.S but what Halmos-McLaughlin’s result says is that it is an action of
G 4 x G4 overS what seems to be needed, if one wants that the orbits contain the connected components. This
is exactly the strategy we shall follow. Of course, for the casg wk shall look for an action o/ 4 x U4 over
7, whereU 4 denotes the group of unitaries df

It turns out thatS is what geometers call a reductive homogeneous space. The reader is referred to the
classical book of Kobayashi and Nomizu [21] for finite dimensional manifolds, and to [22] and [5] for a general
description of these reductive spaces, in the case of Banach algebras and algebras of operators. As examples of
reductive homogeneous spaces in the context of Banach aadg€bras we mention sets of projections [13],
spheres of C*-Hilbert modules [2], projective spaces of C*-algebras and Hilbert modules [3], [4], and so on. The
geometrical methods used here may have some relevance in the study of generalized resolvent problems as those
considered by Apostol and Clancey [6]-[7] and Mbekhta [23]-[24]. We intend to proceed with these matters
elsewhere. Let us mention that in thé-@lgebra case the subsgi,b) € S : a > 0, b > 0} plays a relevant
role in the so called “fidelity theory” of quantum physics, studied by Josza [19], Uhimann [33] and Alberti [1].

The contents of the paper are as follows. In Section 2 we define the action &fG 4 on S by

(u,v). (a,b) = (uav™",vbu™")

and determine its orbits. This allows one to determine also the connected comporferitdaséover, it is shown
that for a fixed(a, b) in S the map

Tap)  GaxGa — 8, Tap(u,v) = (u,v).(a,b)

admits continuous local cross sections, so that, using results of Raeburn [31], the orbits of thé¢i.actibe
images of the maps,, ;) are submanifolds oft x A andr, ;) is a submersion. There is also a description of
the properties of the map(a, b) = (ab, ba) from S to Q x Q, whereQ is the set of all idempotents of. The
structure of the orbits af) under the similarity action bg 4 is relevant for the results in this section. The reader
is referred to [34] for a nice study of the componentg)of

Section 3 is devoted to define and study a natural connectio$i and a reductive structure on the homo-
geneous space determined by, ;). We explicitely describe the geodesics of the connection by means of the
tangent maps of the local sections defined in Section 2.

The C:-algebra case is studied at Section 441is a unital C-algebra thetf can be identified with the subset
of S of all pairs(u,u*), for u in Z and restrict the action aff 4 x G4 to Us x U,. This action has similar
properties so we get the description of all connected componefit$anfan arbitrary C-algebra, extending the
results mentioned before. In particular, the connected componé&noin; is the set/yul,, whereU, denotes
the connected componentiify of the identity. We prove thaf is aC> submanifold ofA, or, under the above
identification, ofS. The map

p: I — PxP, o) = (uu',u u)

is a fibration, which enables one to prove that, for exampld,ig a von Neumann algebra, apc&nd1 — p are
purely infinite projections, then the connected componeptinfthe setZ is contractible.

In Section 5, we study the subs&t = {(a,b) € S : ab = ba}, which can be regarded as the set of elements
of A which are invertible in some cornerq of A (hereq is an idempotent whose range equals the rangg.of
This set is a submanifold of x A, and the base space of a fibre bundled is a von Neumann algebra, this fact
enables one to show that for every projectjan A, it holdsmy (Sa, (¢,q)) ~ m1(Gqaq, ¢), WhereG, 4, denotes
the group of invertibles of Aq.

1 Generalized invertible elements

Let A be a Banach algebra with identity and define

S = {(a,b): aba =a, bab=b}.
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If G 4 denotes the group of invertible elementsdfconsider the left action
L:GaxGax8 — S, Lw:l(ab) = (w,z2).(a,b) = (waz_l,zbw_l).

The action ofG4 x G4 over S induces a partition of5' in orbits: the orbit of(a,b) € S is O, =
{(waz=t, zbw™t) : w,2 € G4}. Denote byC',.» the connected component @f, b) in S. In order to study
the orbits of the actiorL, recall the similarity action ofs 4 over the set) of all idempotents ofd, namely
L':GaxQ — Q, L'(w,q) = wqw™! forw € Ga, ¢ € Q. Itis well-known that the mapg, : G4 — Q,
m,(w) = wqw~! admits local cross sections at any point of its image. More precisely, giventhe image of
7, there exist an open neighborhobdof ¢o in @ and an analytic map’ : U — G 4 such thatr,(o’(r)) = r
forall » € U. In fact, it suffices to define, for a convenienbetweerd and1, U = {r € Q : ||r — qo|| < a}
ando’'(r) = rq + (1 — r)(1 — ¢q). Observe that, forv small enough, the image ef is contained in the
connected componert¥, of 1 in G4. For eachg € @ denote byO, the orbit of ¢ by the actionL’, i.e.
O, = {wqw™" : w € G4} and byC,, the connected component @fn Q. By the remarks above, each orbit is
open and therefore closed, so that, in particulgr= {wqw=! : w € Gy }. The following result establishes the
existence of continuous local cross sections for the action (cf. 4.2 of [16]).

Proposition 1.1 For every(a,b) € S there exist an open neighborhodt of (a, b) in S and a continuous
mappingo : W — Gy x Go such thatl, ./ vy = (a', V") forall (a',b") € W.

Proof. As mentioned before, {z,b) € S thenq; = ab andgs = ba belong toQ. By the remarks above,
there exist two analytic maps : W1 — G4, o) : Wao — G 4 whereW; (resp.Ws) is an open neighborhood of
q1 (resp.gz) in Q such thatr, (o}, (r)) =r for all r € Wy, k = 1,2. DefineW ={(a/,0’) € S : 't/ € W,
b'a’ € Ws}. ThenW is an open subset ¢f because the map: S — Q x Q, ¢(c¢,d) = (cd, dc) is obviously
continuous. Define

oW — GaxGa, o(dV) = (doy(t/a)b+ (1 —d'b)oi(a't'),o5(ba’))
for (a’,0") € W. Clearlyo is analytic. Observe that

['ab(V'a )b+ (1 —d'b)oy(d'V)]F = ach(b'a )™V + o) (a'V) (1 - d'V). (1.2)
Indeed, note that] (a’b')ab = o’b/o}(a’'V’) andahy(b'a’)ba = b'a’a(b'a’). Then

lach(b'a’) 10 + o (a'b) "1 (1 — V)] [a'ah(b'a )b + (1 — a'V)o' (a'V)]

= ach(b'd )" d dh(Va' )b+ ot (a'b) (1 — a'b ) (a'D)
=ab+1—ab = 1.

The product on the reverse order is dealt analogously. Let us show that

Lo(a p)(a,0) = (a',0'), (1.2)
for all (a’,’) € W. First compute

[d oy(0'a )b+ (1 —a'b)o)(a'V)]ach(b'a') L.
Note thata’ah (b'a’)bach(V'a')~! = a’b'a’ = o’ and the other summand equals zero because

(1—a't)oi(a'b)a = (1 —a'b)oi(a'b)aba = (1 —a'b)a'V'o}(a'V)a = 0.
Next compute

oy (b'a)b[a' oy (b'a' )b+ (1 — a'b)oy(a'd))] 7,
which by (1.1) equals

oh(t'a")b[ach(b'a’) "0 + ol (a'b) M (1 = a'V)] .
The first summand gives, (b'a’)bach(b'a’) 16" = b'a’t’ = V', and the second equals zero, because

boy (') 1 = d'V) = babai(a'b) " (1 —a't) = boi(a'¥)a'V (1 —a'b) = 0.
Therefore (1.2) holds. O
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4 Andruchow, Corach, and Mbekhta: Generalized inverses

Remark 1.2 If o1, (W},) is contained inG for k = 1, 2, theng (1) is contained in the connected component
of the identity inG 4 x G 4, which iIsGy x Gy.

Corollary 1.3 The orbits of the action a4 x G 4 are open and closed. In particular, the connected compo-
nent of(a,b) in S'is (G4 x Ga)o - (a,b).
The last result proves that

Clapy = {(uav™" vbu™") s u,v € Go}

and
Oap) = {(uavil,vb’ufl) tu,v € GA}.

Example 1.4 1. Ifa = b =0, then(a,b) € S andC, ;) = O = {(0,0)}.

2. Ifae Gandb=a"', then(a,b) € S, Ciapy = {(u,u™") : u € Go} andO, ) = {u,u™"' : u € G}.

3. Ifa=pe Qandb = pthen(a,b) € S, hereC(, ) = {(upv~",vpu™) : u,v € Gy} and, analogously,
O(ap) = {(upv=t,vpu™) 1 u,v € G}

We begin now the geometrical study of the orbitsf

Theorem 1.5 The orbitO, ;) is an analytical submanifold of x A, and the map

Tap) : GaxGa — Opy, Tap(w,z) = (w,2).(a,b)
is an analitic submersion.
Proof. Considerthe map: A x A — A x A given by
s(z,y) = (wb+ (1 —zy)(1 —ab), ywba + (1 — yz)(1 — ba)) .

Note thats restricted to the open neighbourhodd C O, ;) of (1.1) above coincides with. It is clearly an
analytic map. Now the map,, ;) is open, because it has continuous local cross sections. Let us regard it as a

map fromG 4 x G 4 t0 A x A in order to differentiate it. Denote hy—= d(”(aﬁb))(l_n- We claim that the kernel

and the image of : T(Ga x Ga)1,1) ~ A x A — A x Aare complemented subspacesiok A. Indeed, the
identity

M(ab) ©8°M(ap) = T(a,b)

holds on a neighbourhood ¢f,1) in G4 x G 4 (which is open inA x A), because coincides witho on a
neighbourhood ofa, b) = 7, ;(1,1). By differentiating this identity one gets

dodspod = 4.

This implies that is relatively regular inL(A x A), and therefore has complemented kernel and image. We now
use Proposition 1.5 of [31], which states that in this a@gg;) is a submanifold and, ;) is a submersion.

It follows that each orbi©, ;) (which is a union of connected componentsSofis an analytic homogeneous
space of7 4 x G 4. O

The tangent spac€S, ;) can be computed in two ways. First, a tangent vectdr gt) is the derivative at
t = 0 of a curve(a(t),b(t)) € S such thata(0),b(0)) = (a,b), thus

TS@p = {(z,y) € Ax A:xba+ abxr + aya = x, yab + bay + bxb =y} .
Second, using the fact that, ;) is a submersion, it holds
TS@ap = IMé = {(ra—ay,yb—bx):x,yc A}.

Note that this subspace is complementediin A.
We shall need the following results.
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Proposition 1.6 Letp, ¢ € . Then the following properties are equivalent:

1. there existe, y € A such thatep = qx, py = yq, yzp = p, Tyq = q;

2. there existz, b € such thataba = a, bab = b, ap = qa, pb = bq, bap = p, abq = ¢;
3. there existw, z € A such thatwz = ¢, zw = p;

4. there exist, d € A such thatedc = ¢, ded = d, c¢d = ¢, dc = p.

Proof. The proof is straightforward. To prove that 1 implies 2, put xp andb = py. To prove that 2
implies 3 putw = a andz = b. To prove that 3 implies 4 put= qw andd = zq. To prove that 4 implies 1 put
x = candy = d. O

Proposition 1.7 Each of the above properties defines an equivalence relation.

Proof. If suffices to prove that 1. defines an equivalence relation. In facp, # ¢z, py = yq, yxrp = p,
xyq = gandwq = rw, gz = zr, zwq = q,wzr = rthenwzp = rwz, pyz = yzr, yzwep = p,wzyzr =r. [

Remark 1.8 If (a,b) € S andld’ € A, then(a,b’) € S if and only if there existc,y € A such thatya = q,
ar = a, b = zby if and only if there existr, y € G4 such thalya = a, ax = a, b’ = zby.

Proof.z=1—-ba+ba,y=1—ab+ab'. O
Consider now the analytic map
p: S — QxQ, (a,b) — (ab,ba)
which plays a relevant role in what follows. First, we observe that the last proposition characterizes the image
of .
(éorollary 1.9 Letp, ¢ € Q. The pair(p, q) belongs to the image ¢f if and only if there exist,y € A such
thatzy = ¢, yzr = p.

Proof. It suffices to prove thaty = ¢ andyx = p then there existéa, b) € S such thaub = p, ba = q.
Takeb = gx, a = yq. O

Observe first thap is compatible with the actions @f4 x G4 on S and of G4 on Q. In other terms, that
o((w, 2) - (a,b)) = (w - ab,z - ba) = (wabw™!,zbaz=1), for all w,z € Ga, (a,b) € S. The proof of the
following two results is straightforward.

Proposition 1.10 For all (a,b) € Sitholdsy (O, 4)) = Oap X Opq.

Corollary 1.11 If (¢,7) € im ¢ then(q,uru=!) € imp forall u € G 4.

Proposition 1.12 The mapp : O(,5) — Oab x Oy, IS an analytic submersion.

Proof. Consider the following diagram

T(a,b)
GA X GA O(a,b)
TabXTha \ ®
Oab X Oba

wherem,y, : Ga — Ou = {gabg™t : g € Ga}, Tap(g) = gabg~! is the analytic submersion (i.e. homogeneous
space) induced by the similarity action@f; in Q, g . (ab) = gabg~!, and analogously fdra. It is apparent that
this diagram is commutative. Denote by, (resp.os,) the analytic local cross section fay,;, (resp.my,) as in
(12.1). Then

T(ab) © (Tab X Oba)
is an analytical local cross section fpr Thereforep is a submersion. O
Denote bySa = {(a,b) € S : ab = ba}. Then(a,b), (a,c) € Sa implies thath = ¢. The map
¢ :5n — Q
is surjective.
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6 Andruchow, Corach, and Mbekhta: Generalized inverses

2 AconnectioninS

In this section we obtain a differential equation to lift smooth curves$.inThis procedure leads to a notion
of parallel transport, and a covariant derivativedn In the previous section we used the local cross section
o = 0(4,), Which locally has the property

Oy (@ 1) (a,b) = (a1).

Suppose that/(t) = (y1(t),~2(¢)) is a curve inS, for ¢t € [0,1]. For a fixedt € [0,1], let P be a partition
{0 =1ty <ty <...<t,=t}of[0,¢] suchthat for each = 1,...,n, y(t;) lies in the domain ob;,_,). It
follows that the element

9t = y(te) (V)0 (t,_0) (V(EE)) - - 05(0) (7 (81))

is invertible and verifieg: . v(0) = ~(t) (wherek is defined byt;, < ¢ < t;x+1). Now we would like to take
limit when the norms of the partitior8 tend to zero, in order to obtain an invertible elemet) = lim ¢ g,

which is independent of the partitions, and lifts the cupyee.T'(¢).~(0) = ~(¢) for all ¢. Instead of this, we
shall obtain a linear differential equation, whose solutiof.iff & is small enough, thet), < ¢+ h and therefore

Gi+h — gt Ox(1) (v(t+h))—1
h = h Gt -

Taking limits here, with respect to partitions and with respedt,tone gets the equation

().
h=0

T = 5+ )

A straightforward computation shows that

ot m)| = Al = (A1), As(t)),

dh h=0
where

A = Y2 =y e and Ay =y — ey + 29271727 - (2.)
The only fact used to obtain these formulae is that,y1 = 1 implies thaty; v4v172 + 11727172 = 0, and an
analogous identity in the reverse order of the

Proposition 2.1 Let~(t) = (71(t),y2(t)) be a smooth curve i§ with v(0) = (a,b). Let A be as in(2.1).
The unique solution of the linear equation

I't) = ART(2),
O = ) @2
isacurvel: [0,1] — A x A with values inG 4 x G 4 which satisfies
') .(a,b) = (), te]0,1].
Proof. Itisa standard fact that a solution of a linear equation with invertible initial condition stays invertible
[143& us see thaf = (I'y, I'9) lifts 4. Compute

(Cy'yl2) = — D7Dy Dy + Dy Ty + Dy I

—T7 (Y72 — 1 + mvsmye)mle + Ty
+ T v (7 — 129 + 2929 e )T
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We claim that this expression vanishes. It suffices to show that

0 = =727 + 71771 — MY2Y1Y272 + Y1 F Ve — Y12y + 27172712 -
This is clearly the case, because

M= M e e
Thereforel' [ (t)v1(t)T'2(t) is constant. Since it equalsfor ¢t = 0, it follows that~, (t) = T';(t)al'; " (t).
Analogously one sees thai(t) = Ty (t)bT5 1 (1), i.e.
(71(8),72(t)) = (T1(2), T2(t)) - (a,b). O
Let us introduce now a reductive structure on the homogeneous space
T(a,b) * GaxGy — O(a,b) cS.

The isotropy group is” = F(, ) = {(k,h) € Ga x G4 : (k,h).(a,b) = (a,b)},i.e.(k,h) € Fif ka = ah

andhb = bk. A reductive structure on the homogeneous sgiéte x G 4)/F is a decompositiotF & H of the
Lie algebra ofG 4 x G 4, whereF is the Lie algebra of”, and the supplemerit is Ad(F)-invariant. Let us
make these things precise in our particular context. First, the Lie algelota efG 4 identifies withA x A, with

the usual conmutator as the Lie bracket. With this identificatfors apparently given by

F = A{(z,y) € Ax A:za=ay, yb="bx}.

For (k,h) € F, ad(k,h) : A x A — A x Ais the inner automorphism given by the invertilfle /), that is,
ad(k,h)(z,y) = (kxk~', hyh~1). This map is clearly linear, therefork(k, h) = ad(k, h). We must exhibit a
complement fotF C A x A which is invariant for these inner automorphisms. To do so, differentiate

O(ab) * VCS — GaxGy,
Y= d(a(a’b))(a b T(S)(ap) — AxA, X(x,y) = (vb— ay + ayab,ya — br + 2bxba) .

Asin (1.5),6 = d(m(a)) 1) andy verify 60X 04 = 4. It follows that¥ o § is an idempotent of. (A x A) whose

kernel equals the kernel éf which in turn coincides witl#. It follows that the range oF o ¢ is a supplement
for F. Explicitely,

Yod(x,y) = (zab— ayb+ abr — abxab, yba + bay — 2bayba) .
We claim thatH := R(X o §) is Ad(F)-invariant. Indeed, ifk, h) € F, then
Yo d(kak™" hyh™")
= (k:xk:_lab — ahyh™tb + abkxk™t — abkzk ™ ab, hyh ™ ba + bayhyh ! — Qbahyh_lba)
= (kzabak™' — kaybk™" + kabxk™' — kabxabk ™', hybah™" + hbayh™" — 2hbaybah™")
= (k,h) (Z od(x, y)) (k_l, h_l) .

Since this supplemerit is obtained by means of, ), it follows that the Equation (2.2) lifts curves hor-
izontally, i.e. ify = (71,72) is a smooth curve it with v(0) = (a,b), andT' is the solution of (2.2) with
) =(1,1),thenl’(¢t) e T'(¢t) . H

The reductive structure induces a linear connectiofi.ifror example, ify C S is a smooth curve ang, y)
is a tangent vector at(0), then the parallel transport ¢f, y) along-y is given by

I'(). (z,y),

wherel is the solution of (2.2) witi*(0) = (1,1). In particular, given(a,b) € S and(z,y) € T(S)(a,p), the
unique geodesig in S satisfyingy(0) = (a,b) andy’(0) = (z,y) is the curve

~(t) = (etzl(%y),etzz(w,y)).(a7b).

These are standard facts from the theory of homogeneous reductive spaces. For a survey on the theory in the
context of operator algebras, see [22].
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8 Andruchow, Corach, and Mbekhta: Generalized inverses

3 Partial isometries

In this section we consider the case whéis a C*-algebra, and focus on paifs, b) € S such that* = b, i.e.
a = u is a partial isometry.

Proposition 3.1 Letu, v be two partial isometries afl such that|u — v|| < 1. Then there exist unitaries
and~ in A such that

yur® = v.

Moreover,y andv are C* formulas in terms of. andv.

This result has been obtained in the case of the algebfs) by Halmos and Mc Laughlin in [18] (see also
a proof in [25]) and extended by Mbekhta andafta for von Neumann algebras [26]. The following proof is
valid for any unital C-algebra.

Proof. Denote = uw*u andg = v*v. We claim that if|u — v|| < 1 thenp andq are unitarily equivalent.
Indeed, as in (3.1) of [26]

lp —pall = llu*v—vuwo| < flul —v*)|| = [[(u—-2v)(1-v")| < 1.

It is a folklore fact that two such projections ¢ are unitarily equivalent itA. We give a proof. Clearly this
inequality implies thatjp — pgp|| < 1, and therefore the elememip is invertible inpAp. Letw;, = q(pgp)~*/2,
where the inverse gfgp is taken inpAp. Note thatyp = w|gp| is the polar decomposition @p. Indeedw; is
a partial isometry:

—1/2 —-1/2 —-1/2

wiwy = (pap) " *q(apa)~"* = (pap)"*pap((apa)~"* = p,

and
wiwi = qp(pgp)'pq.

Note that this term is a projection with » < ¢q. Reasoning analogously one obtains also fpatis invertible

in gAq, therefore the range @fp equals the range af. It follows thatr andgq have the same range, and then
r = ¢. Thus we have proved thatandq are equivalent im4, and that this equivalence is implementeduy
Now [[(1 —p) — (1 —p)(1 — ¢)|| = |lg — pq|| < 1 for identical reasons. It follows that there is another partial
isometryws implementing equivalence betweén- p and1 — ¢, which is also an explicit formula in terms of
p = u*u andq = v*v. Thenv = w; + wo is a unitary element oft such that

vuturt = v*v.
Analogously, one constructs an explieite U 4 such that
*

cuu*o® = vv*.

Let us emphasize the fact that these unitaries can be obtained as real analytic functions (in fact sums of powers
of the elements*u, uu*, v*v andvv™).
It follows that the partial isometriesur* andv have the same initial and final spaces. Therefore the element

w = v(our)* + (1 —ovv*)
is a unitary ofA. Moreover
wouv™ = v(ouw™)* (our™) + (1 — vv™)our™.
Note that the second term equals zero, and that in the first(teaw*)* (cur*) = v*v. Therefore
wour® = vw*v = v.
Choosey = wo. O
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The unitaryy above can be simplified,
v = wo = vvu* +o(l —uu").

These formulas define a cross section for the action of the gioup U 4 on partial isometrieSw1,ws) . u =
wiuws, which is the restriction of the former action©fsy x G 4 on general pair§partial isometries are identified
with pairs(a, a*) in S). From the above proposition one obtains local cross section for this action, namely

oy 2 {vivwwv=wv, lu—v|| <1} — Ua xUs, pu(v) = (7,v). (3.1)

The following result is a generalization of Theorem 3.1 of [26].

Corollary 3.2 Letu, v be two partial isometries iM. Thenu and v are homotopid(i.e. connected by a
continuous path of partial isometrigs and only if there exist unitaries andv in the conected component df
in U 4 such thatyur* = v.

Proof. The only if part is clear. Suppose that) is a continuous path of partial isometries such that
u(0) = wandu(l) = v. Let{0 =ty < t; < ... < t, = 1} be a partition of the unit interval such that for
consecutive; it holds that||u(¢;) — u(t;+1)|| < 1. It follows thatu(t;) andu(t;+1) are conjugate by a pair of
unitariesy;, v; which are of the form

v o= €% and v = e,
for x;, y; selfadjoint elements idl. Therefore
V= Ypo1.YoUVg .. VE_ = €l ePiyeTWo | eTin—1
Clearly these unitaries belong to the connected component of O

Proposition 3.3 The setZ of partial isometries is a®>° submanifold ofA. If 7 is identified with the set of
pairs{(a,b) € S : b = a*}, itis aC* submanifold of5.

Proof. The proof proceeds as in the analogous fact of the previous section. The cross section (3.1) can be
extended to an open neighbourhooduoiin A. The same argument holds if one regards partial isometries as
pairs. This proves that the unitary orbitsiofre submanifolds, both of and.S. Next note that the set of partial
isometries is a discrete union of unitary orbits, because partial isometries at distance lesatbamitarily
equivalent. Therefore the whole set of partial isometries is a submanifold. O

As with S, the tangent spacEZ,, can be computed in two ways,

TZ, = {x € Az =zu*u+uu'z + ux*u},
or equivalently
TZ, = {vu—uy:x,y € Awithz* = -z, y* = —y}.

This space is complemented.ih
The next result shows that the restrictionof S — @ x @Q to Z has nice geometric properties.

Proposition 3.4 The map
p: I — PxP, o) = (uu",u"u)
is a(C submersion.
Proof. The proof proceeds analogously as in (1.12). O

Recall the differential equation (2.2), based on the local cross section for the actiyn ofG 4. Our next
result shows that the analogous equation lifts curves of partial isometries.

(© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Proposition 3.5 Letw : [0,1] — Z be a smooth curve of partial isometries witk0) = «. Then the unique
solutionU of the equation i x A

U = AU, U(@) = (1,1),
where
A = (A, M) = (vu* —we® +wu uu*, u e — w4 2utu'u )
is a curvelU (t) = (v1(t),v2(t)) in Ua x U4 which satisfies
Ut).u = u(t), telo,1].
Proof. Note that
(nvy) = Munvy +nviAs,
i.e. v is a solution of the linear equation
X' = MX+XAT, X(0) =1.
The mapX = 1 is also a solution, indeed,
A+ AT = Wut —uet +wu e + (Wt —uet + uu*'uu*)*
= wuuut + uwutu'ut = 0.

This last fact is obtained as in (2.1), differentiatiatpu*u = w*u. It follows thatv;v; = 1. In order to prove
thatvjv; = 1, observe that

/
(Vi) = viAjvs + viAiy = 0.

Thereforev; is a curve of unitaries. Analogously, one proves thais a curve of unitaries. To finish the proof,
note that the curve = (u,u*) is a curve inS, and that for thigy, the functionA of (2.2) coincides with\. This
implies, by (2.1), that the solutiafi lifts ~, andu. O

As in the previous section, one can prove that this equation is in fact the transport equation of a linear connec-
tion in the spacé& of partial isometries. We shall study this connection elsewhere.

In [2] and [4] there is a study of the structure of the set of partial isometrie€falgebra with initial space
p e A

Sp(A) = {r € A:z"x =p}.

ClearlyS,(A) C Z. Moreover, one has the following:
Remark 3.6 Letys : 7 — P, po(u) = u*u (i.e. the second coordinate pfabove). Thery, is a submersion
(in fact, a retraction), and,(A) = ¢, *(p). ThereforeS, (A) is aC> submanifold ofZ.

Let us finish this section with an example, which illustrates how the maps here defined can be used to determine
properties of the spaces. Suppose thas a von Neumann algebra, and letc 7 such thatuu™ andu*u are
unitarily equivalent. Then there exists a projectip A in the orbit ofu underU, x U4. Since the unitary
group is connected in this case, the orbitafoincides with the connected compong&pif p in Z. On the other
hand, the orbit op under the (inner automorphism) action(f;, coincides with the connected componenpof
in P. The submersion

o : I, — PyxP,, ¢u) = (uu",u"u)

is in particular a fibre bundle, with fibre (ovey equal to the unitary grouf, 4.

Proposition 3.7 In the above situation, i is purely infinite, therf,, is simply connected. If bothand1 — p
are purely infinite, thetf, is contractible.
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Proof. The connected components of the space of projections of a von Neumann algebra are simply con-
nected (see [4]). On the other handp i purely infinite, then the unitary groud, 4, is contractible in the norm
topology [11]. The tail of the homotopy exact sequence gfelds

0 = m(Upap,1) — m1(Zp,p) £ m1(Pp x By, (p,p)) = 0.
If also1 — p is purely infinite, consider the fibre bundle
Ua — P, defined by w — upu”

with fibre {p}’ N Ua ~ Upap x Un—pya—p) [13]. It follows thatU,, as well asUpa, and U —p)a(1—p)
are contractible. ThereforB, has trivial homotopy groups of all orders. Using this fact in the homotopy exact
sequence op, we get

0 = 7Tn(UpAp71) . 7T7L(Ipap) #, 7Tn(Pp XPp,(p,p)) =0

for all n. ThereforeZ, is a differentiable manifold with trivial homotopy groups. Then, by Palais’ resultsZ28]
is contractible. O

If p is purely infinite butl — p is finite, thenms(Z,, p) = m2 (P, x Py, (p,p)) iS non trivial. For example, if
(1 -p)A(1 — p) is all,-factor, this group equalR x R [4].

4 The bundle S of invertible elements

In this section we focus on the properties of the set
Sa = {(a,b) € S:ab=ba}.

First note that this set can be regarded as the bundle of the invertible grigup®f all corner subalgebragiq
of A. Explicitely, the map

S —— U Ggaq = {(l’,q) :xEGqu}v (avb) - (a’ab)
q€Q

is a homeomorphism with inverge, q) — (x,2~1) (inverse taken igAg). The mapp : Sa — Q, ¢(a,b) = ab,
translates as the fibration of units

UGqu 4’@3 (qu) — q.
q€Q

Let us establish the next result concerning the smooth structuffg .of
Proposition 4.1 S is an analytic submanifold ol x A.

Proof. Let(a,b) € Sa,withab = ba = q. Itis clear thatthe diagonal s&t C @ xQ, D = {(r,r) : r € Q}
is an analytic submanifold. It follows that the connected componef @) in Sa, which coincides with the
connected component 6, b) in ¢~1(D), is a submanifold. O

Remark 4.2 1. Let(a,b) € S. ThenO, ;) N Sa # 0 if and only if the idempotentsb andba are similar.
Indeed, if(c,d) € Sa lies in the orbit of(a, b), then there exist invertibleg, k& such thatc = gak~! and
d = kbg~*, and thereforgabg—' = c¢d = da = kbak~'. On the other hand, ifb = gbag—! for someg € G 4,
then(1,g) . (a,b) € SA N O(q ).

2. It has been noticed that the connected componengsagiincide with the orbits under the action Gf,.
The facts above imply that the connected componerft.df) in Sa is the intersection oba with the orbit of
(a,b) under the action of7,.
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3. Ifg € Q,then(q,q) € Sa. Moreover, if(a,b) € Sa, thenO(, ) N Sa contains an elemetty, ). Indeed,
if (a,b) € Sa, the elements

a=b+1—ab and g =b+1—ab
are invertible, with inverses™! = a2 + 1 — abands~! = a + 1 — ab. Observe that
aaB™t = (B® +1—ab)ala+1—ab) = a*b* = ab,

and analogouslyba—! = ab. This shows thatab, ba) € O(a,p) N SA-

If ¢ € @, consider the subgrou@, = {g € Ga : g(1 —q) = 1 — ¢} of G4. Its elements are of the
formg = x + 1 — g, with z € G4, i.€. G, is the image of natural imbedding 6,4, in G4. Note that
Gy C Gyag X Ga_gqa(—q) = Hy. Apparently,H, = {q}' N G 4. Consider the analytic map

g+ Gax Hy — Sa,  pg(g.h) = (ghgg™", gq(gh)™").

The image ofu, equalsSa N O, ) (or equivalently, the subbundle of the invertible grodps, for all idem-
potentsr which are similar tog). As remarked above, this intersection is a union of connected components
of Sa. Indeed, an element ifx N O, is of the form(agB~!, Bga™"), with aga™ = agB™'fBga™" =
Bga"tagB~t = BgB . In other wordsp =1 3 € H,. Therefore(agB™!, Bga™t) = py(a,a™13).

Let us compute now the fibr' = ' (¢,¢). A pair (g,h) € F if ghgg~' = g andggh~'g~! = ¢. This
clearly implies thayy commutes withy andhg = q. It is apparent that the converse is also true. It follows that

F = HqXGlfq,

which is a subgroup off 4 x G 4. Note though that:, is not defined by an action ofin (we found no natural
action onSa insofar). However, we have the following result:

Proposition 4.3 The map
pg : Gax Hy — SaNOyq), nelg,h) = (ghgg" gqh™"'g7")
is a locally trivial fibre bundle with fibré” = H, x G1_.

Proof. Let us construct smooth local cross sectiong:for First on a neighbourhood ¢f, ¢) in Sa. Let
(a,b) € Sa be close enough ty, ¢) so that the element = abg + (1 — ab)(1 — ¢) is invertible. This condition
defines a neighbourhodd, . of (¢,q) in Sa. Put

g =dy+y(1-q) and h =~"lay+1-gq.

The elemeny is invertible, with inversgy—! = v~ + (1 — ¢)y~!. The inverse ofiisy~1by + 1 — ¢q. Note
also thath commutes withy, i.e.h € H, (in facth € G,). Finally, note that

ghqg™" = (a®>y+7v1=¢q)(v Tay+1=q)g(v "V + (1 — gy )
= (a®y +7(1 = @)y aygy™'V?
a®(ab)b® + (1 — q)y taygy b7,

Note that sinceib = ba, a3(ab)b?> = a*b3> = a. The other term vanishes(1 — ¢)y 'a = (1 — ab)a = 0.
Thereforeghqg~"! = a. Analogouslyggh~'g~' = b. It follows that

(a,0) +— (g9,h) = s(g,9)(a;0), (a,b) € Uy

is a local cross section for, near(q, q).

If now (ao, bo) is an arbitrary pointirtfa N O 4), there exist, s € G 4 such thatag, bo) = (r,5) . (¢, q). If
(a,b) € Sa is close enough tug, b) so that(r~—!, s71) . (a,b) lies in the domain o, ), thens q, v, (a,b) =
(rg,r'sh) (where(g, h) = s(q,q)((r*,s71).(a,b))) defines a cross section ndag, by).

(© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Math. Nachr278,No. 7-8 (2005) / www.mn-journal.com 13

Let us exhibit a trivialization foy:, near(q, ¢). Trivializations near other points a¢f» are obtained analo-
gously. Consider the map

¢ = g : Uagq X F — pg' Uaqq), 6((a,b), (f1,f2)) = (9. f1 hfr)(f1, f2)
where(g, h) = 5(4,4)(a,b). Clearly this map is smooth, and is well defined, becafys¢, andh lie in H,. Note
that the following diagram commutes:
Ugg x F — il Uigg)
P\ Juq
Uq.qg)
whereP; ((a,b), (f1, f2)) = (a,b). Indeed,
1a(6((a,0), (1. f2)) = pq(9fr, ST hf112)
(gfifi ' hfrfeafi g™ afiafs T W A e
(ghfifoafitg™  gfafs  fr g7

Note that(f1, f>) € F' means thaf; commutes withy and fg = qf> = ¢ (andf; 'q = qf; " = q). Therefore
this last expression equals

(ghag™',9ah™ g7") = pg(5(4.9)(a;0) = (ab).
Finally, ¢ is a diffeomorphism. Let us exhibit its inverse
w : H;l(U(%q)) - u(‘lv‘]) X Fv 1/1(97}1) = (:u’q(gah)v(flan))v
wheref; and f, are constructed as follows. Denote @y, h') = 5(4,q)(14(g, h)), @and put
fi=1(9)""g and fo = g7'g' (W) (g') " gh.

Clearly« is smooth. Let us show that it is well defined, i.e. tiiate H, andf, € G1_4. Note thatu, (g, h) =
tq(g’, h'). This implies that

(gh,9)-(¢:9) = (g'h',d")-(q,9)
or equivalently

(W) Mg gh, (¢) ') (0,0) = (¢,9)-

This impliesf, := (h')~1(g')"'gh andf; = (¢’)~'g satisfy

fog = qft and fiq = qfo.

These relations imply thafy, and fi commute withg and foq = f1¢. In particular,f; € H, as desired. On the
other hand, note thah = f; ' fo, and thereforefaq = f; ' fog = g, i.€. f» € G1_,. Itis aroutine verification to
show thaty is the inverse o. Trivializations near other points & are obtained in an analogous manner]

Let us consider now the particular case wheis a von Neumann algebra. Hefg, is connected, and the
range ofyu, equals the connected component(@fg) in Sa. Moreover, since any idempotent is similar to a
selfadjoint projection, we may assunmpe = ¢q. Now, ther; group of the unitary orbit of a projection in a von
Neumann algebra is trivial (see [4], 4.5). This is equivalent to saying that in the fibre bundle

Us — {ugu* :ueUas}, ur— uqu”,

studied in [13], the inclusion map from the fibfe}’ N U 4 into U4 is surjective at ther; -level. We need to adapt
this result to the similarity action.
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Lemma 4.4 Let g be a projection inA. Then the similarity orbit of is simply connected and the inclusion
mapH, — G4 induces a surjection; (Hy,1) — m(Ga,1) — 0.

Proof. The similarity actioii 4 x Q — Q defined byg.q = ggg~*, gives for every; € Q a fibre bundle

Ga — Q, g+— gqg"

whose image is the connected component (which is also the similarity orbit be¢@siaezon Neumann algebra)

of ¢ in @, and whose fibre i¢{,. Then, considering the homotopy exact sequence of this bundle, it suffices to
prove that the similarity orbit of has trivialm; group. As noted above, we may chogse ¢*. Letq(t) € @ be

a continuous curve with(0) = ¢(1) = ¢. There is a lifting curvey(t) € G 4 satisfyingq(t) = g(t)qg(t) . Let

g(t) = u(t)|g(t)| be the polar decomposition gft). The set of invertible positive elements is convex, therefore
one can perform the following deformation of the cupe):

F(s,t) = u(t)(1—s+slgt))a(l = s +slg)) " u"(t), (s,t) €[0,1] x [0,1].
Note that for each fixed, F'(s, ) is a curve inQ, with F'(1,t) = ¢(¢t) and F'(0, t) in the unitary orbit ofy. Also
note thatg(0) andg(1) commute withg, and therefore alse(0), u(1), |g(0)| and|g(1)| commute withg. This
implies that for each fixed, F'(s,0) = F(s,1) = ¢. In other wordsg(t) is homotopic to a curve in the unitary

orbit of ¢, with a homotpy which fixes endpoints. By the result from [4] cited above, this eityean be further
deformed to a constant curve. O

Theorem 4.5 If A is a von Neumann algebra ands a projection inA, then
T1(Sa,(¢:9)) = m(Gqaq,q) -
In particular, if ¢ is a purely infinite projection, then the connected compone(t,af) in Sa is contractible.
Proof. Consider the tail of the homotopy exact sequence of the fibre bupgdle

R ﬂ-l(anl)@ﬂ-l(Glfqal) Z—*> ﬂ-l(GAvl)@ﬂ-l(anl) % WI(SAv(qvq)) — 0

Clearly the morphisni, induced by the inclusion: H, x G1_, — G4 x H, splits as the sum of
(i1)« : m(Hg, 1) — m(Ga,1),

which is onto by the lemma above, and the morphism
(i2)s : m(G1—q,1) — m(Hg,1).

Note thatH, = G, & G1_,, therefore the image df.). equals{0} & m1(G1_4,1). Now

Wl(SAa (Q7Q)) = ( ( 1) O m (qu 1))/ker(uq)*
— (m(Ga) @ (H, 1)) /1,
(m(Ga,1)

= |71 GA, @Wl(Hq,l))/(ﬂ'l(GA,l)@Wl(Gl_q))
= 7T1(Hq»1)/771(611*(1»1)
= 7T1(Gq71).

Observe that7; ~ G4aq-

If ¢ is a purely infinite projection, thet, 4, is contractible [11]. The connected component(@fq) is
therefore a differentiable manifold with trivial homotopy groups of all orders, it follows, again by Palais’ results
[28], that it is contractible. O

(© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Math. Nachr278,No. 7-8 (2005) / www.mn-journal.com 15

Acknowledgements The second author is grateful for the financial aid and hospitality of the UFR Mathmatiques of Univer-
sity Lille 3, where the first ideas of this paper were discussed.

We want to thank Bernhard Gramsch for helpful comments, and for pointing us related bibliography. Thus, we should
mention F. V. Atkinson’s paper [8], who in 1953 studied algebraic and topological properties of sets of relatively regular
operators (see also the paper by A. Douady [15]).

References

[1] P. M. Alberti, Playing with fidelities, preprint (2002).
[2] E. Andruchow, G. Corach, and D. Stojanoff, Geometry of the sphere of a Hilbert module, Math. Proc. Cambridge Philos.
Soc.127, 295-315 (1999).
[38] E. Andruchow, G. Corach, and D. Stojanoff, Projective spaces®f-algebra, Integral Equations Operator The8vy
143-168 (2000).
[4] E. Andruchow, G. Corach, and D. Stojanoff, Projective space @f anodule, Infin. Dimens. Anal. Quantum Probab.
Relat. Top4, 289-307 (2001).
[5] E. Andruchow, A. R. Larotonda, L. Recht, and D. Stojanoff, Infinite-dimensional homogeneous reductive spaces and
finite index conditional expectations, Illinois J. Ma#1, 54—76 (1997).
[6] C. Apostol and K. Clancey, On generalized resolvents, Proc. Amer. Math58at63-168 (1976).
[7] C. Apostol and K. Clancey, Generalized inverses and spectral theory, Trans. Amer. Mathl$@93-300 (1976).
[8] F. V. Atkinson, On relatively regular operators, Acta Sci. Math. (Szed&d38-56 (1953).
[9] A. Ben-Israel, The Moore of the Moore-Penrose inverse, B.A50-157 (2002).
[10] A. Bjerhammar, Application of calculus of matrices to method of least squares with special reference to geodetic calcu-
lations, Trans. Roy. Inst. Tech. Stockhol®51, No. 49 (1951).
[11] J. Bruning and W. Willgerodt, Eine Verallgemeinerung eines Satzes von N. Kuiper, Math228mM7-58 (1976).
[12] G. Corach, H. Porta, and L. Recht, Differential geometry of spaces of relatively regular operators, Integral Equations
Operator Theont 3, 771-794 (1990).
[13] G. Corach, H. Porta, and L. Recht, The geometry of spaces of projecti@ns-aigebras, Adv. in Math101, 59-77
(1993).
[14] J. Daleckii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Spaces, Transl. Math. Mono-
graphs Vol. 43 (AMS, Providence, 1974).
[15] A. Douady, Le prok#me des modules pour les sous-espaces analytiques compacts d’'un espace analytiguwendonn
Inst. Fourierl6, 1-95 (1966).
[16] B. Gramsch, Relative Inversion in deid®ingstheorie von Operatoren udidAlgebren, Math. Ann269, 27-71 (1984).
[17] P. R. Halmos, A Hilbert Space Problem Book: Graduate Texts in Mathematics (Springer-Verlag, New York —Berlin,
1982).
[18] P. R. Halmos and J. E. McLaughlin, Partial isometries, Pacific J. M&585-596 (1963).
[19] R. Josza, Fidelity for mixed quantum states, J. Mod. Optic®2315-2323 (1994).
[20] Y. Kato and N. Moriya, Maeda’s inequality for pseudoinverses, Math. J&#iNo. 1, 89-91 (1977).
[21] S. Kobayashiand K. Nomizu, Foundations of Differential Geometry. Vol. Il (John Wiley & Sons, Inc., New York, 1996).
[22] L. E. Mata-Lorenzo and L. Recht, Infinite-dimensional homogeneous reductive spaces, Acta Cient. VerdZolana
76-90 (1992).
[23] M. Mbekhta, Resolvant grerali€ et theorie spectrale, J. Operator The@d; 69-105 (1989).
[24] M. Mbekhta, Ograteurs pseudo-Fredholm. [esblvant g@rerali. J. Operator Theorg4, 255-276 (1990).
[25] M. Mbekhta and H. Skhiri, Partial isometries: factorization and connected components, Integral Equations Operator
Theory38, 334-349 (2000).
[26] M. Mbekhta and $. Sétila, Homotopy of classes of partial isometries in von Neumann algebras, Acta Sci. Math.
(Szegedp8, 271-277 (2002).
[27] M. Z. Nashed (ed.), Generalized Inverses and Applications (Academic Press , New York—London, 1976).
[28] R. S. Palais, Homotopy theory of infinite dimensional manifolds, Toposdy-16 (1966).
[29] R. Penrose, A generalized inverse for matrices, Math. Proc. Cambridge Philo§154@6—413 (1955).
[30] R. Penrose, On best approximation solutions of linear matrix equations, Math. Proc. Cambridge Phils3. 56¢19
(1956).
[31] I. Raeburn, The relationship between a commutative Banach algebra and its maximal ideal space, J. FUg&. Anal.
366—390 (1977).
[32] J. L. Taylor, Topological invariants of the maximal ideal space of a Banach algebra, Adv. in19a1l49-206 (1976).
[33] A. Uhimann, Partial fidelities, Rep. Math. Phyig, 407-418 (2000).
[34] J. Zenanek, Idempotents in Banach algebras, Bull. London Math. Bhd.77-183 (1979).

(© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



