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Abstract We consider regularized solutions of linear inverse ill-posed problems obtained
with generalized Tikhonov–Phillips functionals with penalizers given by linear combinations
of seminorms induced by closed operators. Convergence of the regularized solutions is proved
when the vector regularization rule approaches the origin through appropriate radial and
differentiable paths. Characterizations of the limiting solutions are given. Finally, examples
of image restoration using generalized Tikhonov–Phillips methods with convex combinations
of seminorms are shown.
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1 Introduction

Very often an inverse problem can be formulated as the necessity of approximating x in an
equation of the form

T x = y, (1)

where T is a linear bounded operator between two infinite dimensional Hilbert spaces X and
Y (in general, these will be function spaces), the range of T and R(T ) is non-closed and y is
the data, supposed to be known, perhaps with a certain degree of error. It is well known that
under these hypotheses, problem (1) is ill-posed in the sense of Hadamard (1902). In this case,
the ill-posedness is a result of the unboundedness of T †, the Moore–Penrose pseudo inverse
of T . The Moore–Penrose pseudo inverse is a fundamental tool in the treatment of inverse
ill-posed problems and their regularized solutions. This is so mainly because the least-squares
solution of minimum norm of problem (1), also known as the best approximate solution, is
precisely given by x† .= T † y, which exists if and only if y ∈ D(T †) = R(T ) ⊕ R(T )⊥.
Moreover, for any given y ∈ D(T †), the set of all least-squares solutions of problem (1) is
given by x† + N (T ), where N (T ) denotes the null space of the operator T .

Since T † is unbounded, small errors or noise in the data y may induce arbitrarily large
errors in the corresponding approximated solutions (see Spies and Temperini 2006; Seidman
1980), thus turning unstable all standard numerical approximation methods, making them
unsuitable for most applications and inappropriate from any practical point of view. The
so called “regularization methods” are mathematical tools designed to restore stability to
the inversion process and consist essentially of parametric families of continuous linear
operators approximating T †. The mathematical theory of regularization methods is very
wide [a comprehensive treatise on the subject can be found in the book by Engl et al. (1996)]
and it is of great interest in a broad variety of applications in many areas, such as Medicine,
Physics, Geology, Geophysics, Biology, image restoration and processing, etc.

There are many ways of regularizing an ill-posed inverse problem. Among the most
standard and traditional ones, we mention the Tikhonov–Phillips method (Phillips 1962;
Tikhonov 1963a,b), truncated singular value decomposition (TSVD), Showalter’s method,
total variation regularization (Acar and Vogel 1994), etc. However, the best known and most
commonly and widely used is without a doubt the Tikhonov–Phillips regularization method,
which was originally and independently proposed by Tikhonov and Phillips (see Phillips
1962; Tikhonov 1963a,b). Although this method can be formalized within a very general
framework by means of spectral theory (Engl et al. 1996; Dautray and Lions 1990), the
widespread of its use is undoubtedly due to the fact that it can also be formulated in a
very simple way as an optimization problem. In fact, the regularized solution of problem
(1) obtained by applying the classical Tikhonov–Phillips method is the minimizer xα of the
functional

Jα(x)
.= ‖T x − y‖2 + α ‖x‖2 , (2)

where α is a positive constant known as the regularization parameter.
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Directional convergence of spectral regularization method with closed operators 121

The penalizing term α ‖x‖2 in (2) not only induces stability but it also determines certain
regularity properties of the approximating regularized solutions xα and of the corresponding
least-squares solution which they approximate as the regularization parameter α approaches
0+. Thus, for instance, it is well known that minimizers of (2) are always “smooth” and,
for α → 0+, they approximate the least-squares solution of minimum norm of (1), that is
limα→0+ xα = T † y. This method is known as the Tikhonov–Phillips method of order zero.
Choosing other penalizers gives rise to different approximations with different properties,
approximating different least-squares solutions of (1). Thus, for instance, the use of ‖�x‖2

as penalizer instead of ‖x‖2 in (2) gives rise to the so called Tikhonov–Phillips method of
order one, the penalizer ‖x‖BV (where ‖·‖BV denotes the bounded variation norm) originates
the so called bounded variation regularization method introduced by Rudin and Osher (1992)
and later studied by Acar and Vogel (1994). In particular, in the latter case, the approximating
solutions are only forced to be of bounded variation rather than smooth and they approximate,
for α → 0+, the least-squares solution of problem (1) of minimum ‖·‖BV-norm (see Acar and
Vogel 1994). This method has been proved to be a good choice in certain image restoration
problems in which it is highly desirable to preserve sharp edges and discontinuities of the
original image.

Thus, the penalizing term in (2) is used not only to stabilize the inversion of the ill-posed
problem but also to enforce certain characteristics of the approximating solutions and of the
particular limiting least-squares solution that they approximate. Hence, it is reasonable to
assume that an adequate choice of the penalizer, based on a-priori knowledge about certain
characteristics of the exact solution of problem (1), will lead to approximated “regularized”
solutions which will appropriately reflect those characteristics.

For the case of Tikhonov–Phillips functionals with a general penalizer W , i.e.

JW,α(x)
.= ‖T x − y‖2 + αW (x) x ∈ D, (3)

where W (·) is an arbitrary functional with domain D ⊂ X and α is a positive constant,
sufficient conditions on W guaranteeing existence, uniqueness and stability of the minimizers
where found in Mazzieri et al. (2012).

In this article, we study the case in which the penalizer W in (3) is given by W (x)
.=∑N

i=1 αi‖Li x‖2, where αi >0 ∀i = 1, 2, . . . , N , and the Li ’s are operators satisfying certain
hypotheses. For these cases we analyze the convergence of the minimizers as the vector
regularization rule 
α .= (α1, α2, . . . , αN )T approaches 
0 through appropriate paths. We will
also characterize the limiting least-squares solutions. Finally, several examples consisting of
applications to image restoration are presented.

2 Preliminaries

The so called “best approximate solution” x† of problem (1) is defined as the least-squares
solution on minimum norm. Thus, x† satisfies:

(i)
∥
∥T x† − y

∥
∥ = inf{‖T z − y‖ : z ∈ X },

(ii)
∥
∥x†

∥
∥ = inf{‖z‖ : z is a least-squares solution of T x = y}.

It is a well-known fact that x† exists if and only if y ∈ D(T †) = R(T ) ⊕ R(T )⊥, in which
case it is given by x† = T † y. When T is not injective, choosing the minimum norm solution
is a way of forcing uniqueness of solutions. In some cases, however, this may not be the
best choice. For instance, one could be interested in selecting the least-squares solution that
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122 G. L. Mazzieri et al.

minimizes the seminorm induced by a certain operator L , i.e., find x†
L , least-squares solution

of (1) such that
∥
∥
∥Lx†

L

∥
∥
∥ = inf{‖Lz‖ : z is a least-squares solution of T x = y},

where L is a given operator on a certain domain D ⊂ X . From a purely mathematical point
of view, the characterization of such a least-squares solution can be done via the weighted
generalized inverse of T (see Engl et al. 1996). Independently of the operator L , however,
approximating x†

L is still an unstable problem, requiring regularization. With that in mind we
propose the following minimization problem:

min
x∈D(L)

‖T x − y‖2 + α ‖Lx‖2 . (4)

Clearly, a solution of (4), if it exists, belongs to D(L). Hence, the use of ‖Lx‖2 as a penal-
izer is only appropriate under such a priori knowledge about the exact solution. When that
assumption is uncertain one can still use ‖Lx‖2 as a penalizer by considering the Hilbert
scale induced by L over X (see Engl et al. 1996; and also Mazzieri and Spies 2012).

Throughout this section, we will suppose that L is a linear closed, densely defined operator
mapping D(L) ⊂ X onto a Hilbert space Z (often L is a differential operator) satisfying the
following “complementation condition”:

(CC) ∃γ > 0 such that ‖T x‖2 + ‖Lx‖2 ≥ γ ‖x‖2 ∀ x ∈ D(L).

Note that condition (CC) implies N (T )∩N (L) = {0}. It is easy to prove that if dim N (L) <

∞, then the condition N (L) ∩ N (T ) = {0} is also sufficient for (CC). This is particularly
important when L is a differential operator.

We now define a new inner product and a “weighted” norm on D(L) by:

〈x, x̂〉T L
.= 〈T x, T x̂〉 + 〈Lx, Lx̂〉, ‖x‖T L

.= 〈x, x〉1/2
T L , x ∈ D(L). (5)

It can be easily proved that D(L), equipped with this T L-inner product is a Hilbert space
(see Engl et al. 1996) that we shall denote by XT L . Throughout the rest of this section the
subscript “T L” will always make reference to this space.

Consider now the operator TL defined as the restriction of T to D(L), that is,

TL : XT L
.= (D(L), 〈·, ·〉T L) −→ Y

x −→ T x
(6)

We shall denote with L†
T L and T †

T L the Moore–Penrose pseudo inverses of L : XT L −→ Z
and TL : XT L −→ Y , respectively. It is timely to point out that T †

T L and L†
T L are, in general,

different from the generalized inverses T † and L†, respectively. We shall refer to the former
ones as the “weighted generalized inverses”, to distinguish them from the latter ones and to
emphasize the fact that they are obtained by considering the inner product “weighted” by the
operators T and L , defined in (5).

We will also need to consider the operator T0
.= T|N (L). This operator will play an

important role in the definition of a regularization family of operators that we will introduce
later on, since T †

0 , the Moore–Penrose pseudo inverse of T0 is bounded. Note also that the
generalized inverses T †

0 and T †
0,T L are equal since T0 is injective.

The following fundamental result relates the least-squares solutions of (1) with the
weighted generalized inverse T †

T L .
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Theorem 2.1 Let y ∈ D(T †
T L). Then x†

L
.= T †

T L y is a least-squares solution of TL x = y and
for any other least-squares solution x̃ there holds

∥
∥
∥Lx†

L

∥
∥
∥ < ‖Lx̃‖ .

Also, if the range of T is not closed then the operator T †
T L is unbounded.

Proof See Engl et al. (1996). ��
Remark 2.2 Note here that if N (T )∩N (L) was not trivial then the solution x†

L characterized
by the previous theorem would not be unique. It is also important to note that no selection
of L can transform problem (1) into a well-posed problem. In fact, the ill-posedness is a
consequence of the fact that the range of T is not closed.

Having defined and characterized the operator T †
T L , we are now interested in finding appro-

priate regularizations. For this purpose we could, in principle, use all classical regularization
methods considering the operator T defined on the Hilbert space XT L and define a family
of regularization operators Rα as Rα

.= gα(T �T )T �, given an appropriately chosen family
of functions gα , where T � denotes the adjoint of TL in the T L-topology. This approach,
for the traditional Tikhonov–Phillips method, was studied by Locker and Prenter (1980).
From the computational point of view, the approach presents some disadvantages since it
requires the computation of the adjoint operator T � = (T ∗T + L∗L)−1T ∗ (see Locker and
Prenter 1980). However, there exists a way of regularizing T †

T L without having to compute
the adjoint operator T �, as the next theorem shows.

Theorem 2.3 Let X , Y and Z Hilbert spaces, T ∈ L(X , Y), T † the Moore–Penrose pseudo
inverse of T , L : D(L) ⊂ X −→ Z a linear, densely defined, close operator, L†

T L the Moore–
Penrose pseudo inverse of L on XT L , TL as in (6) y B

.= TL L†
T L . Let gα : [0, ‖B‖2] → R, α >

0, be a family of functions satisfying the following conditions:

(C1) For every α ∈ (0, α0), gα(λ) is piecewise continuous for λ ∈ [0,+∞) and continuous
from the right at points of discontinuity.

(C2) There exists a constant C > 0 (independent of α) such that |λgα(λ)| ≤ C for every
λ ∈ [0,+∞), for every α ∈ (0, α0).

(C3) For every λ ∈ (0,+∞), limα→0+ gα(λ) = 1
λ
.

For y ∈ D(T †
T L), we define the regularized solution of problem (1) by

Rα y
.= T †

0 + L†
T L gα(B∗ B)B∗y. (7)

Then for every y ∈ D(T †
T L), there holds

Rα y → T †
T L y, L Rα y → LT †

T L y, T Rα y → Qy,

as α → 0+ (here Q is the orthogonal projection of Y onto R(T ) = R(TL)). If y �∈ D(T †
T L),

then limα→0+ ‖L Rα y‖ = ∞.

Proof See Engl et al. (1996). ��
Note that the convergence result of Theorem 2.3 is equivalent to convergence in the norm

of the graph of the operator L , defined on D(L) as ‖x‖2
L

.= ‖x‖2 + ‖Lx‖2, which is clearly
stronger than the original norm in X .

In the following proposition, a relation between the regularized solutions defined in (7)
and a generalized Tikhonov–Phillips method with penalizer ‖Lx‖2 is shown.
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124 G. L. Mazzieri et al.

Proposition 2.4 Let X , Y , Z, T , T †, L, L†
T L , TL , B = TL L†

T L and Rα , all as in Theorem 2.3.
Also for y ∈ D(T †

T L), let xα
.= Rα y = T †

0 y + L†
T L gα(B∗ B)B∗y with gα(λ)

.= 1
λ+α

. Then
for each fixed α > 0, xα is the unique global minimizer of the generalized Tikhonov–Phillips
functional

Jα : D(L) −→ R
+

x −→ ‖TL x − y‖2 + α ‖Lx‖2 .
(8)

Proof See Engl et al. (1996). ��
Remark 2.5 Since the family of functions gα(λ) = 1

λ+α
clearly satisfies the hypotheses of

Theorem 2.3, it then follows from Proposition 2.4 that the regularized solutions obtained
with the generalized Tikhonov–Phillips method with penalizer ‖Lx‖2 converge to T †

T L y as
α → 0+ provided that y ∈ D(T †

T L).

In light of the previous analysis and results one sees that the penalizing term in (8), on one
hand induces stability and on the other hand it allows the approximation of x†

L in such a way
that the approximated regularized solutions share with the exact solution certain properties
or characteristics that one presumes that such a solution possesses. Hence, it is reasonable
to assume that an adequate choice of the penalizer, based on the “a-priori” knowledge of
certain type of information about the exact solution, will result in approximated solutions
which appropriately reflect those characteristics. Following this line of reasoning it is also
reasonable to assume that the simultaneous use of two or more penalizers of different nature
will, in some way, allow the capturing of different characteristics on the exact solution. This
is particularly relevant, for instance, in image restoration problems in which it is known
“a-priori” that the original image is “blocky”, i.e. it possesses both regions of high regularity
and regions with sharp discontinuities. In the following section we shall extend the results of
Theorem 2.3 and Proposition 2.4 to this type of penalizers. It is important to note however
that the regularization parameter will now be vector-valued.

3 Penalization with linear combination of semi-norms associated to closed operators

We study here the case of generalized Tikhonov–Phillips regularization methods for which
the penalizing terms in (8) is of the form W (x)

.= ∑N
i=1 αi‖Li x‖2, where the Li ’s are closed

linear operators, i.e. we consider functionals of the form

J
α,L1,L2,...,L N
(x)

.= ‖T x − y‖2 +
N∑

i=1

αi‖Li x‖2. (9)

The following results (which can be found in Mazzieri et al. 2012) establish conditions
guaranteeing existence, uniqueness and strong stability of the global minimizers of the func-
tional (9).

Theorem 3.1 Let X , Z1, Z2, . . . , ZN be reflexive Banach spaces, Y a normed space,
T ∈ L(X , Y), D a subspace of X , Li : D −→ Zi , i = 1, 2, . . . , N , closed linear oper-
ators with R(Li ) weakly closed for every 1 ≤ i ≤ N and such that T, L1, L2, . . . , L N are
complemented, i.e. there exists a constant k > 0 such that ‖T x‖2 + ∑N

i=1 ‖Li x‖2 ≥ k‖x‖2,
∀ x ∈ D. Then, for any y ∈ Y , α1, α2, . . . , αN ∈ R

+ the functional J
α,L1,L2,...,L N
(·) given in

(9) has a unique global minimizer.
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Directional convergence of spectral regularization method with closed operators 125

Proof See Mazzieri et al. (2012). ��
Under the same hypotheses of Theorem 3.1, one has that the minimizer of (9) is stable

under perturbations in the data y, in the parameters αi and in the model operator T . Before
we proceed to the statements of this results, we shall need the following definition.

Definition 3.2 (W -uniform consistency) Let X , Y be vector spaces, T ∈ L(X , Y) and
W, F, Fn, n = 1, 2, . . . , functionals defined on a set D ⊂ X . We will say that the sequence
{Fn} is W -uniformly consistent for F if Fn → F uniformly on every W -bounded set, that
is if for any given c > 0 and ε > 0, there exists N = N (c, ε) such that |Fn(x) − F(x)| < ε

for every n ≥ N and every x ∈ D such that |W (x)| ≤ c.

Lemma 3.3 Let all the hypotheses of Theorem 3.1 hold. Let also L
.= (L1, L2, . . . , L N )T ,

y, yn ∈ Y , Tn ∈ L(X , Y), n = 1, 2, . . . , such that yn → y, {Tn} is L-uniformly consistent
for T and for each i = 1, 2, . . . , N, let {αn

i }∞
n=1 ⊂ R

+ such that αn
i → αi as n → ∞. If xn

is a global minimizer of the functional

Jn(x)
.= ‖Tn x − yn‖2 +

N∑

i=1

αn
i ‖Li x‖2, (10)

then xn → x̄ , where x̄ is the unique global minimizer of (9).

Proof See Mazzieri et al. (2012). ��
3.1 Radial convergence of spectral methods

Let X , Z1, Z2, . . . , ZN Hilbert spaces, D a dense subspace of X , Li : D −→ Zi , i =
1, 2, . . . , N , linear, closed surjective operators such that the operator L : X −→ ⊗N

i=1 Zi

defined by L
.= (L1, L2, . . . , L N )T has closed range. Suppose also that L satisfies the fol-

lowing complementation condition:

(CC) : ∃ γ > 0 such that ‖TL x‖2 + ‖Lx‖2 ≥ γ ‖x‖2 ∀x ∈ D,

or equivalently

∃ γ > 0 such that ‖TL x‖2 +
N∑

i=1

‖Li x‖2 ≥ γ ‖x‖2 ∀x ∈ D, (11)

where the operator TL is defined as TL
.= T|D . Let also 
α .= α
η, where α ∈ R

+ and 
η .=
(η1, η2, . . . , ηN )T ∈ R

N
+ such that

∑N
i=1 ηi = 1. Define the operator L 
η : D −→ ⊗N

i=1 Zi ,

L 
η
.= (√

η
1
L1,

√
η

2
L2, . . . ,

√
η

N
L N

)T and a new weighted inner product and its associated
norm on D as:

〈x, x̂〉T L 
η
.= 〈TL x, TL x̂〉 + 〈L 
ηx, L 
η x̂〉, ‖x‖T L 
η

.= 〈x, x〉1/2
T L 
η , x, x̂ ∈ D. (12)

It can be easily proved that XT L 
η
.= (D, ‖·‖T L 
η ) is a Hilbert space. Denote with L†

T L 
η the
Moore–Penrose pseudo inverse of the operator L 
η on D with this new T L 
η -inner product,
i.e. consider L 
η as an operator from XT L 
η into Y , and let B
η and T0 the operators defined by

B
η : ⊗ Zi −→ Y, B
η
.= T L†

T L 
η and T0
.= T|N (L).

The following theorem generalizes the result given by Theorem 2.3 to the case of a
penalizer given by a linear combination of seminorms induced by closed operators.
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126 G. L. Mazzieri et al.

Theorem 3.4 Let {gα} be a spectral regularization method, {Rα,
η}
α∈

(

0,

∥
∥
∥B
η

∥
∥
∥

2
) a family of

operators from Y into X defined by

Rα,
η
.= T †

0 + L†
T L 
η gα(B∗


η B
η)B∗

η . (13)

Then {Rα,
η}
α∈

(

0,

∥
∥
∥B
η

∥
∥
∥

2
) is a family of regularization operators for T †

T L 
η . In particular for every

y ∈ D(T †
T L 
η ) there holds limα→0+ Rα,
η y = T †

T L 
η y, limα→0+ L 
η Rα,
η y = L 
ηT †
T L 
η y and

limα→0+ TL Rα,
η y = Qy, where Q is the orthogonal projection of Y onto R (T ) = R(TL).

Proof Clearly the operator L 
η is linear. We will prove that L 
η satisfies the complementation
condition. For this note that for every x ∈ D there holds

‖TL x‖2 + ∥
∥L 
ηx

∥
∥2 = ‖TL x‖2 +

N∑

i=1

ηi ‖Li x‖2

≥ min
1≤i≤N

{ηi }
(

‖TL x‖2 +
N∑

i=1

‖Li x‖2

)

= min
1≤i≤N

{ηi }
(‖TL x‖2 + ‖Lx‖2)

≥ min
1≤i≤N

{ηi }γ ‖x‖2 . ( since L satisfies (CC))

From this and by virtue of Theorem 2.3 it follows that the family {Rα,
η}
α∈

(

0,

∥
∥
∥B
η

∥
∥
∥

2
) is a regular-

ization for T †
T L 
η and therefore for every y ∈ D(T †

T L 
η ), lim
α→0+ Rα,
η y = T †

T L 
η y. Moreover, from

Theorem 2.3 it also follows that limα→0+ L 
η Rα,
η y = L 
ηT †
T L 
η y and limα→0+ TT L 
η Rα,
η y =

Qy (where Q is the orthogonal projection of Y onto R(T ) = R(TL)). ��
Remark 3.5 Note that x†


η
.= T †

T L 
η y is the best approximate solution of TL x = y for x ∈ D,

that is, x†

η is the least-squares solution of the problem T x = y in D which satisfies

∥
∥
∥x†


η

∥
∥
∥

T L 
η
<

‖x̃‖T L 
η for any other least-squares solution x̃ .

The following result characterizes the regularized solutions Rα,
η y, in the particular case
in which the family of functions {gα} is given by gα(λ)

.= 1
λ+α

.

Lemma 3.6 Let y ∈ D(T †
T L 
η ), L , L 
η, TL , T †

0 , L†
T L 
η , T †

T L 
η , B
η and Rα,
η as previously defined

and xα,
η
.= Rα,
η y with gα(λ)

.= 1
λ+α

. If the operator L is surjective, then for each fixed 
α
(
α = α
η), xα,
η is the unique global minimizer of the generalized Tikhonov–Phillips functional
defined by J
α,L1,L2,...,L N

: D −→ R
+,

J
α,L1,L2,...,L N
(x)

.= ‖TL x − y‖2 +
N∑

i=1

αi‖Li x‖2,

i.e.

arg min
x∈D

J
α,L1,L2,...,L N
(x) = Rα,
η y = xα,
η.
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Proof Since

‖TL x − y‖2 +
N∑

i=1

αi‖Li x‖2 = ‖TL x − y‖2 +
N∑

i=1

αηi‖Li x‖2 = ‖TL x − y‖2 + α‖L 
ηx‖2

and the operator L 
η is linear, closed and surjective, the lemma follows immediately from
Proposition 2.4. ��

From Theorem 3.4 and Remark 3.5, we see that if the vector regularization rule 
α is
chosen “radially”, i.e. 
α = α
η (with 
η ∈ R

N
+ fixed), then the regularized solutions Rα,
η y,

with Rα,
η defined by (13), converge, as α → 0+, to the least-squares solution of the problem

TL x = y that minimizes 
η •
(‖L1x‖2, ‖L2x‖2, . . . , ‖L N x‖2

)T
. Thus, not only convergence

is guaranteed but also a characterization of the limiting least-squares solution is obtained. It
is also important to note that this characterization depends on the radial rule 
α = α
η only
through its direction vector 
η.

If T is injective and y ∈ D(T †) then there is only one least-squares solution of
T x = y but if T is not injective then there are infinitely many. The choice of the vec-
tor 
α is then closely related to the least-squares solution that we are approximating. The
choice of the weights αi play a fundamental role since, once they are chosen, they deter-
mine that the least-squares solution which we are approximating is the one that minimizes


η •
(‖L1x‖2, ‖L2x‖2, . . . , ‖L N x‖2

)T
.

It is also important to point out that without any a priori information about properties of
the exact solution, it is not clear which nor how many operators Li one should choose, neither
is clear how one should weight them. In some particular cases, however, know properties of
the exact solution may provide a hint. In image restoration, for instance, if it is known that the
exact solution is “blocky” then it seems reasonable to use a combination of a classical penal-
izer by taking L1

.= I and one more appropriate for capturing and preserving discontinuities,
for instance L2

.= ∇.

3.2 Convergence with differentiable vector regularization rules

In the previous subsection, we proved that for each radial direction, given by a unit vector

η, of the vector regularization rule 
α(α)

.= α
η, the corresponding regularized solutions con-

verge to the least-squares solution which minimizes 
η •
(‖L1x‖2, ‖L2x‖2, . . . , ‖L N x‖2

)T =
∑N

i=1 ηi ‖Li x‖2. Note in this case that d 
α
dα

(0+) = 
η. This observation point us to conjecture
that it is precisely the direction of the vector regularization rule at α = 0+ (when it exists)
what determines the limiting least-squares solution. In the next theorem, we shall extend the
result of Theorem 3.1 to the case of vector regularization rules which are differentiable at the
origin and prove the above conjecture by the affirmative.

Let X , Y, Z1, Z2, . . . , ZN , Z, D, L , L 
η, TL , T †
0 , L†

T L 
η , T †
T L 
η and B
η, all as defined in the

previous section and satisfying the same properties.

Theorem 3.7 Let 
α(α)
.= (α1(α), α2(α), . . . , αN (α))T be the parameterization of a curve

in R
N
+ such that 
α(α) converges to zero as α approaches zero from the right, and assume that

there exists the right derivative 
α′(0+) = ∂ 
α(α)

∂α

∣
∣
∣
∣
α=0+

of 
α(α) at zero, 
α′(0+) �= 0 and let
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η .= 
α′(0+)

‖
α′(0+)‖ . Let {gα} be a spectral regularization method such that

∂gα(λ)

∂α
exists for every α in a right neighborhood of zero, a.e. for λ ∈ (0,∞) (14)

and
∣
∣
∣
∣
∂gα(λ)

∂α

∣
∣
∣
∣ = O

(
1

α2

)

uniformly for λ > 0. (15)

Define R
α(α) : Y −→ X as

R
α(α)
.= T †

0 + L†
T L 
η g
α(α)(B∗


η B
η)B∗

η , (16)

where for z ∈Z, g
α(α)(B∗

η B
η)z

.=([gα1(α)(B∗

η B
η)z]1,[gα2(α)(B∗


η B
η)z]2, . . . ,[gαN (α)(B∗

η B
η)z]N

)T
.

Then R
α(α) is a family of regularization operators for T †
T L 
η . Moreover, for every y ∈ D(T †

T L 
η )

there holds limα→0+ R
α(α)y = T †
T L 
η y.

Proof For any fixed i = 1, 2, . . . , N , define 
γ = 
γ (α)
.= αηi

∥
∥
α′(0+)

∥
∥ 
η. Clearly 
γ is

a radial vector regularization rule and ‖ 
γ ‖ = αηi
∥
∥
α′(0+)

∥
∥. Then, from the definitions of

R
α(α) in (16) and Rα,
η in (13), and by virtue of Theorem 3.4, one can immediately see that
to prove this theorem, it is sufficient to show that for every i = 1, 2, . . . , N , there holds

[
g
α(α)(B∗


η B
η)z
]

i
−

[
gαηi‖
α′(0+)‖(B∗


η B
η)z
]

i

α→0+−→ 0, ∀ z ∈ Z. (17)

Let then {E
B
η B∗
η
λ } be the spectral family associated to the selfadjoint operator B
η B∗


η . Note
that for z ∈ Z and for any i, 1 ≤ i ≤ N , we have that

∥
∥
∥
(

gαi (α)(B∗

η B
η)z − gαηi‖
α′(0+)‖(B∗


η B
η)z
)

i

∥
∥
∥

2

Zi

≤
∥
∥
∥
∥
∥
∥

∞∫

0

(
gαi (α)(λ) − gαηi‖
α′(0+)‖(λ)

)
d E

B
η B∗
η
λ z

∥
∥
∥
∥
∥
∥

2

Z

=
∞∫

0

(
gαi (α)(λ) − gαηi‖
α′(0+)‖(λ)

)2
d

∥
∥
∥
∥E

B
η B∗
η
λ z

∥
∥
∥
∥

2

Z
. (18)

On the other hand, since the family of functions {gα} constitutes a spectral regularization
method and 
α(0+) = 0, we have that

gαi (α)(λ) − gαηi‖
α′(0+)‖(λ)
α→0+−→ 1

λ
− 1

λ
= 0, ∀ λ > 0, ∀ i = 1, 2, . . . , N (19)

and on the other hand, since 
α(α) is differentiable at α = 0+ and 
η = 
α′(0+)

‖
α′(0+)‖ , we have

that 
α(α) = α
∥
∥
α′(0+)

∥
∥ 
η + 
β(α) where

∥
∥
∥ 
β(α)

∥
∥
∥ = O(α2). Then for every α > 0, λ > 0

gαi (α)(λ) − gαηi‖
α′(0+)‖(λ) = gαηi‖
α′(0+)‖+βi (α)(λ) − gαηi‖
α′(0+)‖(λ)

=
(

∂gα(λ)

∂α

∣
∣
∣
∣
α=ξi

)

βi (α), [ by (14) and the Mean Value Theorem]

123

Author's personal copy



Directional convergence of spectral regularization method with closed operators 129

(for some ξi ∈ R between αηi
∥
∥
α′(0+)

∥
∥+βi (α) and αηi

∥
∥
α′(0+)

∥
∥). It then follows by virtue

of (15) that

∀ δ > 0 (sufficiently small) ∃ k < ∞ :
∣
∣
∣gαi (α)(λ) − gαηi‖
α′(0+)‖(λ)

∣
∣
∣ ≤ k, ∀ λ > 0,

∀ α ∈ (0, δ). (20)

Finally, (17) follows from (18)–(20) via the Lebesgue Dominated Convergence Theorem. ��

4 Applications: image restoration with convex combinations of seminorms

The purpose of this section is to present an application to a simple image restoration problem,
of the use of generalized Tikhonov–Phillips methods with penalizers given by linear combi-
nations of squares of seminorms induced by closed operators. The main objective is to show
how the choice of penalizers in a generalized Tikhonov–Phillips functional can significantly
affect the restored image.

The basic mathematical model for image blurring is given by the following Fredholm
integral equation

K f (x, y) =
∫ ∫

�

k(x, y, x ′, y′) f (x ′, y′)dx ′dy′ = g(x, y), (21)

where � ⊂ R
2 is a bounded domain, f ∈ X .= L2(�) represents the original image, k is the

so called “point spread function” (PSF) and g is the blurred image. For the examples shown
below we used a PSF of “atmospheric turbulence” type, i.e. we chose k to be gaussian:

k(x, y, x ′, y′) = (2πσ σ̃ )−1 exp

(

− 1

2σ 2

(
x − x ′)2 − 1

2σ̃ 2

(
y − y′)2

)

, (22)

with σ = σ̃ = 6. It is well known (Engl et al. 1996) that with this PSF the operator K
in (21) is compact with infinite dimensional range and therefore K †, the Moore–Penrose
pseudo inverse of K , is unbounded. Generalized Tikhonov–Phillips methods with different
penalizers where used to obtain regularized solutions of the problem

K f = g. (23)

For the two numerical examples that follow, problem (23) was discretized in the usual
way building the matrix associated to the operator K by imposing periodic boundary con-
ditions (see Hansen et al. 2006). The blurred data g was further contaminated with a 1 % a
gaussian noise (that is with a standard deviation of the order of 1 % of ‖g‖∞). Mainly due
to computational restrictions, in both cases the size of the images considered is 100 × 100
pixels.

Example 4.1 Figure 1 shows the original image and the blurred noisy image which constitutes
the data for the inverse problem.

Six different generalized Tikhonov–Phillips methods with penalizers as in (9) given by

W (x)
.= α

(
w ‖L1x‖2 + (1 − w) ‖L2x‖2) (24)

with 0 ≤ w ≤ 1, were used to restore f . In all cases the value of the regularization parameter
α was computed by means of the L-curve method (Hansen 2010; Hansen and O’Leary 1993).
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130 G. L. Mazzieri et al.

Fig. 1 a Original image, b blurred noisy image

Fig. 2 Restored images; a Tikhonov 0 (w = 1.0), α = 0.0167; b Tikhonov 1 (w = 0.0), α = 0.0865

Figures 2a and b show the restored images obtained with the classical Tikhonov–Phillips
methods of orders zero and one, respectively, corresponding to the choices of w = 1, L1 = I ,
L2 = ∇ and w = 0, L1 = I , L2 = ∇ in (24), respectively.

Figure 3a–d was obtained using in all cases L1 = I , L2 = ∇ and four different values of
the weight parameter w in (24).

Although some minor differences in the restorations can be observed by simple inspection
of the images (measured by the “eyeball norm”), the Improved Signal-to-Noise Ratio (ISNR)
defined as

ISNR = 10 log10

(
‖g − f ‖2

F

‖ fα − f ‖2
F

)

,

(where F denotes the Frobenius norm and fα is the restored image obtained with regular-
ization parameter α) was computed in order to have an objective parameter to measure and
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Fig. 3 Restorations with combined Tikhonov 0–1 methods; a w = 0.05, α = 0.0577; b w = 0.1, α = 0.0463;
c w = 0.2, α = 0.0352; d w = 0.3, α = 0.0295

Table 1 ISNR values of the restored images for Example 4.1

Method w = 1.0 w = 0.0 w = 0.05 w = 0.1 w = 0.2 w = 0.3
Fig. 2a Fig. 2b Fig. 3a Fig. 3b Fig. 3c Fig. 3d

ISNR (dB) 2.5121 2.6761 2.7464 2.7583 2.7497 2.7325

compare the quality of all restored images. Table 1 shows the ISNR values corresponding
to the six regularization methods used. It is interesting to note that all four combined meth-
ods corresponding to non-trivial choices of weight parameters w (0 < w < 1), show an
improvement in the ISNR value, both in regard to the pure Tikhonov 0 (w = 1) and to the
pure Tikhonov 1 (w = 0) methods.

Example 4.2 Figure 4a, b shows the original and degraded image, respectively, for this exam-
ple, while Fig. 5a, b shows the restorations obtained with the classical Tikhonov–Phillips
methods of order zero and one, respectively. The restorations obtained with the combined
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Fig. 4 a Original image, b blurred noisy image

Fig. 5 Restored images; a Tikhonov 0 (w = 1.0), α = 0.0121, b Tikhonov 1 (w = 0.0), α = 0.1110

methods by using penalizers as in (24) with weight values w = 0.05, w = 0.1, w = 0.2
and w = 0.3 are presented in Fig. 6a–d. For these six restorations, the ISNR values are
presented in Table 2. Once again, we observe that the ISNR values of all four non-trivially
combined methods are larger than both of those corresponding to the single “pure” methods.
The improvements of the combined restorations for this example is even better than those
obtained in Example 4.1. It is reasonable to think that this is so due to the fact that although
the original image in Example 4.1 is mainly “blocky”, the image for Example 4.2 presents
both regions of blocky type and regions with nonconstant but regular intensity gradients, for
which one could in fact expect that a combined method will do a much better job than any of
the pure methods applied separately. Although this can be though of as a purely empirical and
somewhat intuitive observation, it points to an important aspect of the theory which deserves
further research, namely, that regarding an “optimal” choice of the weight parameters αi in
the functional (9).
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Fig. 6 Restorations with combined Tikhonov 0-1 methods; a w = 0.05, α = 0.0452, b w = 0.1, α = 0.0338,
c w = 0.2, α = 0.0252, d w = 0.3, α = 0.0211

Table 2 ISNR values of the restored images for Example 4.2

Method w = 1.0 w = 0.0 w = 0.05 w = 0.1 w = 0.2 w = 0.3
Fig. 5a Fig. 5b Fig. 6a Fig. 6b Fig. 6c Fig. 6d

ISNR (dB) 2.2551 2.3776 2.8711 2.9755 2.9643 2.8925

5 Conclusions and open issues

In this article, we considered regularized solutions of linear inverse ill-posed problems
obtained with generalized Tikhonov–Phillips functionals with penalizers given by linear
combinations of seminorms induced by closed operators. Convergence of the regularized
solutions was proved when the vector regularization rule approaches the origin through
appropriate radial and differentiable paths. Characterizations of the limiting solutions were
given.
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In the previous sections, it was proved that when a family of closed operators is used to
construct a spectral regularization method as given in (13) or (16), provided that the vector
regularization rule is differentiable at the origin, it is the vector 
η of relative weights induced
by direction of the rule at the origin, what defines the limiting least-squares solution. This is
particularly clear for the Tikhonov–Phillips method where the limiting least-squares solution
is that which minimizes the convex combination of the squares of the seminorms induced

by those closed operators, namely 
η •
(‖L1x‖2, ‖L2x‖2, . . . , ‖L N x‖2

)T = ∑N
i=1 ηi ‖Li x‖2.

Nothing is said nor known, however, about how these weight values ηi (and therefore the
limiting direction of the vector regularization rule) should be chosen. Is there an “optimal”
value of 
η (perhaps measure in terms of the ISNR)? If so, is there any way to explicitly find
it? The examples presented in Sect. 4 show that the quality of the obtained results can greatly
depend on the choice of 
η. This is a problem where more research is needed. Certainly, results
in this direction could be of significant relevance in many applied problems.
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