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Abstract

Alternative splicing alterations have been widely related to several human

diseases revealing the importance of their study for the success of transla-

tional medicine. Differential splicing (DS) occurrence has been mainly an-

alyzed through exon-based approaches over RNA-seq data. Although these

strategies allow identifying differentially spliced genes, they ignore the iden-

tity of the affected gene isoforms which is crucial to understand the under-

lying pathological processes behind alternative splicing changes. Moreover,

despite several isoform quantification tools for RNA-seq data have been re-

cently developed, DS tools have not taken advantage of them.

Here, the NBSplice R package for differential splicing analysis by means

of isoform expression data is presented. It estimates differences on rela-
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tive expressions of gene transcripts between experimental conditions to infer

changes in gene alternative splicing patterns. The developed tool was evalu-

ated using a synthetic RNA-seq dataset with controlled differential splicing.

NBSplice accurately predicted DS occurrence, outperforming current meth-

ods in terms of accuracy, sensitivity, F-score, and false discovery rate control.

The usefulness of our development was demonstrated by the analysis of a real

cancer dataset, revealing new differentially spliced genes that could be stud-

ied pursuing new colorectal cancer biomarkers discovery.

Keywords: Alternative splicing, RNA-seq, Transcriptomics, Gene isoforms,

Cancer.

1. Introduction

Alternative splicing (AS) is a post-transcriptional mechanism of higher

eukaryotes responsible for transcriptome complexity and functional diver-

sity. During this process, specific regions of a gene can be included or ex-

cluded from messenger RNA (mRNA), leading to different transcript isoforms

(mRNA variants) [1]. Although changes in AS patterns occur under normal

conditions, they have also been related to several diseases and have been

especially associated to cancer progression and metastasis [2, 3]. Thus, the

study of the AS dynamic is a key issue for translational cancer medicine

in order to understand how genes are regulated, for instance, during cancer

development and/or progression.

RNA sequencing (RNA-seq) is the most widely used technique to analyze

transcriptome expression dynamics, including AS and its changes [4]. When
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analyzing modifications at the transcript level, two kinds of expression alter-

ations can be inquired: differential expression of transcripts, and differential

transcript usage (DTU), i.e. differences in the relative expression of a tran-

script between conditions [5]. In particular, DTU could involve potential

functional consequences leading to a substantial biological impact which has

been found especially prominent in cancer [6]. In spite of this, the complex-

ity of the quantification process of gene transcripts, highly overlapped, has

led to the development of tools for DS analysis based on differential exon

usage (DEU) [7, 8]. Although this approach allows the discovery of alterna-

tively spliced genes (ASG), it does not provide the identity of the isoforms

of ASG, which is crucial, for instance, to identify new therapeutic targets

and/or biomarkers of disease progression [3].

In the last years, several methods for transcript quantification [9] and

for DTU [5, 10, 11] have been developed. However, despite the multiple

improvements they have achieved, many challenges remain unsolved. As an

example, although relative abundances of transcript isoforms are frequently

described in terms of the percentage of spliced-in (PSI), DS results are not

always given in terms of the difference of PSI between conditions [5]. In addi-

tion, DS results provided by some DTU tools are hard to interpret since they

have been obtained by indirect tests, instead of evaluating the significance of

the ∆PSI, or reporting only fold changes at the gene level [10].

Here, we present NBSplice which is a new method for DS analysis to

overcome the issues described above. It allows fitting a negative binomial

generalized linear model (GLM, 12) for each gene in order to estimate the

mean relative expressions of gene transcripts. Our tool provides methods
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for performing hypothesis tests to evaluate both DTU and DS, and for iden-

tifying differentially spliced genes (DSGs) between experimental conditions.

NBSplice was evaluated and compared against three R packages for DS anal-

ysis using a synthetic RNA-seq database with DS control. The utility of our

tool was demonstrated by analyzing a real cancer dataset from The Cancer

Genome Atlas (TCGA) project where new and previously reported DSGs

were identified. NBSplice is freely available on the Bioconductor site.

2. Materials and Methods

2.1. Model

NBSplice is based on GLMs, a widely used technique in transcriptomic

data analysis[13]. Expression counts of the i -th transcript from the j -th gene

in the k -th sample, yijk, are assumed as realizations of a negative binomial

(NB) distribution with mean µijk and dispersion φj:

yijk ∼ NB(µij = pijkµjk, φj) (1)

Particularly, µijk is assumed to be the product of the isoform relative ex-

pression, pijk, and the mean of the total counts from the j -th gen, µjk. The

distributional parameters are unknown and need to be estimated. To account

for library size differences, isoform and gene counts are considered in counts

per million (CPM) scale. The µjk parameter is computed from the observed

gene counts in each sample. Then, a log-linear GLM is fitted to estimate

µijk,

ln(µijk) = xT
ijkβij + ln(µjk) (2)
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where xT
ijk is the design matrix and βij is the vector of unknown coefficients.

The columns of the desing matrix correspond to experimental factors ap-

plied to samples k and affecting the i -th transcript isoform.Thus, βij can be

interpreted as the vector of fold changes (in a logarithmic scale) of relative ex-

pression of isoform i from the j -th gene for each column of the design matrix.

The ln(µjk) is an offset term representing the logarithmic-mean expression

of gene j in sample k.

Considering a single factor imposing different experimental conditions,

the proposed model decomposes the linear predictor, xT
ijkβij, into four com-

ponents depicted as:

ln(pijk) = µ0 + αij + δjr(k) + γijr(k) (3)

In Eq. 3, µ0 represents the overall mean isoform relative expression, in log-

arithmic scale, whereas αij is the change of the expected relative expression

to the i -th isoform from the j -th gene. δjr(k) represents the fold change in

the mean relative expression of isoforms from gene j under condition r, for

sample k. The interaction term, γijr(k), is the effect of condition r on the

relative expression of isoform i from the j-th gene.

2.2. Differential splicing detection

In NBSPlice, differences on the relative expression of the i -th isoform

between two experimental conditions, i.e differential transcript/isoform us-

age, are evaluated through a linear hypothesis test analyzing the interaction

term. If the number of analyzed samples is large, the χ2 distribution can

be assumed for the test statistic. However, the use of the F distribution is

strongly recommended given that the number of samples is generally small.
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The results of all gene isoforms tests are then combined to evaluate differ-

ential splicing at the gene level using the Simes test [14]. It defines a new

gene-based statistic associated with a global null hypothesis defined by the

family of null hypotheses related to the isoforms of the gene. Both, isoform

and gene, p-values are corrected with the Benjamini-Hochberg method [15].

2.3. NBSplice implementation

NBSplice is available as a Bioconductor R package [16], and it is based

on several R packages commonly used for GLMs fitting and hypothesis test-

ing. For instance, it uses the glm.nb function of the MASS R package [17] to

estimate model coefficients and dispersion parameters by means of the max-

imum likelihood method. In addition, the car [18] and mppa [19] packages

are used for linear hypothesis and Simes tests, respectively.

Since filtering low-expressed isoforms helps to reduce false positive detec-

tions [10, 20, 21], NBSplice considers that an isoform is low-expressed if: i)

It has a mean absolute expression, in at least one condition, lower than a

count threshold (cT); or ii) Its relative expression, in at least one sample,

is lower than a ratio threshold (rT), where both cT and rT are user-defined

parameters. The low-expressed isoforms detected by NBSplice are tagged as

unreliable and they are ignored during models fitting. Even though, they

are considered to compute the total gene counts, avoiding over-estimation of

relative expression of the isoforms detected as reliable.

As input, count expression matrices of any transcript quantification tool

such as RSEM [22] can be used. Estimated expression counts from novelty

free alignment tools such as Kallisto [9] has also been previously considered

as input for DTU methods assuming NB distributions [20, 23, 24, 25]. Thus,
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Kallisto counts can also be used by NBSplice. Independently of the software

used for transcripts quantification, NBSplice will automatically round (if it is

necessary) and transform them to CPM before model fitting and DS analysis.

The outcome of the developed tool includes the mean relative expressions

of gene isoforms estimated for each condition, and the DTU results and DS

analyses. As a complement, the tool also incorporates several useful methods

for results exploration.

The NBSplice functionality is illustrated here showing the analysis of a

small example, extracted from the package’s vignette [16]. After loading NB-

Splice, the isoform expression, the gene isoform relationship and the design

matrices are loaded, followed by the specification of the column name of the

design matrix to be contrasted. These data are stored in an IsoDataSet

object that is then analyzed to detect the low-expressed isoforms. Following

this, the NB models and hypothesis tests are performed, and the DS results

are finally extracted to be explored.

# Loading the package

> library(NBSplice)

# Data loading

> data(isoCounts , package ="NBSplice")

> head(isoCounts)

# C1R1 C1R2 C1R3 C1R4 C2R1 C2R2 C2R3 C2R4

# ENST00000228345 79 0 106 99 76 0 68 23

# ENST00000358495 567 212 162 715 70 176 255 243

# ENST00000397230 15 0 0 28 0 0 22 3

# ENST00000430095 0 6 0 77 0 0 27 59

# ENST00000461568 11 0 0 0 0 2 0 0
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# ENST00000463750 10 31 126 60 88 0 0 31

> data(geneIso , package ="NBSplice")

> head(geneIso)

# gene_id isoform_id

# ENST00000228345 ENSG00000002016 ENST00000228345

# ENST00000358495 ENSG00000002016 ENST00000358495

# ENST00000397230 ENSG00000002016 ENST00000397230

# ENST00000430095 ENSG00000002016 ENST00000430095

# ENST00000461568 ENSG00000002016 ENST00000461568

# ENST00000463750 ENSG00000002016 ENST00000463750

> data(designMatrix , package ="NBSplice")

> head(designMatrix)

# sample condition

# C1R1 C1R1 Normal

# C1R2 C1R2 Normal

# C1R3 C1R3 Normal

# C1R4 C1R4 Normal

# C2R1 C2R1 Tumor

# C2R2 C2R2 Tumor

> colName <- "condition"

# Building an IsoDataSet object

> myIDS <- IsoDataSet(isoCounts , designMatrix , colName ,

geneIso)

# Identifying low -expresed isoforms

> myIDS <- buildLowExpIdx(myIDS)

# Model fitting and differential splicing testing

> myNBSpliceRes <- NBTest(myIDS , colName , test = "F")
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# Extracting the table of those cases with evidence

# of differential splicing

> myDSRes <- GetDSResults(myNBSpliceRes)

# DTU and DS detection are based on the FDR and geneFDR

# columns , respectively

> head(myDSRes , n=3)

# iso gene ratio_Normal ratio_Tumor

# 378 ENST00000206514 ENSG00000092068 0.03696968 0.07501606

# 379 ENST00000316902 ENSG00000092068 0.51890400 0.17702007

# 381 ENST00000339733 ENSG00000092068 0.03601217 0.05323293

# odd stat pval genePval FDR

# 378 0.7076040 6.065408 0.0170055687 0.00281695 0.128238715

# 379 -1.0754558 14.340033 0.0003851829 0.00281695 0.009577521

# 381 0.3908204 1.841038 0.1804745117 0.00281695 0.566677648

# geneFDR

# 378 0.02540778

# 379 0.02540778

# 381 0.02540778

# Extracting the differentially spliced genes ’ names

> myDSGenes <- GetDSGenes(myNBSpliceRes)

> head(myDSGenes , n=3)

# [1] "ENSG00000092068" "ENSG00000103275" "ENSG00000103942"

2.4. Data simulation and processing

The characterization and performance evaluation of NBSplice was car-

ried out using a synthetic RNA-seq experiment with controlled DS patterns.

This database was simulated based on the RSEM simulation tool [22] and
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following the same approach as in [4]. A real human prostate cancer RNA-

seq dataset (GSE22260; 26) was used as a reference for the simulation in

order to mimic a realistic sequencing process. As in 4, eight samples, four

for control (C) and four for tumor (T) conditions were simulated. Ten real-

izations of the control-tumor experiment were performed. Each realization

considered around 110,000 isoforms belonging to 16,100 genes, 10% of which

were simulated with different levels of DS.

Since DS and differential gene expression can occur simultaneously, two

groups of DS events were defined. Moreover, as it was previously demon-

strated in [4], the DS detection could be influenced by the mangnitude of the

expression change. For this reason, several subgroups characterizing different

change levels in those two DS groups were defined (see Table 1). The first

group was called DS, and it involved genes where the overall gene expression

remained unchanged, whereas isoform proportions were modified between T

and C conditions. The second group was named DIEDS, and it was related

to genes where both absolute and relative expression of gene transcripts were

modified. As in [4], the subgroups were designed to mainly control the change

in the relative expression on the major (M) isoform in both conditions. As

an example, the subgroup DS-0.3-0.5 involves genes with DS without mod-

ification in their absolute expression across condition, and with the relative

expression of their M isoforms simulated as 0.3 in condition C, and as 0.5

in condition T. On the other hand, the subgroup DIEDS-2-0.3-0.5 involves

genes with changes in both absolute isoforms expression and DS. In partic-

ular, the absolute expression of their isoforms in condition T was simulated

as twice (2 times) of their absolute expression in condition C. Whereas, the
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relative expression of their M isoforms were 0.3 and 0.5 in condition C and

T, respectively.

Table 1: Simulated cases with differential splicing. DS groups imply differential

splicing (DS) without change in overall gene expression between tumor (T) and control (C)

conditions; DIEDS groups refer to changes in both DS and absolute isoform expression.

Fold changes of the absolute expression, affecting equally all gene isoforms, and the relative

expression of the major gene isoforms in both C and T conditions are listed.
Group Absolute expression change* Relative expression in T-C conditions ** Subgroup

DS

No change 0.3-0.5 DS-0.3-0.5

No change 0.3-0.7 DS-0.3-0.7

No change 0.5-0.7 DS-0.5-0.7

No change 0.5-0.9 DS-0.5-0.9

DIEDS

0.5 0.5-0.7 DIEDS-0.5-0.5-0.7

0.5 0.5-0.9 DIEDS-0.5-0.5-0.9

2 0.3-0.5 DIEDS-2-0.3-0.5

2 0.5-0.3 DIEDS-2-0.5-0.3

2 0.3-0.7 DIEDS-2-0.3-0.7

2 0.7-0.3 DIEDS-2-0.7-0.3

2 0.5-0.7 DIEDS-2-0.5-0.7

2 0.5-0.9 DIEDS-2-0.5-0.9

4 0.5-0.7 DIEDS-4-0.5-0.7

4 0.7-0.5 DIEDS-4-0.7-0.5

4 0.5-0.9 DIEDS-4-0.5-0.9

4 0.9-0.5 DIEDS-4-0.9-0.5

*Change in the absolute expression of all gene isoforms in condition T regarding to their

expression in condition C; **Relative expression of the major isoform in C-T conditions.

Once synthetic expression matrices were generated, RSEM was used to

simulate the RNA-seq reads for each experiment replication. After that, iso-

form expression quantification for each sample of the ten experiment repli-

cations were obtained using Kallisto, a free-alignment quantification tool [9].

Since Kallisto generates estimated transcript counts, with decimal precision,
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its resulting counts were then transformed to CPM and rounded before be

used by NBSplice. Finally, the isoform expression matrix for each experi-

ment realization was built and processed following the steps described in the

NBSplice vignette.

2.5. TCGA cancer dataset

Isoform expression matrix from a subset of subjects of the colorectal ade-

nocarcinoma (COAD) database of the TCGA project was used as a real

application example. Particularly, twenty-eight non-matched samples ran-

domly selected, representing tumor and normal cases, were considered. The

expression matrix of gene transcripts obtained using Kallisto and generated

by [27] was used. Metadata information about the selected samples is listed

in Supplementary File S1.

After rounding Kallisto counts and converting it to the CPM scale, the

mean-variance relationship of reliable isoforms was explored. The obtained

results, shown in Figure 1, revealed that most of the isoform counts do not

follow the mean-variance linear relationship expected for non-overdispersed

data (i.e Poisson distribution). Thus, CPM rounded Kallisto counts can be

assumed as negative-binomially distributed. In addition, goodness of fit tests

to NB distributions were performed for those isoforms. Significant results

(Bonferroni adjusted p-value < 0.05) were found for less than 20% of the

isoforms, supporting the assumption of NB distribution for most of the data.

2.6. NBSplice evaluation

The configuration of the user-defined cT and rT thresholds, required for

low-expressed isoforms detection, could impact on the efficiency of DS analy-
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Figure 1: Mean-variance relationship for Kallisto rounded counts. Dispersion

plot of mean and variance of Kallisto expression counts in the counts per million (CPM)

scale and after rounding. Each dot represents an isoform that has been identified as

reliable by NBSplice. The mean and variance were calculated across all replicates of each

condition. Since NBSplice assumes equal-variance for all isoforms from the same gene, the

variance was computed at the gene level. The black line represents the Poisson relation,

where variance and mean are equals, and the blue curve shows the smoothed data (in

logarithmic space) using local polynomial regression fitting.

sis tools. Thus, in order to choose their optimum values that lead to the best

NBSplice performance, the nine configurations of these parameters listed in

Table 2 were evaluated. In particular, the first configuration is called without

filtering (WF) since it uses both cT and rT equals to zero, whereas the other

setups involve a non-zero value for at least one of the two thresholds.
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The NBSplice performance on DS detection, through the ten experiment

replications, was evaluated based on commonly-used performance measures

for classification tasks as in 4. Taking into account the gene status, defined

during the simulation step, NBSplice results were used to classify each gene

as: True positive (TP), false positive (FP), true negative (TN) or false nega-

tive (FN). Then, the number of: Analyzed genes after low-expressed isoforms

detection, differentially spliced genes (DSGs) detected by NBSplice, TPs and

FPs measures were obtained. After that, accuracy, sensitivity (TPR or re-

call), precision, false discovery rate (FDR) and F-score were computed. The

NBSplice ability to deal with FPs was also assessed by using ten null ex-

periment replications which were obtained by random permutation of two

replicates, per condition, of the simulated dataset in order to confound the

effect of the experimental condition.

The state-of-art DS tools DEXSeq [28] and DRIMSeq [10], and a recently

developed tool for DTU, RATs [11], were selected for comparison purposes.

Briefly, DEXSeq considers each gene as a set of features (originally, the gene

exons), and assumes a NB distribution for the feature counts. Then, it fits

GLMs, one for each feature, including an interaction term to relate the fea-

ture counts with the total counts for all the other features of the same gene

[28]. Although DEXSeq was originally designed for DEU, it can be used as a

DTU tool considering each gene isoform as a gene feature [20, 21]. DRIMSeq

assumes a Dirichlet Multinomial model for each gene. In this model total

gene counts are considered fixed, and the interest is focused on the proportion

of its transcripts, for each sample. Thus, if the proportion of one transcript

increases, it must result in a decrease in the proportions of the other gene
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Table 2: NBSplice configurations. Nine NBSplice setups defined in terms of the values

used for its cT and rT thresholds were evaluated. Unreliable isoforms are defined based

on these thresholds. Particularly, cT refers to the minimum value admitted for the mean

of the absolute isoform expression per condition, and rT refers to the minimum value

admitted for the relative expression of isoforms per sample.

Threshold for mean absolute Threshold of minimum
expression per condition (cT) relative expression per sample (rT) Denomination

No threshold No threshold WF

No threshold 0.01 rT=0.01

1 No threshold cT=1

1 0.01 rT=0.01; cT=1

2 0.01 rT=0.01; cT=2

1 0.05 rT=0.05; cT=1

2 0.05 rT=0.05; cT=2

1 0.1 rT=0.1; cT=1

2 0.1 rT=0.1; cT=2

transcripts. The variation in proportions seen within condition are consid-

ered and modelled by means of a single precision parameter per gene. Thus,

genes detected as having statistically significant DTU are those in which the

proportion changes observed across condition are large [10]. On the other

hand, RATs identifies DTU at both the gene and the transcript levels using

the independence G-test for detecting significant differences above a user-

defined threshold. Then, it evaluates the reproducibility of its DTU calls by

means of bootstrapping the abundance estimations from free alignment tools.

Finally, the DTU state reported by RATs is based on the combination of an

FDR threshold at both the gene and transcript level, an effect size threshold

and a reproducibility threshold [11]. DEXSeq, DRIMSeq, RATs, and NB-

Splice were used to analyze both, the simulated and the COAD databases.
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Since the use of DS tools requires a previous step for unreliable transcript

detection, different strategies were considered. On the one hand, the RATs

tool has implemented this step as part of the DTU call process, so its own

filtering criteria was used. On the other hand, the optimum cT and rT

thresholds, and the filtering strategy proposed by [21] named as SwimmF

were employed for DEXSeq, DRIMSeq and NBSplice. Thus, the different

DS tools using these filtering strategies, through the simulated database,

were compared.

DS results for the COAD dataset were contrasted in order to detect both,

the overlapping in the lists of DSGs of each tool and the advantages of

the NBSplice use. Particularly, NBSplice was used considering its optimum

cT and rT thresholds, whereas DRIMSeq and DEXSeq were used combined

with the SwimmF filtering strategy as suggested [21]. Meanwhile, expres-

sion counts were analyzed by RATs using the optimal configuration for its

parameters [11]. DSGs only detected by NBSplice were also explored and

validated by bibliography search looking for recent publications where those

genes have been related to CRC .

The Wilcoxon test (wilcox.test R method), considering a significance

threshold of 0.05, was used to compare two samples distributions. More

details on the synthetic database generation, scripts used for DS analyses

and the comparison strategy can be found in the GitHub repository gameri-

no/NBSpliceSuppInformation.
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3. Results and Discussion

3.1. NBSplice evaluation

3.1.1. Overall results

Overall NBSplice results of DS analysis over the synthetic data with the

nine parameters setups (see Table 2) are summarized in Table 3. As it can

be expected, as more restrictive are the cT and rT thresholds, fewer genes

and isoforms are analyzed by NBSplice. Moreover, the use of at least a single

threshold for unreliable isoforms detection (rt=0.01 or cT=1 NBSplice con-

figurations) discarded, on average, more than the 70% of transcripts. How-

ever, although significant differences (Wilcoxon test p-value < 0.05) were

found between the results of the without filtering setup (WF ) and rt=0.01,

or cT=1 configurations, the average number of analyzed genes was barely

reduced by 10% when a single threshold was used. Moreover, for these two

NBSplice setups, the number of DSG and true positive genes (TPG) were sig-

nificantly higher (Wilcoxon p-value, one-tail, < 0.05) than the ones observed

for the WF configuration.

The highest average values of DUT and TPT were found by the cT=1

NBSplice setup, whereas the highest DSG and TPG values were found for

rT=0.01, rT=0.01;cT=1, and rT=0.01;cT=2 configurations. The compar-

ison of these three NBSplice setups revealed that differences below 1% for

DSG and TPG, and below 10% for DUT and TPT were found, suggesting

that those configurations are equivalent.

As it is depicted by Table 3, the average values of the four listed indicators

resulted to be mainly reduced when the NBSplice setup presented a change at

the rT parameter than when it was fixed and the cT parameter was changed.
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Table 3: NBSplice results. The average (± standard deviation) of the number of genes

and transcripts analyzed, differentially-spliced genes (DSG), true positive genes (TPG),

differentially-used transcripts (DUT) and true positive transcripts (TPT) for the nine

NBSplice configurations over the 10 simulated RNA-seq experiments.
Method Analyzed genes DSG TPG Analyzed transcripts DUT TPT

WF 13284 (± 24) 942 (± 27) 876 (± 24) 99622 (± 921) 2913 (± 77) 2745 (± 72)

rT=0.01 12292 (± 31) 959 (± 27) 915 (± 24) 29015 (± 85) 2158 (± 53) 2037 (± 55)

cT=1 12412 (± 31) 967 (± 26) 896 (± 21) 41393 (± 87) 3476 (± 66) 3230 (± 56)

rT=0.01;cT=1 12091 (± 27) 957 (± 27) 913 (± 23) 27812 (± 72) 2179 (± 53) 2050 (± 54)

rT=0.01;cT=2 11547 (± 21) 947 (± 26) 902 (± 22) 25154 (± 80) 2165 (± 51) 2033 (± 48)

rT=0.05;cT=1 11939 (± 25) 833 (± 26) 813 (± 26) 18495 (± 59) 1090 (± 34) 1049 (± 34)

rT=0.05;cT=2 11444 (± 24) 845 (± 28) 823 (± 28) 17591 (± 47) 1111 (± 34) 1066 (± 36)

rT=0.1;cT=1 11511 (± 33) 756 (± 21) 744 (± 23) 14547 (± 71) 844 (± 22) 826 (± 25)

rT=0.1;cT=2 11109 (± 24) 770 (± 24) 758 (± 26) 14040 (± 54) 856 (± 21) 837 (± 23)

For instance, the differences in the average numbers of DSG and TPG found

between setups rT=0.05;cT=1 and rT=0.1;cT=1 were around 10%, whereas

between rT=0.05;cT=1 and rT=0.05;cT=r configurations these differences

were lower than 2%. Thus, this suggests that a threshold imposed at the

level of the relative expression of isoforms has a greater impact on the DS

results than a threshold imposed at the absolute expression level. This could

be explained by the fact that NBSplice models are defined in terms of relative

expression instead of the absolute expression of the gene transcripts.

3.1.2. Performance results

The boxplot of the performance measures reached by the nine NBsplice

setups, considering a nominal FDR value of 0.05, are shown in Figure 2. All

configurations achieved an accuracy higher than 0.9 in all the experiment

replications (Figure 2A), suggesting that most genes (DSG and not DSG)

were correctly detected. On the opposite, all NBSplice configurations reached
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sensitivity values lower than 0.6, revealing that less than the 60% of the DSG

are found by our tool (Figure 2B). One possible reason of this result is the

higher level of complexity of the human transcriptome, with many more

isoforms per gene, which makes more difficult the transcript quantification

process.
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Figure 2: NBSplice performance. Boxplots of the performance measures for the nine

NBSplice configurations. A) Accuracy. B) Sensitivity or true positive rate (TPR). C)

Precision (1-False Discovery Rate, FDR): The dashed gray line depicts the precision value

correspond to the nominal FDR (0.05). D) F-score.
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In terms of precision, most of the tool configurations achieved average val-

ues higher than 0.95, being the highest for those involving the most restrictive

rT threshold of 0.1 (Figure 2C). In particular, the NBSplice setups involving

rT=0.01 (rT=0.01, rT=0.01;cT=1, rT=0.01;cT=2 ) not only controlled the

FDR, but also they reached the highest accuracies, sensitivities and F-scores

(Figure 2D). On the opposite side, although the configurations which involve

more restrictive rT thresholds (rT=0.05 and rT=0.1) achieved the highest

precisions, they exhibited lower accuracies, sensitivities, and F-scores with

the worst performance for the most restrictive setups (rT=0.1;cT=1 and

rT=0.1;cT=2 ).

Figure 3 shows the mean values of sensitivity and FDR reached by the

NBSplice setups at three nominal FDR values (significance thresholds), i.e.

0.01, 0.05, and 0.1. Measures values are shown as dots which are filled if the

observed FDR was lower than the corresponding nominal FDR. As it can be

noted, the more restrictive NBSplice setups, involving rT of 0.05 and 0.1, al-

ways controlled their FDR. Meanwhile, the NBSplice configurations without

rT filtering (WF and cT=1 ) never controlled their FDR. Furthermore, the

highest sensitivity was found for the NBSplice configurations using rT=0.1 (

rT=0.01, rT=0.01;cT=1 and rT=0.01;cT=2 ).These findings suggest that in

order to combine both higher sensitivity and FDR controlling, the optimum

configuration of NBSplice parameters is rT=0.01,cT=1.

The NBSplice ability to deal with FPs was evaluated only using the best

setup, rt=0.01;cT=1. Obtained results revealed that in three out of the ten

null-realizations, one gene was incorrectly identified as a DSG, indicating a

mean percentage of false positive rate (proportion of FP regarding to N)
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Figure 3: NBSplice screening for differential splicing. Average sensitivity ( y-axis)

over average false discovery rate (FDR, x-axis) achieved by nine evaluated NBSplice setups

for three nominal FDR values, i.e 0.01, 0.05, and 0.1. Circles are filled if the observed

FDRs were lower than the target nominal FDR, shown as vertical dotted lines.

lower than 0.01 %.

Considering the previous results and the use of a nominal FDR of 0.05 or

0.1, the optimum parameters setup is rt=0.01;cT=1. Using this configura-

tion, NBSplice controls its FDR with the highest sensitivity (about to 55%)

and F-score (up to 70%). Moreover, it achieves similar results to those ob-

tained with the rT=0.01 configuration but analyzing many fewer transcripts.

3.1.3. Evaluation on simulated groups and subgroups

Sensitivity over the gene groups and subgroups defined in Table 1 were ex-

plored. The results found using the NBSplice optimal configuration (rT=0.01,cT=1 )
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are shown in Figure 4. Panel A has the boxplots of the overall measure in

the simulated groups, DS and DIEDS. Averaged scores for those groups

were 0.494 and 0.563, respectively. The sensitivity for the DIEDS group

was significantly higher (Wilcoxon p-value, one-tail, < 0.05) than for the DS

group, in agreement with the results of [4]. In this work the authors reported

that the simultaneous occurrence of differences in both absolute and relative

expression of isoforms, simulated here as the DIEDS group, contributes to

the identification of differential splicing.

Detailed sensitivity boxplots for each simulated subgroups are depicted

in Figure 4B. The boxplots of TPR achieved in DS and DIEDS subgroups

show a broad separation between subgroups, mainly related to the magnitude

of the relative expression change of the most expressed isoform (i.e. the mayor

isoform, M). For instance, in subgroups only considering DS, i.e. DS group,

sensitivities of 78.3% and 73.8% were found for the DS-0.3-0.7 and DS-0.5-

0.9 subgroups, respectively. Whereas, the observed TPR means were lower

than 30% for the DS-0.3-0.5 and DS-0.5-0.7 subgroups (26% and 22.8%,

respectively). Therefore, the DS detection on the DS-0.3-0.5 and DS-0.5-

0.7 subgroups is a more difficult task than in the DS-0.3-0.7 and DS-0.5-

0.9 subgroups. This behaviour could be explained by the fact that in the

former DS subgroups, the relative expression of the different isoforms of a

single gene might be more similar between them than in the case of the later

subgroups. Thus, the differences on their relative expressions might not be

well detected, suggesting that genes with DS involving large changes in the

relative expression of their M isoform are easier to identify than genes which

smaller changes in the M isoform proportion.
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Figure 4: NBSplice sensitivity evaluation. Boxplots of the sensitivity (TPR) reached

by NBSplice with its parameters set as rT=0.01 and cT=1, along ten experimental repli-

cations. A) TPR for the simulated groups: DS, with differential splicing; DIEDS, with

differential splicing and differential isoform expression. B) TPR over the simulated sub-

groups described in Table 1 and defined by the change in the relative expression of the

major gene isoform and by the fold change in absolute isoform expression between tumor

and control conditions.

In the subgroups where DS was combined with changes in the absolute

expression of gene isoforms, i.e. DIEDS group, higher sensitivities (> 60%)

were also found in those involving the largest relative expression changes in

M gene isoforms. In particular, the highest TPRs were observed for DIEDS-

2-0.5-0.9 and DIEDS-4-0.5-0.9 subgroups, without evidence of significant dif-

ferences between them (Wilcoxon test p-value > 0.05). In agreement with

the trend observed for the DS subgroups, in those genes with lower changes
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in the relative expression of the M gene isoforms, the DS detection is a dif-

ficult task. Furthermore, and as it was previously evaluated in [4], the DS

detection could also be affected by the number of transcripts per gene.

Considering pairs of DIEDS subgroups with the same fold change but

different relative expression of the M isoform, i.e DIEDS-0.5-0.5-0.7 and

DIEDS-0.5-0.5-0.9 or DIEDS-2-0.3-0.5 and DIEDS-2-0.3-0.7, sensitivities

significantly higher (Wilcoxon test p-values > 0.05) were found in these

subgroups involving higher changes in the proportion of the M isoforms.

Furthermore, the highest variability on TPRs was mainly found for those

simulation subgroups where the absolute isoform expression was increased in

one direction, whereas the relative expression of the M isoform was increased

in the opposite direction. For example, in the DIEDS-4-0.9-0.5 subgroup.

Thus, large changes in the relative expression of the M isoform are critical

to correctly detect genes as DSG with NBSplice.

3.2. Comparison against differential splicing tools

The performance measures achieved by NBSplice and three R packages

used for DS analysis, DEXSeq, DRIMSeq, and RATs, are shown in Figure

5. Except for RATs, which has been run using its own filtering strategy,

each method is represented twice since they have been used considering two

different strategies to detect unreliable transcripts; SwimmF and the optimal

NBSplice setup. The comparison of measures distributions revealed that for

DEXSeq, DRIMSeq and NBSplice the best results on the simulated database

were reached using the NBSplice filtering strategy (Wilcoxon test p-values

< 0.05). Thus, only the results of these DS tools using the rT=0.01;cT=1

filtering strategy and the RATs results were compared.
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Figure 5: Comparison of performance measures distributions. Boxplots of the

performance measures achieved by NBSplice, DEXSeq, DRIMSeq and RATs, using two

different strategies for filtering unreliable transcripts, SwimmF and rT=0.01;cT=1 are

considered. A) Accuracy. B) Sensitivity or true positive rate (TPR). C) Precision (1-False

Discovery Rate, FDR): The dashed grey line depicts the precision value corresponding to

the nominal FDR (0.05). D) F-score.
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Considering accuracy, sensitivity and F-score, NBSplice was the best tool

for DS detection (Wilcoxon one-tail test p-values < 0.05). Comparing the

achieved precision scores, it also overcame both DEXSeq and DRIMSeq R

packages. Although the NBSplice precision was significantly lower than the

score achieved by RATs, our tool was able to control the imposed FDR

(0.05). Significant differences were found between the accuracy of the four

methods (Figure 5A). However, the lowest value was about 90% suggesting

that all of them have been performed similarly with regard to this measure.

In particular, the highest average accuracy, achieved by NBSplice, was 0.938.

In terms of sensitivity (Figure 5B), only DRIMSeq and NBSplice reached

average measures higher than 0.5, being the latter the most sensitive tool

(Wilcoxon one-tail test p-value, 0.0333). Moreover, its high sensitivity was

complemented with high precision (Figure 5C). NBSplice also achieved the

best balance between these two scores, reaching an average F-score of 0.693.

Therefore, these results suggest that NBSplice is appropriate for DS analysis.

Average values of sensitivity and FDR achieved by the evaluated NB-

Splice, DEXSeq, DRIMSeq and RATs tools at three nominal FDR values, i.e.

0.01, 0.05, and 0.1, are shown in Figure 6. As it was previously found, the use

of the optimal NBSplice filtering strategy leads to better performance results

than the SwimmF strategy for NBSplice, DEXSeq and DRIMSeq. More-

over, NBSplice ( rT=0.01;cT=1 ) and RATs were the only two strategies

that controlled their FDR for most of the nominal FDR evaluated (filled

dots), excepting the 0.01 threshold. By analyzing the RATs results, no

sensitivity improvement was found when the FDR threshold was changed,

probably because the other thresholds used for DTU detection (such as the
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Figure 6: Sensitivity and FDR evaluation. Average sensitivity (TPR, y-axis) over

average false discovery rate (FDR, x-axis) achieved for NBSplice, DEXSeq, DRIMSeq

and RATs, considering three nominal FDR values, i.e 0.01, 0.05, and 0.1. Excepting

RATs, which implements its own filtering strategy, the methods were evaluated using two

alternative filtering strategies to detect unreliable transcripts, identified as SwimmF and

rT=0.01;cT=1. Filled circles indicate if the achieved average FDR is lower than the target

nominal FDR, shown as vertical dotted lines.

reproducibility bootstrap threshold) influence more in the DS identification

than the FDR threshold. Thus, NBSplice with its filtering parameters set

as rT = 0.01 and cT = 1 not only is the most sensitive and accurate tool,

but also is precise and control its FDR when using 0.05 or 0.1 significance

thresholds.

3.3. Application to the TCGA cancer dataset

Isoform expression matrix for the 28 COAD analyzed samples involved

178,581 isoforms. The use of the NBSplice filters (rT=0.01 and cT=1 ) re-

sulted in 162,533 unreliable isoforms meanwhile 159,679 isoforms were identi-

fied as low-expressed using the SwimmF method. On the other hand, RATs
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identified 93,443 ineligible transcripts. NBSplice detected 569 isoforms with

significant differences in their relative expression between normal and cancer

patients, and 517 DSGs. Whereas, the number of DSGs found by DRIMSeq,

DEXSeq and RATs were 1,715, 1,134, and 251, respectively. Detailed results

are available at the Supplementary File S2.

The comparison of the DSG lists obtained with the four R packages is

illustrated in the Venn diagram shown in Figure 7. It is worth noticing

that the highest number of exclusive DSGs was achieved by DRIMSeq (653),

followed by RATs (206). The Venn diagram also revealed that the number of

overlapped DSG between DRIMSeq and DEXSeq (670) is greater than the

number of DSG commonly identified (12). This could be related to the fact

that both tools analyze the same set of reliable transcripts defined by the

SwimmF strategy as recommended [21].

Figure 7: Differentially spliced genes overlapping. Venn diagram for the differen-

tially spliced gene lists obtained with NBSplice, DRIMSeq, DEXSeq and RATs over the

colorectal cancer data set.

On the other hand, the highest consensus between three different tools
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was observed for NBSplice, DEXSeq and DRIMSeq (306 DSGs). In this

sense, the 74% of the DSGs detected by NBSplice were also found by at

least one of the other tools, being 61.5 the percentage of DSGs also detected

by both DRIMSeq and DEXSeq. Among those differentially spliced genes

detected by NBSplice, several genes previously related to colorectal cancer

and other cancer types were found. For instance, the FBLN2 gene, recently

reported as differentially spliced in CRC [29], has been identified by the four

DS tools. Other examples are the ZG16B and the ATXN3 genes, which

have been only detected by NBSplice. Particularly, mRNA alterations of

ZG16B have been associated with poor prognosis in CRC patients [30, 31].

The ATXN3 gene has been recently identified as differentially regulated in

CRC patients by means of expression changes in the microRNA-25. Also,

it has been related to the promotion of proliferation and metastasis of CRC

suggesting them as potential therapeutic targets for this type of tumor [32].

Relative expressions of significant isoforms from those genes are shown in

Figure 8. In particular, the ZG16B gene has six annotated transcripts which

relative expressions are shown in Figure8A. From those, only one, ZG16B-

201, has been identified by NBSplice as a reliable isoform and analyzed for

DTU. Particularly, for this transcript, the estimated relative expressions were

0.612 and 0.897, for Tumor and Normal conditions, respectively. Similarly,

for the ATXN3 gene (Figure 8B) only one transcript, ATXN3-247, has been

detected as reliable and analyzed for DTU. Since the ATXN3 has 43 an-

notated transcripts which have been identified as unreliable, they have not

been included in the graphics of Figure 8B generated by NBSplice methods

in which only the DUT is shown.
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Figure 8: Relative expression of isoforms differentially used. Per condition isoform

relative expression of significant isoforms from genes A) ZG16B and B) ATXN3, obtained

with NBSplice.

4. Conclusion

Here we present NBSplice, a novel tool for differential splicing (DS) anal-

ysis based on the identification of differential transcript usage (DTU). It

uses negative binomial generalized linear models, fitted at the gene level, to

estimate changes in the relative expression of gene isoforms. NBSplice is im-

plemented as an R package available at Bioconductor. NBsplice outperfoms

current state-of-the-art DS methods in terms of accuracy, sensitivity, F-score,

and in the FDR controlling.

Our tool detects more than the 50% of the simulated differentially spliced

genes (DSG), being more sensitive to identify genes where the change in the

relative expression of their major isoform is greater. The comparison of

NBSplice against DEXSeq, DRIMSeq, and a recently developed tool, RATs,

revealed that our tool is adequate for DS analysis.

The NBSplice usefulness was demonstrated by analyzing a real colorectal
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cancer dataset (COAD) where it found 500 DSG. Approximately, 26% of

these genes were only identified using our tool. Some of these findings were

explored finding that they have been previously reported in CRC, suggesting

the NBSplice ability as a discovery tool.

In conclusion, NBSplice resulted an accurate and precise tool useful for

identifying differential spliced genes and their isoform counterparts.
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J. I. Casal, In-depth characterization of the secretome of colorectal can-

cer metastatic cells identifies key proteins in cell adhesion, migration,

and invasion, Molecular & Cellular Proteomics 12 (6) (2013) 1602–1620.

[31] B. W. Kang, S. J. Lee, Y. J. Lee, J. G. Kim, Y. S. Chae, S. K. Sohn,

J. H. Moon, Genetic variations in miRNA binding site of TPST1 and

ZG16B associated with prognosis for patients with colorectal cancer.,

Journal of Clinical Oncology 31 (15 suppl) (2013) 3553–3553, doi:\let\

@tempa\bibinfo@X@doi10.1200/jco.2013.31.15 suppl.3553.

[32] D. Li, T. Zhang, J. Lai, J. Zhang, T. Wang, Y. Ling, S. He, Z. Hu,

MicroRNA-25/ATXN3 interaction regulates human colon cancer cell

growth and migration, Molecular medicine reports 19 (2019) 4213–4221.

36

\let \@tempa 10.1200/jco.2013.31.15_suppl.3553
\let \@tempa 10.1200/jco.2013.31.15_suppl.3553


• Isoforms expression analysis enables the detection of differentially spliced genes. 

• NBSplice successfully detects both differential splicing and transcript usage. 

• The transcript usage analysis allows the identification of potential biomarkers. 

• NBSplice identifies alternatively spliced genes with a potential therapeutic role. 
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