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Abstract. Using ultrapowers of C∗-algebras we provide a new construction
of the multiplier algebra of a C∗-algebra. This extends the work of Avsec and
Goldbring [Houston J. Math., to appear, arXiv:1610.09276.] to the setting of
noncommutative and nonseparable C∗-algebras. We also extend their work to
give a new proof of the fact that groups that act transitively on locally finite
trees with boundary amenable stabilizers are boundary amenable.

1. introduction

The multiplier algebra M(A) of a C∗-algebra A is a C∗-algebra that contains
A as an essential ideal and satisfies the following universal property: for every
C∗-algebra B containing A as an ideal, there exists a unique ∗-homomorphism
ϕ : B →M(A) such that ϕ is the identity on A. If A is abelian, thus of the form
C0(X) for some locally compact Hausdorff space X, thenM(A) is isomorphic to
Cb(X) and this in turn can be identified with C(βX), where βX is the Stone-

C̆ech compactification of X (for more about multiplier algebras, see, for instance
[4, 6]).

In the article [1], Avsec and Goldbring provided a new construction of the
multiplier algebra of the abelian C∗-algebra C0(X) using ultraproducts of C∗-
algebras, in the case when X is a second countable locally compact Hausdorff
space. From there, they inferred a new construction of the Stone-C̆ech compact-
ification of X, and they used it to give a new proof of the fact that groups that
act properly and transitively on trees are boundary amenable. In section 2 of
this note, we extend their work providing a construction of the multiplier algebra
of any C∗-algebra A by means of ultraproducts of C∗-algebras. In section 3, we
focus on the case of commutative and separable C∗-algebras, and compare our
main technical tool with the main technical tool used in [1] to explain why the
work done here is indeed a generalization of [1]. Finally, in section 4, we extend
the techniques of [1] to show that groups that act transitively on locally finite
trees having boundary amenable stabilizers are boundary amenable.
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2. Ultraproducts and Multipliers

Let I be a set. An ultrafilter over I is a nonempty collection U of subsets of I
with the following properties:

(1) finite intersection property: for every I0, I1 ∈ U , then I0 ∩ I1 ∈ U ;
(2) directness: for every Io ⊂ I1, where Io belongs to U , then I1 ∈ U ;
(3) maximality: for every I0 ⊂ I, either I0 ∈ U or I \ I0 ∈ U .

An ultrafilter is principal if there exists i ∈ I such that the subsets of I that
contains i are in the ultrafilter. Ultrafilters not of this form are called nonprincipal
or free. It is easy to show that an ultrafilter is nonprincipal exactly when it
contains no finite sets. An ultrafilter is cofinal when the index set is a directed
set, and the sets {i ∈ I : i ≥ i0} are in U for every i0 ∈ I.

When dealing with directed sets with the property that there is no maximal
element, every cofinal ultrafilter is nonprincipal. Moreover, when the ultrafilter
is over N, being cofinal is the same as being nonprincipal. If a directed set has a
maximal element, then every cofinal ultrafilter is principal.

Definition 2.1. Let U be an ultrafilter over I. Let (X, d) be a metric space and
let (ai)i∈I ⊂ X. We say that (ai)i∈I is convergent along U , if there exists an
element a ∈ X such that, for every ε > 0, the set {i ∈ I : d(ai, a) < ε} belongs
to U . The element a is called the U -limit of (ai)i∈I and it is denoted by lim

U
ai.

2.1. Ultraproducts of C∗-algebras. Let U be an ultrafilter over a set I and
let A be a C∗-algebra. Denote by

∏
I A the set {(ai)i∈I : supi∈I ‖ai‖ < ∞} and

let NU be the subspace generated by those (ai)i∈I ∈
∏
I A such that lim

U
‖ai‖ = 0.

Denote by AU the quotient
∏
I A/NU . This is a vector space, and with the norm

defined by ‖(ai)i∈I‖U := lim
U
‖ai‖, and the involution defined by (ai)

∗
i∈I := (a∗i )i∈I ,

so AU becomes a C∗-algebra.

Remark 2.2. Let ((ani )i∈I)n∈N ⊂ AU be a sequence that converges to (ai)i∈I ∈
AU . Then, for all ε > 0, there exists n0 ∈ N such that if n ≥ n0, then
‖(ani )i∈I − (ai)i∈I‖U < ε. We claim that if n ≥ n0, then the set Ωn(ε) := {i ∈
I : ‖ani − ai‖ < ε} belongs to U . To show this, set αn := ‖(ani )i∈I − (ai)i∈I‖U .
For every δ > 0, we have {i ∈ I : |‖ani − ai‖ − αn| < δ} ∈ U . Taking
δ = ε − αn > 0 we get ε − αn > |‖ani − ai‖ − αn| ≥ ‖ani − ai‖ − αn. It fol-
lows that {i ∈ I : |‖ani − ai‖−αn| < δ} ⊂ Ωn(ε). By directness, this implies that
Ωn(ε) ∈ U .

From now on we fix a faithful and non-degenerate representation of A on B(H).

Lemma 2.3. Let U be an ultrafilter defined over I and let A be a C∗-algebra.
For each (ai)i∈I ∈

∏
I A, there exists a unique element aU-WOT ∈ B(H) such that

for every ξ, η ∈ H, it holds that 〈aU-WOT ξ, η〉 = lim
U
〈aiξ, η〉. The operator aU-WOT

is called the U-WOT-limit of (ai)i∈I.

Proof. Let (ai)i∈I ∈
∏
I A and let ξ, η ∈ H. Then (〈aiξ, η〉)i∈I ⊂ C is bounded,

hence it has a U -limit, which is denoted by bξ,η. It is easy to see that the map
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(ξ, η) 7→ bξ,η is a bounded sesquilinear form on H×H. Take aU-WOT ∈ B(H) the
unique operator associated to it. �

Definition 2.4. Let U be an ultrafilter defined over I and let A be a C∗-algebra.
An element (ai)i∈I ∈

∏
I A is U -strict convergent if there exists an operator

aU ∈ B(H) such that, for every x ∈ A, and every ε > 0 we have {i ∈ I :
‖aix − aUx‖ < ε, ‖xai − xaU‖ < ε} ∈ U . The operator aU is called the U -strict
limit of (ai)i∈I . Observe that aUx and xaU are elements of A for every x ∈ A.

In what follows, it will be convenient to have the following notation at hand.

Notation 2.5. Let (ai)i∈I , (bi)i∈I ∈ ΠIA that are U -strict convergent to aU and
bU , respectively. For every x ∈ A and every ε > 0, put

Ax(ε) := {i ∈ I : ‖x(ai − aU)‖, ‖(ai − aU)x‖ < ε} ∈ U ,

Bx(ε) := {i ∈ I : ‖x(bi − bU)‖, ‖(bi − bU)x‖ < ε} ∈ U .

Proposition 2.6. Let U be an ultrafilter defined over I and let A be a C∗-algebra.
If (ai)i∈I , (bi)i∈I ∈ ΠIA define the same element in AU , then

(1) if (ai)i∈I is U-WOT convergent to aU-WOT , then (bi)i∈I is U-WOT con-
vergent to aU-WOT ;

(2) if (ai)i∈I is U-strict convergent to aU , then (bi)i∈I is U-strict convergent
to aU .

Proof. To prove (1), take ξ, η ∈ H of norm 1, let ε > 0, and take i in the set
{i ∈ I : ‖ai − bi‖ < ε

2
} ∩ {i ∈ I : |〈aU-WOT ξ, η〉 − 〈aiξ, η〉| < ε

2
} ∈ U . Then

|〈aU-WOT ξ, η〉 − 〈biξ, η〉| ≤ |〈(aU-WOT − ai)ξ, η〉|+ |〈(ai − bi)ξ, η〉| < ε.

It follows that the set {i ∈ I : |〈aU-WOT ξ, η〉 − 〈biξ, η〉| < ε} belongs to U .
To prove (2), take ε > 0, x ∈ A and i ∈ {i ∈ I : ‖ai− bi‖ < ε

2‖x‖}∩Ax(
ε
2
) ∈ U .

Then
‖x(bi − aU)‖ ≤ ‖x(bi − ai)‖+ ‖x(ai − aU)‖ < ε,

‖(bi − aU)x‖ ≤ ‖(bi − ai)x‖+ ‖(ai − aU)x‖ < ε.

It follows that the set {i ∈ I : ‖x(bi − aU)‖, ‖(bi − aU)x‖ < ε} belongs to U . �

Proposition 2.7. Let U be an ultrafilter defined over I and let A be a C∗-algebra.
The set

AsU := {(ai)i∈I ∈ AU : there exists aU ∈ B(H) : (ai)i∈I is U-strict convergent to aU}
is a C∗-algebra.

Proof. Let (ai)∈I , (bi)i∈I ∈ AsU that are U -strict convergent to aU and bU , respec-
tively, let λ 6= 0 be a complex number, and let x ∈ A. By following Notation 2.5,

if i ∈ Ax
(ε

2

)
∩Bx

(
ε

2|λ|

)
∈ U , then

‖(ai + λbi − aU − λbU)x‖ ≤ ‖(ai − aU)x‖+ |λ|‖(bi − bU)x‖ < ε,

and
‖x(ai + λbi − aU − λbU)‖ ≤ ‖x(ai − aU)‖+ |λ|‖x(bi − bU)‖ < ε.
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It follows that

Ax

(ε
2

)
∩Bx

(
ε

2|λ|

)
⊂ {i ∈ I : ‖(ai+λbi−aU−λbU)x‖ < ε, ‖x(ai+λbi−aU−λbU)‖ < ε},

so (ai + λbi)i∈I is U -strict convergent to aU + λbU .
It is clear that AsU is ∗-closed. To show that AsU is closed under taking prod-

ucts, set M = supi∈I{‖ai‖, ‖bi‖} and take i ∈ Ax
( ε

2M

)
∩ AbUx

(ε
2

)
∩ Bx

( ε

2M

)
∩

BxaU

(ε
2

)
∈ U . Then

‖(aibi − aUbU)x‖ ≤ ‖(aibi − aibU)x‖+ ‖(aibU − aUbU)x‖ ≤ ε

and
‖x(aibi − aUbU)‖ ≤ ‖x(aibi − aUbi)‖+ ‖x(aUbi − aUbU)‖ ≤ ε,

which means that (aibi)i∈I is U -strict convergent to aUbU .
It is left to show that AsU is norm closed. Let ((ani )i∈I)n∈N be a sequence in
AsU that converges to (αi)i∈I in AU . We need to see that (αi)i∈I is U -strict
convergent.

As a first step, we will show that, for a fixed element x ∈ A, (αix)i∈I and
(xαi)i∈I have U -limit in A (in the sense of Definition 2.1).

Let x ∈ A be fixed and x 6= 0. For each n ∈ N let anU be the U -strict limit of
(ani )i∈I ∈ AsU . We proceed to show that (anUx)n∈N is a Cauchy sequence in A.
By Remark 2.2, for every ε > 0, there exists n0 ∈ N such that, for all n ≥ n0, the
sets Ωn

(
ε

4‖x‖

)
are elements of U . It follows that the set

{i ∈ I : ‖ani x−anUx‖ <
ε

4
}∩{i ∈ I : ‖ami x−amU x‖ <

ε

4
}∩Ωn

( ε

4‖x‖
)
∩Ωm

( ε

4‖x‖
)

is an element of U for all n,m ≥ n0. Take i in this set. Then

‖anUx− amU x‖ ≤ ‖anUx− ani x‖+ ‖ani x− ami x‖+ ‖ami x− amU x‖

≤ ε

4
+ ‖ani − αi‖‖x‖+ ‖αi − ami ‖‖x‖+

ε

4
< ε.

Let ρ(x) := lim
n∈N

anUx ∈ A. We will show that lim
U
αix = ρ(x), that is,

{i ∈ I : ‖ρ(x)−αix‖ < ε} ∈ U for each ε > 0. Let n ∈ N large enough such that

‖ρ(x)− anUx‖ <
ε

3
and Ωn

(
ε

3‖x‖

)
∈ U .

For such n ∈ N, take i ∈ {i ∈ I : ‖anUx− ani x‖ <
ε

3
} ∩ Ωn

( ε

3‖x‖
)
∈ U . Then

‖ρ(x)− αix‖ ≤ ‖ρ(x)− anUx‖+ ‖anUx− ani x‖+ ‖ani x− αix‖ ≤ ε.

Repeating this with (xαi)i∈I concludes the first step.
Let αU-WOT ∈ B(H) be the U -WOT-limit of (αi)i∈I . We will show that

αU-WOTx = ρ(x). Take η, ξ ∈ H of norm 1, ε > 0, and

i ∈ {i ∈ I : |〈(αi − αU-WOT )xξ, η〉| < ε

2
} ∩ {i ∈ I : ‖ρ(x)− αix‖ <

ε

2
} ∈ U .

We then have that

|〈(ρ(x)− αU-WOTx)ξ, η〉| ≤ |〈(ρ(x)− αix)ξ, η〉|+ |〈(αix− αU-WOTx)ξ, η〉| < ε,
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which implies that αU-WOTx = ρ(x) = lim
U
αix. Therefore, for all x ∈ A and

ε > 0, we have {i ∈ I : ‖αU-WOTx − αix‖ < ε} ∈ U . In a similar manner, one
shows that {i ∈ I : ‖xαU-WOT −xαi‖ < ε} ∈ U . It follows that (αi)i∈I is U -strict
convergent to αU-WOT . �

Proposition 2.8. Let U be an ultrafilter defined over I and let A be a C∗-algebra.
The set

J := {(ai)i∈I ∈ AsU : ai is U-strict convergent to 0}
is an ideal of AsU .

Proof. We only have to show that J is norm closed. Consider ((ani )i∈I)n∈N ⊂ J a
sequence that converges in norm to (αi)i∈I ∈ AsU . Let αU be the U -strict limit

of (αi)i∈I . Let ε > 0. Take n ∈ N large enough such that Ωn

( ε

3‖x‖

)
∈ U , and

i ∈ {i ∈ I : ‖(αi − αU)x‖ < ε
3
} ∩ {i ∈ I : ‖ani x‖ < ε

3
} ∩ Ωn

( ε

3‖x‖

)
∈ U . We then

have that ‖αUx‖ ≤ ‖(αU − αi)x‖+ ‖αix‖ ≤ ε
3

+ ‖(αi − ani )x‖+ ‖ani x‖ ≤ ε. Since
the action of A on H is nondegenerate, αU = 0. �

There exists a natural embedding of A in AsU , via the constant sequences
a 7→ (a)i∈I . It is clear that this element is U -strict convergent to a. Moreover,
since the representation of A in B(H) is faithful and nondegenerate, it follows
that there exists a natural embedding of A in AsU/J .

Recall that an ideal I in a C∗-algebra A is essential if I ∩K is nontrivial for
every ideal K 6= {0}, or equivalently, aI = 0 implies a = 0.

Lemma 2.9. Let U be an ultrafilter defined over I and let A be a C∗-algebra.
Consider the C∗-algebra AsU/J . The image of A in AsU/J is an essential ideal.

Proof. Take (bi)i∈I ∈ AsU , let bU be its U -strict limit, and take a ∈ A. Then
(bia)i∈I and (bUa)i∈I are both U -strict convergent to bUa. It follows that (bia)i∈I
and (bUa)i∈I are equal in AsU/J . Analogously, (abi)i∈I is equal to (abU)i∈I in
AsU/J .

Suppose that J ′ ⊂ AsU/J is an ideal such that J ′ ∩ A = {0}. If (bi)i∈I ∈ AsU
projects to J ′, then (bix)i∈I ∈ J ,for each x ∈ A. Let bU be the U -strict limit of
(bi)i∈I . Hence (bix)i∈I is U -strict convergent to bUx. Then bUx = 0 for all x ∈ A.
It follows that bU = 0 and then J ′ = {0}. �

2.2. Ultrafilters and approximate units. Every C∗-algebra A has an approx-
imate unit, namely, there exist a directed set I and a net (ei)i∈I ⊂ A such that
for every x ∈ A, the nets (xei)i∈I and (eix)i∈I converge to x (see [6, Chapter I.4]).
Approximate units can be taken to be positive and uniformly bounded, in which
case they are elements of

∏
I A. In what follows, we will focus in the case where

the ultrafilters are defined over this directed set I. Observe that for a cofinal
ultrafilter U , the sets {i ∈ I : ‖xei − x‖ < ε} and {i ∈ I : ‖eix− x‖ < ε} belong
to U , for every x ∈ A and for every ε > 0. Moreover, when A is unital, I can be
taken to be the set with one element {1A} and the approximate unit to be equal
to {1A}. In this case, the only ultrafilter is the set {1A}, which is cofinal.
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Theorem 2.10. Let A be a C∗-algebra and let (ei)i∈I ∈
∏

i∈I A be an approxi-
mate unit for A. Let U be a cofinal ultrafilter over I. Then the C∗-algebra AsU/J
is the multiplier algebra of A.

Proof. We saw in Lemma 2.9 that A is an essential ideal in AsU/J . We are left
to show that for any C∗-algebra B containing A as an ideal, there is a unique
C∗-homomorphism ϕ : B → AsU/J such that ϕ(a) = a.
To this end, let b ∈ B and consider ψ : B → AsU defined by ψ(b) = (bei)i∈I . To
see that ψ is well defined, let ε > 0 and let x ∈ A. Let i0 ∈ I such that if i ≥ i0,

then ‖xbei−xb‖ < ε. Let i1 ∈ I such that if i ≥ i1, then ‖eix−x‖ <
ε

‖b‖
. By the

cofinality of U one obtains that {i ∈ I : ‖beix − bx‖ < ε, ‖xbei − xb‖ < ε} ∈ U .
Observe that since b /∈ B(H), the last line does not imply that (bei)i∈I ∈ AsU .
We must “represent” b in B(H). To this end, let bU-WOT ∈ B(H) be the U -
WOT-limit of (bei)i∈I ∈ AU , an argument similar to one given in the proof of
Proposition 2.7, shows that bU-WOTx = bx and xbU-WOT = xb. Thus (bei)i∈I is
U -strict convergent to bU-WOT . The same procedure shows that (eib)i∈I is U -strict
convergent to bU-WOT .

Call π the quotient projection to AsU/J , and let ϕ = π ◦ ψ. It is clear that ϕ
is linear and bounded. Since ψ(b∗) = (b∗ei)i∈I and ψ(b)∗ = (eib

∗)i∈I and they are
both U -strict convergent to (b∗)U-WOT , hence ψ(b∗)−ψ(b)∗ is an element of J , so
ϕ is a ∗-preserving homomorphism.

To see that ϕ is multiplicative, fix b, b′ ∈ B of norm 1 and take x ∈ A, ε > 0,
M = supi∈I{‖ei‖} and i in the set

{i ∈ I : ‖eix−x‖ <
ε

3M
}∩{i ∈ I : ‖x−eix‖ <

ε

3M
}∩{i ∈ I : ‖eib′x−b′x‖ <

ε

3M
},

which is an element of U . Then

‖(beib′ei − bb′ei)x‖ ≤ ‖eib′eix− eib′x‖+ ‖eib′x− b′x‖+ ‖b′x− b′eix‖
≤ ‖eib′‖‖eix− x‖+ ‖eib′x− b′x‖+ ‖b′‖‖x− eix‖ < ε.

Take i ∈ {i ∈ I : ‖xbei − xb‖ <
ε

M
} ∈ U . Then ‖x(beib

′ei − bb′ei)‖ ≤ ‖xbei −
xb‖‖b′ei‖ < ε. It follows that ψ(b)ψ(b′)−ψ(bb′) = (beib

′ei− bb′ei)i∈I is an element
of J .

Since (aei − a)i∈I is U -strict convergent to 0, for all a ∈ A, so ϕ(a) = a in
AsU/J .

Suppose that there exists another C∗-homomorphism ϕ′ : B → AsU/J such
that ϕ′(a) = a for all a ∈ A. Then

ϕ′(b)a = ϕ′(b)ϕ′(a) = ba = ϕ(b)ϕ(a) = ϕ(b)a.

By Lemma 2.9, ϕ(b) = ϕ′(b). �

Ultraproducts provide a new point of view for dealing with multiplier algebras.
For instance, the identification of M(A) with AsU/J yields an easy proof of the
next characterization of multipliers, without using double centralizers.

Corollary 2.11. M(A) is isomorphic to M := {m ∈ B(H) : for all a ∈
A, am ∈ A , ma ∈ A}. In particular, M(A) is unital.
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Proof. Consider ϕ : AsU → M defined by ϕ((ai)i∈I) = lim
U-strict

ai. This map

is well defined, it is a C∗-homomorphism (Proposition 2.7), and ker(ϕ) = J .
To show that ϕ is surjective, let m ∈ M. Then am ∈ A and ma ∈ A for
every a ∈ A. Hence, for all ε > 0, the sets {i ∈ I : ‖a(mei − m)‖ < ε} and
{i ∈ I : ‖(mei −m)a‖ < ε} are elements of U . Then (mei)i∈I ∈ AU is U -strict
convergent to m.

Taking m = 1, it follows that the image of (ei)i∈I in AsU/J is the unit of
AsU/J . �

For a second application, observe that every C∗-homomorphism φ : A → B
defines a natural C∗-homomorphism φ′ : AU → BU . When φ is surjective, a proof
similar to one given in Proposition 2.7 shows that φ′(AsU) ⊂ BsU . This together
with Theorem 2.10 immediately gives the following known result.

Proposition 2.12. Let A,B be C∗-algebras and let φ : A → B be a surjective
homomorphism. The natural extension φ′ : AU → BU induces the following
commutative diagram:

A AsU M(A) M(A)/A

B BsU M(B) M(B)/B.

φ φ′ φ′′ φ′′′

3. the case of commutative and separable C∗-algebras

Recall that when a C∗-algebra A is separable, it is σ-unital, namely, there
exists a countable approximate unit (see [6, Chapter I.4]). That entails that the
index set I of the previous section can be taken to be equal to N, in which case
nonprincipal ultrafilters are cofinal and

∏
I A is `∞(A).

In [1], the authors built the multiplier algebra for commutative and separable
C∗-algebras using ultraproducts of C∗-algebras. More precisely they considered
A = C0(X) where X is a second countable, locally compact topological space
and took U a nonprincipal ultrafilter defined over N to construct the multiplier
algebra of A, Cb(X), identifying it with a quotient of a sub-C∗-algebra of

∏
I A.

For that, the authors usee the key fact that the hypothesis on X entails the
existence of a proper metric compatible [8]. In what follows, we will then identify
the second countable, locally compact topological space X with the metric space
(X, d), where d is a proper metric on X. The closed ball of radius r > 0 centered
at a fixed base-point o ∈ X, will be denoted by Bo(r). The main technical tool
of [1] is the following definition.

Definition 3.1. [1, Section 3] Let (X, d) be as in the preceding discussion. Let
A = C0(X) and let U be a nonprincipal ultrafilter over N. For (fn)n∈N ∈ `∞(A),
we say that (fn)n∈N is U-equicontinuous on bounded sets if, for every r, ε > 0,
there is δ > 0 such that the set {n ∈ N : for all s, t ∈ Bo(r) with d(s, t) < δ =⇒
|fn(s)− fn(t)| < ε} belongs to U .



8 F. POGGI, R. SASYK

Given (fn)n∈N ∈ `∞(A), and a fixed x ∈ X, the U -limit of the sequence
(fn(x))n∈N is well defined. We denote fU : X → C, fU(x) := lim

U
(fn(x)). The

following fact was observed in [1].

Lemma 3.2. If (fn)n∈N ∈ `∞(A) is U-equicontinuous on bounded sets, then fU
is uniformly continuous on bounded sets.

The next proposition shows that our notion of U -strict convergence coincides
with the notion of U -equicontinuity on bounded sets in the case of A = C0(X),
where X is a locally compact, second countable, topological space. This entails
that the work done here in section 2 is indeed a generalization of the work done
in [1, Section 3].

Proposition 3.3. Take (fn) ∈ `∞(A) and let fU(x) = lim
U

(fn(x)). The following

two conditions are equivalent:

(1) The sequence (fn)n∈N is U-equicontinuous on bounded sets.
(2) The sequence (fn)n∈N is U-strict convergent to fU .

Proof. To show that (1) implies (2), let (fn)n∈N ∈ `∞(A) be U -equicontinuous on
bounded sets. Let ε > 0 and let g ∈ C0(X). Set M = supn∈N{‖fn‖, ‖g‖}, and

take K ⊂ X a compact set such that |g(x)| < ε

2M
if x /∈ K. There exists δ1

such that for x, y ∈ K with d(x, y) < δ1, {n ∈ N : |fn(x) − fn(y)| ≤ ε

3M
} ∈ U .

By Lemma 3.2, there exists δ2 > 0 such that |fU(x) − fU(y)| < ε

3
, for x, y ∈ K

with d(x, y) < δ2. Take δ = min{δ1, δ2} and cover K with a finite number of
balls Bxj(δ) of radius δ centered at xj, j = 1, . . . ,m. Since fU(xj) = lim

U
fn(xj),

it follows that the sets Aj =
{
n ∈ N : |fn(xj)− fU(xj)| <

ε

3M

}
belong to U .

Therefore if n ∈
⋂m
j=1Aj ∈ U , and x ∈ K, taking xj with d(x, xj) < δ we get

|(fn(x)− fU(x))g(x)| ≤ |fn(x)− fn(xj)|‖g‖+ |fn(xj)− fU(xj)|‖g‖+
|fU(xj)− fU(x)|‖g‖ < ε.

On the other hand, if x /∈ K, then |(fn − fU)g(x)| < ε. This shows that {n ∈ N :
‖fng − fUg‖ < ε} ∈ U .

To show the converse, take g ∈ C0(X) such that g = 1 in Bo(r). By hypothesis,
for all ε > 0 the sets {n ∈ N : ‖(fn − fU)g‖ < ε} are in U and are infinite. So we
can build a subsequence (fnk

)k∈N such that (fnk
)k∈N is uniformly convergent to fU

in B0(r). By hypothesis, closed balls are compact, so fU is uniformly continuous
on Bo(r). Let δ > 0 such that d(x, y) < δ implies |fU(y) − fU(x)| < ε in Bo(r).

Take n ∈ {n ∈ N : ‖(fn − fU)g‖ < ε

3
} ∈ U . Then for x, y ∈ Bo(r) such that

d(x, y) < δ we have

|fn(x)− fn(y)| ≤ |fn(x)− fU(x)|+ |fU(x)− fU(y)|+ |fn(y)− fU(y)| ≤ ε,

therefore {n ∈ N : ‖(fn − fU)g‖ < ε
3
} is a subset of {n ∈ N : for all x, y ∈

Bo(r) with d(x, y) < δ =⇒ |fn(x) − fn(y)| < ε}. This shows that the last set
belongs to U . �
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4. An application to boundary amenability of groups

Let Γ be a countable group. Let A be a unital C∗-algebra endowed with a
Γ-action by ∗-automorphisms. Let Cc(Γ,A) be the space of finitely supported
functions from Γ to A. This is a ∗-algebra with the product given by

T ∗ S(γ) =
∑

γ1γ2=γ

T (γ1)(γ1 · S(γ2))

and the involution given by

T ∗(γ) = γ · T (γ−1)∗.

The space Cc(Γ,A) has a pre-Hilbert A-module structure via the inner product
〈T, S〉A :=

∑
γ∈Γ

T (γ)∗S(γ), and the corresponding norm ‖T‖A := 〈T, T 〉1/2.

Definition 4.1. A group Γ is boundary amenable (or exact) if there exist a
compact space Y and a sequence (Si)i∈N ⊂ Cc(Γ, C(Y )) such that

(1) Si is positive, that is, Si(γ) ≥ 0 for all γ ∈ Γ;
(2)

∑
γ∈Γ S

2
i (γ) = 1;

(3) for every γ1 ∈ Γ, it follows that ‖Si − γ1 ∗ Si‖ goes to 0 when i goes to
infinity.

In [1, Section 4], the authors applied their ultraproduct construction of the
multiplier algebra of a separable C∗ algebra to show that groups acting properly
and transitively on a locally finite tree are boundary amenable. The assumption
that the action is proper and transitive implies that the vertex stabilizers are all
isomorphic finite groups of cardinal m. In the proof given in [1], this constant
m contains all the information that is needed about the stabilizers. Since it
is known that groups acting on a locally finite tree with exact stabilizers are
boundary amenable (see, for instance,[2, 3, 5, 7]), it is interesting to see if the
strategy developed in [1] can be extended to prove this more general result. We
partially achieve this in the proof of the next theorem.

Theorem 4.2. If a countable group Γ acts transitively on a locally finite tree T
with boundary amenable stabilizers, then Γ is boundary amenable.

Proof. Fix a vertex o ∈ T as a base-point. We will denote with B(i) the closed
ball of radius r centered in o. The geodesic that connects o with t will be denoted
by [o, t]. In what follows Stab{o} will be denoted with Λ.

Since the action of Γ on T is transitive, we choose a cross section for it, namely,
for each v ∈ T we choose gv ∈ Γ such that gvo = v.

Set
(
Γi
)
i∈N an increasing sequence of finite subsets of Γ that covers Γ and let

Λi :=
⋃

v∈B(i)

⋃
w∈B(i)

(
g−1
v Γigw ∩ Λ

)
.

Since T is locally finite, Λi is finite.
Since Λ is boundary amenable, there exist a compact set Y and a sequence

(Si)i∈N ⊂ Cc((Λ, C(Y )) satisfying the three conditions of Definition 4.1. The
compact space Y will be taken to be a Γ-space (see [3, pg. 178]). Moreover, we
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can assume that Si is defined over all Γ by extending it by 0 in Γ \ Λ. For every
i ∈ N, let

κ(i) := min{k ∈ N : ||Sl − λ ∗ Sl‖ <
1

i
for all l ≥ k and for all λ ∈ Λi}.

Consider the C∗-algebra A := C0(T ×Y ). Since Y is compact and T is countable,
A is a σ-unital C∗-algebra, hence we are in the case discussed at the beginning
of Section 3. Let U be a non principal ultrafilter over N and consider the corona
algebraM(A)/A, which we identify with AsU/J

/
A. This is a unital C∗-algebra.

For each i ∈ N, set Ti : Γ→ AsU , where Ti(γ) = (T ni (γ))n∈N is defined by

T ni (γ)(t, y) =
1√∣∣∣[o, t] ∩B(i)

∣∣∣χB(n)(t)
∑
v∈B(i)

χ[o,t](v)Sκ(i)(g
−1
v γ)(g−1

v y),

where
∣∣∣[o, t] ∩ B(i)

∣∣∣ denotes the number of points in the geodesic [o, t] that lie

inside the ball B(i). Note that (T ni (γ))n∈N is U -strict convergent to

Ti = Ti(γ)(t, y) =
1√∣∣∣[o, t] ∩B(i)

∣∣∣
∑
v∈B(i)

χ[o,t](v)Sκ(i)(g
−1
v γ)(g−1

v y)

We will denote by Ti its projection to AsU/J
/
A. We remark that the definition

of Ti is inspired by the definition of µx,y given by Ozawa in [5].
Claim: The sequence (Ti)i∈N ⊆ C(Γ;AsU/J

/
A) satisfies the conditions of Defi-

nition 4.1.
To show this, first observe that if Ωκ(i) ⊆ Λ denotes the support of Sκ(i), then
the support of Ti is contained in

⋃
v∈B(i) gvΩκ(i). Since T is locally finite, this is

a finite set.
To show that condition (1) holds true, it is enough to notice that Ti is sum and
product of positive functions.
To show that condition (2) holds true, note that for each fixed γ ∈ Γ, there exists
only one gv such that g−1

v γ ∈ Λ. Then there exists at most one gv such that
Sκ(i)(g

−1
v γ) is nonzero. Then∑
γ∈Γ

(Ti)
2(t, y) =

∑
γ∈Γ

1∣∣∣[o, t] ∩B(i)
∣∣∣
∑
v∈B(i)

χ[o,t](v)S2
κ(i)(g

−1
v γ)(g−1

v y)

=
1∣∣∣[o, t] ∩B(i)

∣∣∣
∑
v∈B(i)

χ[o,t](v)
∑
γ∈Γ

S2
κ(i)(g

−1
v γ)(g−1

v y)

=
1∣∣∣[o, t] ∩B(i)

∣∣∣
∑
v∈B(i)

χ[o,t](v)
∑
λ∈Λ

S2
κ(i)(λ)(g−1

v y)

=
1∣∣∣[o, t] ∩B(i)

∣∣∣
∑
v∈B(i)

χ[o,t](v) = 1.

It remains to show that condition (3) holds true. To this end, fix γ1 ∈ Γ.
Observe that if (t, y) ∈ T × Y , then γ1 ∗ Ti(γ)(t, y) = Ti(γ

−1
1 γ)(γ−1

1 t, γ−1
1 y).
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Hence

‖Ti − γ1 ∗ Ti‖2
Cc(Γ,AsU/J/A) = ‖

∑
γ∈Γ

(Ti(γ)− γ1 ∗ Ti(γ))2‖
AsU/J

/
A

= inf
a∈A
‖
∑
γ∈Γ

(Ti(γ)− γ1 ∗ Ti(γ))2 − a‖AsU/J

= inf
a∈A
‖2− 2

∑
γ∈Γ

Ti(γ)(γ1 ∗ Ti(γ))− a‖AsU/J (4.1)

If we set θ(i, t) :=
∣∣∣[o, t] ∩B(i)

∣∣∣−1/2 ∣∣∣[o, γ−1
1 t] ∩B(i)

∣∣∣−1/2

, then∑
γ∈Γ

Ti(γ)(t, y)Ti(γ
−1
1 γ)(γ−1

1 t, γ−1
1 y)

= θ(i, t)
∑
v∈B(i)
w∈B(i)

χ[o,t](v)χ[o,γ−1
1 t](w)

∑
γ∈Γ

Sκ(i)(g
−1
v γ)(g−1

v y)Sκ(i)(g
−1
w γ−1

1 γ)(g−1
w γ−1

1 y)

= θ(i, t)
∑
v∈B(i)
w∈B(i)

χ[o,t](v)χ[o,γ−1
1 t](w)

∑
λ∈Λ

Sκ(i)(λ)(z)Sκ(i)(g
−1
w γ−1

1 gvλ)(g−1
w γ−1

1 gvz),

(4.2)

where the last equality follows from the changes of variables λ := g−1
v γ and

z := g−1
v y, and by recalling that Sκ(i)(λ) = 0 if λ /∈ Λ.

In order to get that Sκ(i)(g
−1
w γ−1

1 gvλ) 6= 0, it is necessary that g−1
w γ−1

1 gv belongs
to Λ. Note that for a fixed v, there exists only one gw such that g−1

w γ−1
1 gv ∈ Λ.

For this gw, we have that w = γ−1
1 v and χ[o,γ−1

1 t](w) = χ[o,γ−1
1 t](γ

−1
1 v) = χ[γ1o,t](v).

Therefore, (4.2) is equal to the following sum, only depending on v.

θ(i, t)
∑

v∈B(i)∩γ1B(i)

χ[o,t](v)χ[γ1o,t](v)
∑
λ∈Λ

Sκ(i)(λ)(z)Sκ(i)(g
−1
w γ−1

1 gvλ)(g−1
w γ−1

1 gvz).

Replacing this in (4.1), we get that ‖Ti − γ1 ∗ Ti‖2
Cc(Γ,AsU/J/A) is equal to

inf
a∈A

sup
(t,y)∈T×Y

{∣∣∣2− a(t, y)−

2θ(i, t)
∑

v∈B(i)∩γ1B(i)

χ[o,t](v)χ[γ1o,t](v)
∑
λ∈Λ

Sκ(i)(λ)(z)Sκ(i)(g
−1
w γ−1

1 gvλ)(g−1
w γ−1

1 gvz)
∣∣∣}.
(4.3)

By the triangle inequality, to estimate (4.3), it is enough to estimate the following
two quantities

2θ(i, t)
∑

v∈B(i)∩γ1B(i)

χ[o,t](v)χ[γ1o,t](v)
∣∣∣1−∑

λ∈Λ

Sκ(i)(λ)(z)Sκ(i)(g
−1
w γ−1

1 gvλ)(g−1
w γ−1

1 gvz)
∣∣∣

(4.4)
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and ∣∣∣2− 2θ(i, t)
∑

v∈B(i)∩γ1B(i)

χ[o,t](v)χ[γ1o,t](v)− a(t, y)
∣∣∣ (4.5)

In order to bound (4.4), first note that

2
∣∣∣1−∑

λ∈Λ

Sκ(i)(λ)(z)Sκ(i)(g
−1
w γ−1

1 gvλ)(g−1
w γ−1

1 gvz)
∣∣∣ = ‖Sκ(i) − (g−1

v γ1gw) ∗ Sκ(i)‖2.

Then note that there exists r ∈ N such that γ1 ∈ Γi for all i ≥ r. It follows that
for all i ≥ r, g−1

v γ1gw ∈ Λi, whenever v, w ∈ Bi. Then, by the definition of κ(i),
it follows that

‖Sκ(i) − (g−1
v γ1gw) ∗ Sκ(i)‖2 ≤ 1

i
, for all i ≥ r, whenever v ∈ B(i) ∩ γ1B(i).

Then, for all i ≥ r, (4.4) is bounded by

1

i
θ(i, t)

∑
v∈B(i)∩γ1B(i)

χ[o,t](v)χ[γ1o,t](v)

≤ 1

i
θ(i, t)

( ∑
v∈B(i)∩γ1B(i)

χ[o,t](v)
)1/2( ∑

v∈B(i)∩γ1B(i)

χ[γ1o,t](v)
)1/2

≤ 1

i
θ(i, t)

∣∣∣[o, t] ∩B(i)
∣∣∣1/2∣∣∣[γ1o, t] ∩ γ1B(i)

∣∣∣1/2
=

1

i
θ(i, t)

∣∣∣[o, t] ∩B(i)
∣∣∣1/2∣∣∣[o, γ−1

1 t] ∩B(i)
∣∣∣1/2

=
1

i
.

In order to bound (4.5), for each i ∈ N, we choose

a(t, y) = a(t) :=

2− 2θ(i, t)
∑

v∈B(i)∩γ1B(i)

χ[o,t](v)χ[γ1o,t](v)

χB(i)∪γ1B(i)(t).

This choice of a ∈ A left us to bound (4.5) only when t /∈ B(i) ∪ γ1B(i). In
this case θ(i, t) = 1

i
. Moreover, if i ≥ d(o, γ1o) then∣∣∣[o, t] ∩ [γ1o, t] ∩B(i) ∩ γ1B(i)

∣∣∣ ≥ i− d(o, γ1o).

It follows that in (4.5) we have the bound

2− 2

i

∑
v∈B(i)∩γ1B(i)

χ[o,t](v)χ[γ1o,t](v) = 2− 2

i

∣∣∣[o, t] ∩ [γ1o, t] ∩B(i) ∩ γ1B(i)
∣∣∣

≤ 2− 2

i
(i− d(o, γ1o))

=
d(o, γ1o)

i
.

All this combined entails that if ε > 0, and i ≥ max{r; d(o, γ1o), 2/ε; 2d(o, γ1o)/ε},
then ‖Ti − γ1 ∗ Ti‖2

Cc(Γ,AsU/J/A) < ε. �
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