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Abstract A new enriched finite element formulation for
solving isothermal phase change problems is presented. We
propose a fixed mesh method, where the discontinuity in the
temperature gradient is represented by enriching the finite
element space through a function whose definition includes
a gradient discontinuity. Generally, in these types of formula-
tions, the enrichment location (the location of the solidifica-
tion front) is determined through a level set auxiliary scheme.
In this work, this position is determined implicitly by con-
straining the temperature at the phase change boundary to be
equal to the melting temperature. Several numerical exam-
ples are presented to show the application of the method.

Keywords Enriched finite element method · Solidification
problems · Stefan problem · Phase change problems · XFEM

1 Introduction

Solidification processes are of interest in many areas of
engineering, such as welding mechanics, nuclear engineer-
ing, metallurgy and metal casting processes [2,5,13,23,25].
When considering solidification of a pure substance, prob-
lems are described as isothermal phase change problems that
are characterised mainly by two parameters: the material
melting temperature and its latent heat. An inherent difficulty
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with these problems is the discontinuity in the temperature
gradient at the solidification front.

From a general point of view, two specialisations of the
finite element method (FEM) are aimed at solving phase
change problems: moving mesh or front tracking meth-
ods and fixed mesh methods [19]. Moving mesh methods
track the position of the phase change boundary; therefore,
through remeshing, the mesh conforms to the position of
the interface. In this way, the FEM formulation addresses
the weak discontinuity present in the temperature field at the
solidification front in a standard way, which is presented
in several studies [4,6,26]. The problem with this type of
methods is that in multidimensional problems, the mesh can
become too distorted as the interface evolves. This does not
occur with fixed mesh methods. Different types of fixed
mesh methods were proposed, i.e., enthalpy methods [36,38],
capacitance methods [30] and temperature based methods
[8,11,14,35]. However, none of these methods is able to
represent the gradient discontinuity at the phase change
boundary.

Because of the mesh distortion problem and the need for
remeshing of the front tracking methods, we propose a fixed
mesh scheme, which represents the aforementioned discon-
tinuity. This method has the advantages of both groups of
methods: the ability to represent the weak discontinuity with-
out mesh distortions.

In classical fixed mesh methods, loss of stability and/or
robustness, which are associated with discontinuity at the
interface, appears with low sensible to latent heat ratios (Ste-
fan number) or when the initial temperature is close to the
melting temperature [31]. These situations cannot be han-
dled efficiently and require a large number of elements for
accurate solutions. In several scenarios, the standard New-
ton–Raphson solver does not converge and a line search must
be used [28].
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Fixed mesh finite element formulations that perform dis-
continuous spatial integration, such as those proposed by Cri-
velli and Idelsohn [11] and subsequently refined by Storti
et al. [35] and Fachinotti et al. [14], provide spurious oscil-
lations in the computed solution for certain situations. This
phenomenon appears for high latent heat values because the
discontinuity in the temperature gradient at the interface is
pronounced and cannot be represented when the position
of the solidification front does not coincide with an ele-
ment boundary due to the continuous interpolated gradient
inside the element. This situation is worse with linear shape
functions, which are used in most cases with discontinuous
integration, resulting in a space of trial solutions that can
reproduce up to piecewise constant gradients. One approach
to avoid this situation is to introduce the representation of
the gradient discontinuity by enriching the element. Another
approach, proposed recently by Davey and Mondragon [12],
involves removing the discontinuity through the introduction
of a non-physical enthalpy.

Currently, enriching techniques are widely used in fluid
and fracture mechanics [3,16,33]. These techniques are
designed to represent the existing discontinuities and
singularities in the fields of interest. If we apply the usual
techniques in these situations (e.g., standard finite element
formulations), the overall convergence rate is not optimal in
the sense described by Fries [15].

Although new enriched formulations are constantly being
proposed, it should be noted that this is not the case for
solidification problems. There are few enriched formulations
in the literature for solving the previously mentioned types
of phase change problems. Chessa et al. [9] and Bernauer
and Herzog [7] determined the position of the enrichment
through a level set function that is evolved with the interface
Rankine–Hugoniot condition (specialised to the Stefan prob-
lem) and the associated advection equation. Several steps are
performed to compute the solution of the level set equation
[32]. First, the velocity of the solidification front is com-
puted from the Stefan condition, and a velocity field is built
by extending the velocity of the solidification front to the
whole domain. Next, the level set equation is solved to move
the interface. Finally, the standard heat equation is solved
for each domain (solid and liquid) separately by imposing
the interface constraint that dictates that the temperature at
the phase change boundary must be equal to the melting
temperature. The imposition of the mentioned constraint is
enforced with a penalty formulation or a Lagrange multi-
pliers formulation. Ji et al. [20] present a similar approach,
differing from the previous one in the level set update and
the energetically consistent way that they use to determine
the jump in the heat flux at the interface. In contrast, Merle
and Dolbow [27] proposed an enriched formulation in which
they use an equation that is similar to a level set to track the
interface position and the LATIN method [24] as iterative

procedure to satisfy the local interface constraints stated by
the problem.

In this study, the Stefan condition is satisfied with the
weak formulation of the problem. This is accomplished with
a weak formulation of the problem in each subdomain (liquid
and solid). The Reynold’s theorem is applied to extend the
formulation to the whole domain and to satisfy the Stefan
condition as an internal natural phase change boundary con-
dition. Next, the interface position is determined implicitly
during the simulation with the aforementioned constraint in
the temperature at the solidification front. The formulation
is performed while considering the enriched space. In this
way, the overhead introduced by the classical level set meth-
ods is avoided and no auxiliary equation (e.g., the level set
equation) is required.

The discrete formulation is completely stated for the one
dimensional case and a discussion for the extension to two
dimensions is given. The one dimensional implementation is
tested for extreme values of temperature gradient disconti-
nuity and for initial temperatures close to the melting tem-
perature. The results obtained for one of the examples are
contrasted against those obtained by other enriched formu-
lations [27]. Also, comparisons with results obtained using
a non enriched fixed mesh numerical scheme [14], where
the temperature gradient discontinuity is not considered, are
presented. Finally, conclusions are presented.

2 Mathematical setting

Isothermal phase change problems are governed by the first
principle of thermodynamics. Assuming the contribution of
the mechanical energy to the total energy negligible and con-
sidering the specific enthalpy H as a thermodynamic poten-
tial, the temperature field T is computed by solving the heat
balance equation

ρḢ = Q + ∇ · (k∇T ) ∀(x, t) ∈ Ωi × (t0,∞) (1)

where ρ is the density, k is the thermal conductivity, T is the
temperature, Q is the external heat source per unit volume,
and Ωi for i ∈ [s, l] are the solid and liquid sub-domains
with Ωs ∩ Ωl = {∅} and Ω = Ωs ∪ Ωl . The temperature
field should verify the initial conditions

T = T0 ∀x ∈ Ω, t = t0 (2)

where T0(x) is the given initial temperature field. Addition-
ally, the following set of conditions must be verified at the
disjoint portions Γd , Γq , Γc of the external boundary:

T = Td ∀ (x, t) ∈ Γd × (t0,∞) (3)

− (k∇T ) · n = qw ∀ (x, t) ∈ Γq × (t0,∞) (4)

− (k∇T ) · n = h f (T − T f ) ∀(x, t) ∈ Γc × (t0,∞) (5)
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where Γd ∪ Γq ∪ Γc = ∂Ω , and where Td is the imposed
temperature at the boundary Γd , qw is the external heat flow
at the boundary Γq , h f is the heat convection coefficient, T f

is the external fluid temperature at the portion the boundary
Γc and n is the outward normal to the boundary under con-
sideration. Finally, at the interface Γ between Ωs and Ωl (the
phase change boundary), the constraint on the temperature
and the Stefan condition hold

T = Tm ∀(x, t) ∈ Γ × (t0,∞) (6)

[−(k∇T ) · nΓ ]Γ = ρLuΓ ∀(x, t) ∈ Γ × (t0,∞). (7)

Here, L is the latent heat, Tm is the melting temperature, nΓ

is the outward normal to the solidification front from the solid
domain, uΓ = uΓ · nΓ is the velocity of the interface in the
direction of the normal nΓ and the operator [�]Γ measures
the jump of the quantity � at the solidification front. Equa-
tion (6) is the constraint that imposes that the temperature
at the phase change boundary must be equal to the melting
temperature and Eq. (7) is the interface condition (the Stefan
condition).

2.1 Variational temperature based formulation

Let S = {T/T ∈ H1(Ω), T |Γd = Td} be the space of
trial solutions and V = {v/v ∈ H1(Ω), v|Γd = 0} be the
space of weighting or test functions, where H1 is the first
order Sobolev space. By integrating Eq. (1) separately in
each subdomain (solid and liquid), the following weak form
is obtained

∑

i∈[s,l]

∫

Ωi

w
[
ρḢ − ∇ · (k∇T ) − Q

]
dΩ = 0 (8)

with w ∈ V and T ∈ S. After applying the divergence theo-
rem and replacing the boundary conditions from Eqs. (3–5),
we obtain

∑

i

∫

Ωi

w
[
ρḢ − Q

]
dΩ +

∑

i

∫

Ωi

∇w · (k∇T ) dΩ

−
∑

i

∫

Γi

wk∇T · ni dΓ +
∫

Γc

wh f (T − T f ) dΓ

+
∫

Γq

wqw dΓ = 0. (9)

Functions w ∈ V depend on time because the enrichment
continuously adapts to the position of the interface. By apply-
ing the Reynolds theorem to the first term of Eq. (9), we
obtain

∑

i

∫

Ωi

wρḢ dΩ =
∑

i

[
∂

∂t

∫

Ωi

wρH dΩ

−
∫

Ωi

ρHẇ dΩ −
∫

Γi

wρHui · ni dΓ

]
(10)

where ui is the velocity of the boundary Γi and ni is
the external unit normal vector of that boundary. Taking
into account that the latent heat represents the jump of
the enthalpy at the phase change boundary Γ , we have
L = [H]Γ . Then, the last term of the last equation becomes
∑

i

∫

Γi

wρHui · ni dΓ =
∫

Γ

wρLuΓ dΓ

= −
∑

i

∫

Γi

wk∇T · ni dΓ. (11)

Replacing Eq. (11) into (10) and using this result in Eq.
(9), we obtain

∑

i

⎡

⎢⎣
∂

∂t

∫

Ωi

wρH dΩ −
∫

Ωi

ρHẇ dΩ

−
∫

Ωi

wQ dΩ +
∫

Ωi

∇w · (k∇T ) dΩ

⎤

⎥⎦

+
∫

Γc

wh f (T − T f ) dΓ +
∫

Γq

wqw dΓ = 0. (12)

The Stefan condition is therefore satisfied in weak form.
Then, the addition of the first two terms of the last equation

gives

∑

i

⎡

⎢⎣
∂

∂t

∫

Ωi

wρH dΩ −
∫

Ωi

ρHẇ dΩ

⎤

⎥⎦

= ∂

∂t

∫

Ω

wρH dΩ −
∫

Ω

ρHẇ dΩ =
∫

Ω

wρḢ dΩ. (13)

Using this result into Eq. (12), we obtain
∫

Ω

w
[
ρḢ − Q

]
dΩ +

∫

Ω

∇w · (k∇T ) dΩ

+
∫

Γc

wh f (T − T f ) dΓ +
∫

Γq

wqw dΓ = 0. (14)

The specific enthalpy H can be expressed in terms of the
temperature T as

H(T ) =
T∫

Tref

c(τ )dτ + L fl(T ) (15)
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where Tref is a reference temperature, c(τ ) ≡ c is the heat
capacity and fl(T ) is the liquid fraction. For isothermal phase
change, the liquid fraction is expressed as a Heaviside step,
i.e. fl = Heav(T − Tm).

Finally, by replacing Eq. (15) into (14), the following tem-
perature based variational formulation is obtained

Find T ∈ S such that ∀w ∈ V
∫

Ω

w

[
ρc

∂T

∂t
+ρL∂ fl

∂t
−Q

]
dΩ +

∫

Ω

∇w · (k∇T ) dΩ

+
∫

Γc

wh f (T −T f ) dΓ +
∫

Γq

wqw dΓ = 0, for t > 0;
∫

Ω

wT dΩ =
∫

Ω

wT0 dΩ , for t = 0. (16)

We remark that, in the case of isothermal phase change,
the time derivative of the liquid fraction ∂ fl

∂t should be inter-
preted in a distributional sense.

3 Enriched finite element formulation

For solidification problems, there is a weak discontinuity, i.e.
only the gradient of the temperature field is discontinuous at
the solidification front. The main features of this discontinu-
ity are its weakness and local behaviour. For the local behav-
iour, we only need to enrich those elements that are crossed
by the phase change boundary. For the weak discontinuity,
the enrichment function only needs to have a discontinuity
in its gradient.

A Galerkin finite element formulation is adopted for
the discretisation of the continuous variational formulation.
The enrichment functions are time dependent because of the
change in position of the interface. Therefore, the space of
weighting functions V depends on time, and the spatial and
time discretisations need to be studied carefully. Following
Fries and Zillian [17], the discretisation in time is first per-
formed, and then the space discretisation is performed.

The functional space of the element intersected by the
interface (or solidification front) is enriched with a weak
discontinuous function denoted by E . From the previous
comments, two features need to be considered to build this
function: E should have a local character and should vanish
at the element nodes, and ∇E must be discontinuous at the
phase change boundary. An enrichment function with these
features was proposed by Coppola-Owen and Codina [10].

3.1 Time discretisation

An unconditionally stable backward Euler scheme is used
to accomplish the temporal discretisation, obtaining the
following result

∫

Ω

wn

[
ρcn

Tn − Tn−1

Δt
+ ρL fl(n) − fl(n−1)

Δt

]
dΩ

−
∫

Ω

[
∇wn · (kn∇Tn) + wQn

]
dΩ +

∫

Γq

wnqwn dΓ

+
∫

Γc

wnh fn (Tn − T fn ) dΓ = 0 (17)

where cn ≡ c(Tn), kn ≡ k(Tn), h fn ≡ h f (Tn) and qwn ≡
qw(Tn).

The time level for the evaluation of the test function w was
specified in a consistent way at time tn , i.e. w(x, tn) ≡ wn .
We remark that if w was evaluated at the time level n − 1,
the regularity of the system matrix could not be guaranteed
[17].

To elucidate this issue, consider the case where at time step
n − 1 the phase change boundary is within element e, and at
time step n the phase change boundary is within the neigh-
boring element e + 1. At time tn−1, element e is enriched
whereas element e + 1 is not. When the interface tries to
evolve to element e + 1, the weight function wn−1 is zero at
that element, providing a null equation for the enrichment.
Therefore, the system matrix would be singular.

3.2 Spatial discretisation

Let Sh ⊂ S and Vh ⊂ V be N -dimensional subspaces of
the trial and test functional spaces, formed by the usual finite
element space and the enrichment functions. The discrete
variational formulation is given by

Given T h
n−1, find T h

n = vh + T h
d , where vh ∈ Vh and

T h
n |Γd = T h

d , such that ∀wh
n ∈ Vh

∫

Ω

wh
n

[
ρcn

T h
n − T h

n−1

Δt
+ ρL fl(n) − fl(n−1)

Δt

]
dΩ

−
∫

Ω

[
∇wh

n · (kn∇T h
n ) + wh

n Qn

]
dΩ

+
∫

Γq

wh
n qwn dΓ +

∫

Γc

wh
n h fn (T

h
n − T fn ) dΓ = 0 ,

for n = 1, 2, 3, . . .
∫

Ω

wh
0 T h

0 dΩ =
∫

Ω

wh
0 T0 dΩ for n = 0. (18)

For conciseness, it is assumed without loss of general-
ity that T h

d = 0, such that T h
n = vh . Then Eq. (18) can be

written as
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1

Δt

∫

Ω

ρcnwh
n T h

n dΩ − 1

Δt

∫

Ω

ρcnwh
n T h

n−1 dΩ

+ 1

Δt

∫

Ω

ρLwh
n f h

l(n) dΩ − 1

Δt

∫

Ω

ρLwh
n f h

l(n−1) dΩ

+
∫

Ω

kn∇T h
n · ∇wh

n dΩ−
∫

Ω

Qh
nwh

n dΩ +
∫

Γq

wh
n qw dΓ

+
∫

Γc

wh
n h fn T h

n dΓ +
∫

Γc

wh
n h fn T f (n) dΓ = 0. (19)

The discrete test and trial functions vh ∈ Vh are the set
of usual linear finite element functions covering the whole
domain, plus the enrichment functions at the elements that
are crossed by the interface. Thus, a typical enriched finite
element in the one dimensional case has a total of three shape
functions (including the enrichment one). In matrix notation,
T h ∈ Vh inside an enriched element is given by

T h = N T T , (20)

where N denotes the shape functions and T the degrees of
freedom amplitudes.

The contribution of an enriched element to the residual at
time tn , is obtained next from Eq. (19):

Π = CTn

Δt
− C∗Tn−1

Δt
+ Ln − Ln−1

Δt
+KTn + F − Q (21)

where

C =
∫

Ω

ρcnNnN T
n dΩ (22)

C∗ =
∫

Ω

ρcnNnN T
n−1 dΩ (23)

K =
∫

Ω

∇Nnkn∇N T
n Ω +

∫

Γc

h fn NnN T
n dΓ (24)

Ln =
∫

Ω

ρLNn fl(n) dΩ (25)

Ln−1 =
∫

Ω

ρLNn fl(n−1) dΩ (26)

F =
∫

Γq

Nnqwn dΓ −
∫

Γc

h fn NnT fn dΓ (27)

Q =
∫

Ω

Nn Qn dΩ. (28)

It is worthwhile to mention that function Nn depends on
the interface position, which is an unknown of the problem,
incrementing the degree of non linearity of the equations. The
nonlinear problem (21) is solved using a Newton–Raphson
scheme

Π(i+1) � Π(i) + ∂Π

∂T

(i)

(T (i+1) − T (i)) = 0 (29)

where i represents the i th iteration. Note that we omitted the
subscript n to simplify notation.

Iterations proceed until convergence (the norm of the
residual meets a prescribed tolerance). Due to the high non
linearity of the problem, a line-search method must be used in
conjunction with the Newton–Raphson scheme. This type of
globally convergent method is quite standard and its formu-
lation can be found in most textbooks that consider nonlinear
optimisation problems [21,39].

3.3 Determination of the interface position

The determination of the interface position is essential for
this method because the enriched shape functions depend
on it.

In other enrichment formulations, the interface position
is computed using an auxiliary level set equation. After this
position is determined, the standard heat conduction equa-
tion is solved in each subdomain, enriching the elements that
are intersected by the phase change boundary. Additionally,
the constraint (6) is imposed through the use of Lagrange
multipliers or a penalty formulation.

We are proposing a new way to determine the interface
position implicitly at each Newton iteration, in terms of the
values of the degrees of freedom corresponding to that iter-
ation and the constraint given by Eq. (6). Suppose that we
are processing iteration i and we have the guess values T (i).
With these guess values, we determine if the element that is
being processed is intersected by the solidification front. If
this is the case, the position of the phase change boundary is
computed by using the constraint Eq. (6). A detailed presen-
tation of this issue is given for the one dimensional case in
Sect. 3.6.2 and a discussion for the two dimensional case is
presented in Sect. 3.7.

3.4 Discontinuous integration

When processing an enriched element, a weak discontinu-
ity appears in the element. In order to evaluate integrals in
Eqs. (22– 28), a discontinuous integration procedure is used.
The number of integration regions depends on the nature of
the integrand, i.e. whether the integrand depends only on the
time tn or whether it depends on both time stages tn−1 and
tn . In the former case we have two integration subregions,
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while in the latter case we typically have three integration
subregions with a continuous integrand in each of them.

For instance, suppose that we are processing an enriched
element, and we are computing the term described by Eq. (23)
with three subregions. Then, the elemental contribution C∗

e
is given by

C∗
e =

∫

Ωe

ρcNnN T
n−1 dΩ =

3∑

p=1

∫

Ω p

ρcNnN T
n−1 dΩ (30)

where p indicates the partition or region number (ranging
in this case from one to three), Ω p denotes each partition
and Ωe denotes the region of the element. The integration is
performed numerically using a Gaussian quadrature in each
sub-region [29].

3.5 Tangent matrix

After differentiating the nonlinear residual function (21) with
respect to the generalised degrees of freedom T , we obtain

∂Π

∂T
= C

Δt
+ K + 1

Δt

∂C

∂T
T (i) − 1

Δt

∂C∗

∂T
Tn−1

+∂K

∂T
T (i) + 1

Δt

∂Ln

∂T
− 1

Δt

∂Ln−1

∂T
+ ∂F

∂T
− ∂Q

∂T
.

(31)

The first two terms on the right-hand-side are standard in
any nonlinear thermal problem. The other terms have cer-
tain particularities in the enriched elements, which will be
described.

As previously stated, the computation of the mentioned
terms in an enriched element depends on the number of sub-
regions. We analyse the case of the term ∂C∗

∂T ; the other terms
in Eq. (31) are computed similarly.

There are three sources of dependency of C∗ on T :

– Evaluation dependency the integration region depends
on the position of the discontinuity at the time stage tn .
Therefore, the position of the Gauss points in the physical
space depends implicitly on the degrees of freedom T .

– Enrichment dependency the position for the enrichment
is always determined in terms of the degrees of free-
dom T , so the enrichment function definition depends
on T .

– Integration region dependency when discontinuous inte-
gration is applied and the integration region is deter-
mined by the position of the interface at time stage tn .
An implicit dependency on the degrees of freedom T is
present.

In what follows, a complete description of the computa-
tion of the tangent matrix for the one dimensional case is
given.

3.6 One dimensional formulation

To evaluate in more detail the proposed ideas, we restrict
first the analysis to the one dimensional case. In the numer-
ical examples section we show the application of the one
dimensional formulation for a series of problems.

3.6.1 Enrichment function definition

For the definition of the enrichment function we need to know
the position of the interface. To describe that position, we
make use of a level set function φ defined by

φ = x − xa (32)

where xa is given by

xa = x1 + s(x2 − x1) = x1 + sh (33)

with x1 the position of the left node, x2 the position of the
right node and h the element length. The interface is located
at the point where the level set function φ equals zero. This
position is provided locally by the parameter s ∈ (0, 1), while
its global position is tracked with xa .

Then, the definition of the enrichment function is given
by

E(x) =

⎧
⎪⎨

⎪⎩

x − x1

xa − x1
= φ1 − φ

φ1
x ≤ xa

x2 − x

x2 − xa
= φ2 − φ

φ2
x > xa

(34)

where φ1 = x1 − xa and φ2 = x2 − xa . The temperature field
inside an enriched element is described as

T h(x, t) =
∑

i

Ni (x)Ti + E(x, t)a (35)

where the term
∑

Ni Ti corresponds to the usual finite ele-
ment discretisation with Ni the shape functions and Ti the
nodal degrees of freedom. The term E(x, t)a corresponds
to the enrichment, where E(x, t) is the enrichment function
and a is the associated degree of freedom. In the subsequent
development linear shape functions are used. In matrix nota-
tion, T h ∈ Vh inside an enriched element is given by

T h = N T T (36)

where

N =
⎡

⎣
N1(x)

N2(x)

E(x, t)

⎤

⎦ and T =
⎡

⎣
T1

T2

a

⎤

⎦ . (37)

An example of the previously described enrichment func-
tion is provided in Fig. 1, with a discontinuity at s = 0.35.
For one dimensional cases, this enrichment is conforming
but this is not true for higher dimensions.
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Fig. 1 One dimensional enrichment function

3.6.2 Determination of the interface position

As it was previously introduced to determine the interface
position we apply the constraint given by equation (6). When
using the enrichment function defined in equation (34), a
closed form of the value of the parameter s can be deter-
mined, which is given by

s = Tm − T (i)
1 − a(i)

T (i)
2 − T (i)

1

. (38)

Note that this procedure is based on physical features more
than other methods due to determination of the interface posi-
tion with the current temperature distribution.

3.6.3 Tangent matrix

In this section we consider the case in which thermophysical
properties do not depend on temperature. Contributions to
the tangent matrix arising from temperature dependent ther-
mophysical properties are considered in Sect. 3.6.4.

Considering the outlined dependencies in Sect. 3.5 and
the example of the derivative ∂C∗

∂T , the Gauss numerical dis-
continuous integration of Eq. (30) for the one dimensional
case is given by

C∗
e =

∫

Ωe

ρcNnN T
n−1 dΩ

=
3∑

p=1

ng∑

g=1

ρcNn(x (p)
g )N T

n−1(x (p)
g )wgΩ

(p). (39)

where Ω(p) is the area of the sub-region p. Then, the expres-

sion of the elemental contribution
∂C∗

(e)rk
∂Tj

to the derivative
reads:

∂C∗
(e)rk

∂Tj
=

3∑

p=1

ng∑

g=1

ρc

[
∂ Nn(r)

∂x (p)
g

∂x (p)
g

∂s

∂s

∂Tj
Nn−1(k)wgΩ

(p)

+ Nn(r)

∂ Nn−1(k)

∂x (p)
g

∂x (p)
g

∂s

∂s

∂Tj
wgΩ

(p)

+ ∂ Nn(r)

∂xa

∂xa

∂s

∂s

∂Tj
Nn−1(k)wgΩ

(p)

+Nn(r)Nn−1(k)wg
∂Ω(p)

∂s

∂s

∂Tj

]
. (40)

The definition of xa is given by Eq. (33). The first two
terms in Eq. (40) arise from the evaluation dependency, the
third term arises from the enrichment dependency and the
fourth term arises from the integration region dependency.

Computation of the terms
∂x (p)

g
∂s , ∂xa

∂s and ∂Ω(p)

∂s are straight-
forward

∂x (1)
g

∂s
= 0

∂x (2)
g

∂s
= ξ2h

∂x (3)
g

∂s
= (1 − ξ3)h

∂xa

∂s
= h

∂Ω(1)

∂s
= 0

∂Ω(2)

∂s
= h

∂Ω(3)

∂s
= −h

(41)

where ξi , i = 1, 2, 3 are the natural coordinates for each
integration region.

The computation of the derivative ∂s
∂Tj

is more cumber-
some and is presented in the following paragraphs. This
derivative expresses the core of the idea being exposed; it
represents how the interface position varies in response to
perturbations of the degrees of freedom T .

The following preliminary results are needed

∂ E

∂x
=

⎧
⎪⎨

⎪⎩

− 1

φ1
x ≤ xa

− 1

φ2
x > xa

(42)

∂ E

∂xa
=

⎧
⎪⎪⎨

⎪⎪⎩

φ1 − φ

φ2
1

x ≤ xa

φ2 − φ

φ2
2

x > xa

(43)

∂ E

∂s
=

⎧
⎪⎪⎨

⎪⎪⎩

h
φ1 − φ

φ2
1

x ≤ xa

h
φ2 − φ

φ2
2

x > xa

(44)

∂ E

∂s
+ h

∂ E

∂x
=

⎧
⎪⎪⎨

⎪⎪⎩

h
φ1 − φ

φ2
1

− h

φ1
= −hφ

φ2
1

x ≤ xa

h
φ2 − φ

φ2
2

− h

φ2
= −hφ

φ2
2

x > xa

(45)
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The dependence of the temperature field on the position
of the interface and on the degrees of freedom T , was not
explicitly specified in Eq. (35). Making these dependencies
explicit and denoting T h by T to simplify notation, we obtain

T (T , x, s) =
∑

i

Ni (x)Ti + E(x, s)a. (46)

Considering the constraint given by Eq. (6), the temperature
at the interface is

T (T , xa, s) =
∑

i

Ni (xa)Ti + a = Tm . (47)

Linearising the increment of T , we obtain

dT = ∂T

∂T
dT + ∂T

∂x
dx + ∂T

∂s
ds. (48)

Considering that the temperature at the interface should be
equal to the melting temperature, we obtain

dT = ∂T

∂T

∣∣∣
x=xa

dT + ∂T

∂x

∣∣∣
x=xa

dx + ∂T

∂s

∣∣∣
x=xa

ds = 0. (49)

Noting from Eq. (33) that ∂x
∂s

∣∣∣
x=xa

= h, we obtain

∂T

∂T

∣∣∣
x=xa

dT +
(

h
∂T

∂x
+ ∂T

∂s

)∣∣∣
x=xa

ds = 0. (50)

Therefore, the partial derivative of s with respect to the gen-
eralised degrees of freedom T is

∂s

∂T
= −

((
h

∂T

∂x
+ ∂T

∂s

)∣∣∣
x=xa

)−1
∂T

∂T

∣∣∣
x=xa

. (51)

The denominator in the Eq. (51) is computed as follows

h
∂T

∂x
+ ∂T

∂s
=

2∑

i=1

h
∂ Ni

∂x
Ti +

(∂ E

∂s
+ h

∂ E

∂x

)
a, (52)

evaluating (52) at the interface x = xa becomes

(
h

∂T

∂x
+ ∂T

∂s

)∣∣∣
x=xa

=
2∑

i=1

h
∂ Ni

∂x
(xa) Ti . (53)

By replacing the last result (53) into Eq. (51), and by evalu-

ating ∂T
∂T

∣∣∣
x=xa

from Eq. (47), we obtain finally

∂s

∂T
= −

( 2∑

i=1

h
∂ Ni

∂x
(xa) Ti

)−1
⎡

⎣
N1(xa)

N2(xa)

1

⎤

⎦ . (54)

3.6.4 Temperature dependent thermophysical properties.

If we consider problems where the thermophysical proper-
ties depend on temperature, new contributions to the tan-
gent matrix arise. These contributions to the elemental level,
denoted by Υe, are given by

Υe =
3∑

p=1

ng∑

g=1

[
ρN T

n−1Tn−1wgΩ(p)Nn
∂cn

∂T

T

+ ρN T
n T wgΩ(p)Nn

∂cn

∂T

T
+∇N T

n T wgΩ(p)∇Nn
∂kn

∂T

T ]
.

(55)

The variation of the thermophysical property being con-
sidered with respect to T is calculated following the same
procedure described before. As an example, we present the
computation of the term ∂cn

∂T . Considering that

∂cn(T )

∂T
= ∂cn(T )

∂T

∂T

∂Tj
e j (56)

we need to calculate the derivative ∂T
∂T with the specific deriv-

ative ∂cn
∂T for each considered material.

Taking the increment of the temperature field given by
Eq. (46), we have

T (T + dT , x + dx, s + ds)

= Ni (x + dx)[Ti + dTi ] + E(x + dx, s + ds)[a + da]
�

[
Ni (x) + ∂ Ni

∂x
dx

]
[Ti + dTi ]

+
[

E(x, s) + ∂ E

∂x
dx + ∂ E

∂s
ds

]
[a + da] (57)

where Ni and E have been linearised. Considering that the
differentials dx and ds are given by

dx = ∂x

∂s
ds ds = ∂s

∂Tj
dTj + ∂s

∂a
da (58)

and ignoring the higher order terms, we obtain

T (T + dT , x + dx, s + ds)

= T (T , x, s) +
[

N j + ∂ Ni

∂x

∂x

∂s

∂s

∂Tj
Ti + ∂ E

∂x

∂x

∂s

∂s

∂Tj
a

+∂ E

∂s

∂s

∂Tj
a

]
dTj +

[
E + ∂ Ni

∂x

∂x

∂s

∂s

∂a
Ti

+∂ E

∂x

∂x

∂s

∂s

∂a
a + ∂ E

∂s

∂s

∂a
a

]
da (59)

Therefore, the partial derivative of T with respect to the gen-
eralised degrees of freedom T is

∂T

∂T
= N +

(
∂N

∂x
· T

∂x

∂s
+ a

∂ E

∂s

)
∂s

∂T
(60)

3.6.5 Algorithmic implementation

Determination of when an element needs to be enriched fol-
lows an heuristic approach. The latent heat terms given by
Eqs. (25) and (26) are sources of high nonlinearity and this
issue must be considered for implementation.

The determination of the integration region for the latent
heat vector, Eq. (25), is presented as an example for the one
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Algorithm 1 Integration region
1 Tmax = max(Tj(1:2));
2 Tmin = min(Tj(1:2));
3 solid = false; %if the element is solid,
4 %then solid=true.
5 %Otherwise, solid=false
6 %the element is full solid
7 if (Tmax < Tm & abs(Tj(3))<minT3)
8 xL = [x(2);x(2)];
9 solid = true;

10 elseif (Tmin > Tm & abs(Tj(3))<minT3)
11 %the element is full liquid
12 xL=x;
13 else
14 %parameter s determination
15 s = parameterS(Tj,Tm);
16 if (s>=1|s<=0) | ((s<minS | s>(1-minS))
17 & abs(Tj(3))<minT3)
18 if(Tmax < Tm)
19 solid = true;
20 elseif (Tmin > Tm)
21 solid = false;
22 else
23 diffT = Tj-Tm;
24 index = max(abs(diffT(1:2)));
25 if(sign(diffT(index))==-1)
26 solid = true;
27 else
28 solid = false;
29 end
30 end
31 xL = x;
32 if solid
33 xL = [x(2);x(2)];
34 end
35 else
36 ifpos = [elementNumber,s];
37 %the element is enriched
38 eAct = true;
39 %phase change element, x1 is solid
40 if(Tj(2)>Tj(1))
41 xL = [ x(1)+s*h; x(2)];
42 else
43 %phase change element
44 %x1 is liquid
45 xL = [ x(1); x(1)+s*h];
46 end
47 end
48 end

dimensional case (Algorithm 1). The degrees of freedom of
the element are given by the vector Tj=[T1, T2, a], the inte-
gration region is denoted by variable xL, and x represents
the whole element domain.

The element is processed as a full solid element if the nodal
temperatures are below the melting temperature, and if the
absolute value of the enrichment degree of freedom, denoted
by a, is below a certain threshold minT3 (an element in
which a > minT3 still has latent heat inside and cannot
be considered as a full solid element). The same applies for

the determination of the liquid state, but this time the nodal
temperatures are above the melting temperature.

If the element is neither liquid nor solid, the element is
supposed to be in a phase change state, i.e., one portion of
the element is liquid and the other is solid. In this case, the
interface position parameter s is determined using Eq. (38).

If parameter s is admissible, i.e., if s falls within the range
(0, 1), then the element is enriched (lines 36–46) and the
integration region xL is computed. The number identifying
the element being enriched and the local interface position
parameter s are tracked by the variable ifpos.

When the element is supposed to be in phase change state,
it could be possible for local parameter s to exceed the range
(0, 1) when it is computed. In this situation, to avoid the
divergence of the Newton–Raphson scheme the element is
not processed as a phase change element, instead it is consid-
ered liquid or solid. In this context to determine the element
state, two cases must be considered:

– It could happen that the nodal temperatures are both below
or above the melting temperature, but with the absolute
value of the parameter a being greater than the thresh-
old minT3. In this case, the element is considered liquid
or solid based on the nodal temperatures values (lines
18–22).

– If the nodal temperatures are not either all below or all
above the melting temperature, the element state is com-
puted based on the relative value of the nodal tempera-
tures with respect to the melting temperature. That is, we
determine the maximum relative temperature taking into
account absolute values. Then, if the sign associated to
that maximum is negative, the element is processed as
solid. If this is not the case, it is considered liquid. This
issue is addressed in lines 22–30 of the code.

Finally, if the interface is located too close to an element
node position and the enrichment parameter is too low, the
Newton–Raphson scheme can lead to divergence (note that
in this case the element is almost fully solid or fully liquid).
In order to avoid this situation, whenever the parameter s is
below the threshold minS or above the threshold 1-minS,
and the absolute value of the enrichment parameter a is below
the threshold minT3, the element is not enriched (second
part of the conditional, line 16 of the code).

The threshold values are determined as follows. The
threshold minT3 for the enrichment a is given by

minT3 = tolT Tcn1/d (61)

where Tc is a characteristic temperature of the problem, n is
the number of elements, d is the number of spatial dimen-
sions and tolT is a tolerance set equal to 10−5. The threshold
minS for the parameter s is set equal to 5 × 10−5.
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Fig. 2 Example of a two-dimensional phase change element

3.7 Extension to two dimensions

A discussion on the two dimensional extension of the dis-
crete formulation is presented. Its implementation is left as
future work. The enrichment shape functions E for the two
dimensional case can be generated as described by Soghrati
et al. [34].

Let us consider a phase change element as displayed in
Fig. 2. For the current analysis, suppose that T2 > Tm, T1 <

Tm and T3 < Tm ; then, the interface intersects the sides l12

and l23 of the element as shown in the figure. The intersection
points of the interface with the boundary are denoted by xA

and xB .
We divide the element in its bilinear subregion ΩQ and its

linear subregion ΩT . Then, two enrichment functions corre-
sponding to points xA,xB can be defined as

EI (x) =
{

QI (x) x ∈ ΩQ

NI (x) x ∈ ΩT
, I = A, B. (62)

The temperature interpolation inside an enriched element
is then given as:

T h(x, sA, sB)

=
∑

i

Ni (x)Ti + E A(x, sA)a + EB(x, sB)b. (63)

where Ni (x) are the standard linear shape functions, and
where parameters sA, sB express the position of points
xA,xB in terms of the nodal positions of the element:

xA = x1 + sA(x2 − x1) (64)

xB = x2 + sB(x3 − x2). (65)

Note that, from the definition of the enrichment function,
the interface is straight inside a phase change element. To
compute (62), we need to know positions xA and xB .

The value of sA, sB will be determined from the require-
ment that the temperature at the interface should be equal to
the melting temperature Tm , similarly to what we made in
the one dimensional case. Then, we write

Tm = T1 N B
1 (sA) + T2 N B

2 (sA) + a, (66)

where N B
1 (sA) and N B

2 (sA) are the restrictions of the shape
functions N1(x) and N2(x) to the boundary l12, and a is the
amplitude of the enrichment function E A(x).

Following the same procedure used for the one dimen-
sional case, we can show that:

sA = Tm − T1 − a

T2 − T1
. (67)

The expression for sB is obtained in a similar form.

4 Numerical examples

The method was tested in a series of challenging one dimen-
sional problems, i.e. problems with extreme values of tem-
perature gradient discontinuity and problems with initial
temperatures close to the melting temperature. The obtained
results were compared with analytic solutions and with the
results obtained from a fixed mesh numerical scheme, for
which the temperature gradient discontinuity was not consid-
ered. Also, results for the first problem are compared against
results obtained with an existing enriched formulation.

In the following examples, we use the normalised residual
norm to ascertain the convergence of the Newton–Raphson
scheme. This normalised residual norm is given by

‖Π‖
‖Fr‖ + ‖Fc‖ + ‖Fk‖ , (68)

where ‖ � ‖ denotes the L2 norm of � and

Fr = Ln − Ln−1

Δt
+ F − Q (69)

Fc = CTn

Δt
− C∗Tn−1

Δt
(70)

Fk = KTn . (71)

4.1 Problem I: Dirichlet/Dirichlet boundary conditions

In this problem we show the performance of the proposed
enriched formulation, comparing results with those obtained
by Merle and Dolbow [27]. A solution obtained using the
method without enrichment by Fachinotti et al. [14] is shown.
All solutions are compared to the exact solution, computed
for a semiinfinite bar. A similar problem was also treated in
reference [26].

The problem consists in the freezing of a long slab that
was initially at temperature T0 above the melting temperature
Tm and is suddenly cooled by imposing a constant temper-
ature T1 < Tm to the slab end x = 0. The temperature at
the slab end x = L is held at T0 > Tm , where L is the slab
length. The parameters of the problem are given in Table 1.
The Stefan number Sts for this problem is given by
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Table 1 Problem I parameters L cs cl ks kl

19.2 J/kg 0.49 J/ ◦C/kg 0.62 J/ ◦C/kg 9.6 × 10−3 W/ ◦C/cm 6.9 × 10−3 W/ ◦C/cm

ρ Tm T1 L T0

1 kg/cm3 0 ◦C −10 ◦C 10 cm 4 ◦C

Fig. 3 Temperature profile at different time instants: 1 t = 180 s,
2 t = 360 s, and 3 steady-state solution. Solid line Merle and Dol-
bow’s solution, dashed line exact solution, asterisks solution without
enrichment, and circles solution with the proposed enrichment. Merle
and Dolbow’s, exact and the solution with the proposed method are all
coincident

Table 2 Problem I: normalised residual norm for selected time steps
for the proposed method

Iter. t =12.76 s t =127.6 s t =446.6 s t =1339.8 s

0 0.9995 0.6973 0.6677 0.6684

1 0.8778 0.0616 0.0236 0.0266

2 0.8820 0.0001 0.0002 0.0003

3 0.6078 2.7e−9 1.1e−8 1.7e−8

4 0.3627 1.2e−15 4.3e−15 1.1e−14

.

.

.
.
.
.

6 0.0035

7 3.7e−6

8 2.5e−12

Sts = cs(Tm − T1)

L = 0.255. (72)

Twenty equally spaced elements and a time step of 12.76s
are used to model this problem. The computed solution is
shown in Fig. 3 for different time instants. Perfect agreement
with the results obtained by Merle and Dolbow [27] and with
the exact solution can be observed. The solution obtained
with the method without enrichment displays a small error
near the interface between solid and liquid zones.

The proposed numerical scheme took an average of 2.55
iterations per time to get the solution, with a maximum of 8
iterations in the first time step. On the other hand, Merle and
Dolbow reported less than 15 iterations to get a solution with
their XFEM method. In Table 2 the evolution of the norma-
lised residual norm for a number of representative time steps
is given, showing quadratic convergence in all cases.

4.2 Problem II: Dirichlet/Dirichlet boundary conditions
with a low Stefan number

Again, the freezing of a long slab is analyzed; nevertheless, a
much larger value of latent heat is now used. In this way, the
behaviour of the proposed numerical formulation with very
low Stefan numbers is studied. The slab is initially at temper-
ature T0 above the melting temperature Tm and is suddenly
cooled by imposing a constant temperature T1 < Tm to the
slab end x = 0. The temperature at the slab end x = L is
held at T0 > Tm , where L is the slab length. The parameters
of the problem are given in Table 3. The Stefan number Sts

for this problem is given by

Sts = cs(Tm − T1)

L = 0.025 (73)

Sixteen equally spaced elements and a time step of 18s
are used to model this problem. The computed solution is
shown in Fig. 4 for different time instants and is compared
with the analytic solution for a semi-infinite medium [37]
showing almost perfect agreement. Additionally, the solution
obtained with the formulation without enrichment proposed
by Fachinotti et al. [14] is shown in dashed lines. The solu-
tion without enrichment presents spurious oscillations and,
in certain time instants, is quite different from the analytic
solution.

Figure 5 displays the interface evolution over time. Again,
the current method shows almost perfect agreement with the
analytical solution, while the formulation without enrich-
ment differs from the analytic solution.

A quadratic convergence rate was observed in all time
steps. The mean number of iterations per time step was 3.71,
and the maximum number of iterations at a given time step
was 12. These values are similar to those for the fixed mesh
technique, which required 3.32 iterations per time step, with
a maximum of 7 iterations.
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Table 3 Problem II parameters L cs cl ks kl

190.26 J/kg 0.49 J/ ◦C/kg 0.62 J/ ◦C/kg 9.6 × 10−3 W/ ◦C/m 6.9 × 10−3 W/ ◦C/m

ρ Tm T1 L T0

1 kg/m3 0 ◦C −10 ◦C 10 m 4 ◦C
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Fig. 4 Solution of problem II at different time steps. Solid line the exact solution, dashed line approximate solution without enrichment, solid line
with circles approximate solution obtained with the proposed method

In Table 4 the evolution of the residual for a number
of representative time steps can be observed. The maxi-
mum number of iterations is attained at the first time step
(t = 18 s) because at the initial time (t = 0 s), the inter-
face is located too close to the first node to accurately
represent the initial condition (a heaviside at x = 0). It
should be noted that the element’s capability to represent
this type of temperature distribution causes the observed
accurate results. If the initial position of the interface is
placed farther from x = 0, the number of iterations will
be smaller, but the approximation to the exact solution
of the problem will be less accurate. The errors with the

method without enrichment are due, in part, to the impossi-
bility of this formulation of representing this initial condi-
tion.

Figure 6 provides the temperature evolution at x =
0.625 m for meshes of 16, 32, 64 and 128 equally spaced ele-
ments. In all cases a time step of 18s was used. Results for the
method without enrichment are shown for all meshes. We can
see that an error appears even for the mesh with 128 elements.
The proposed method of enrichment, gives results which are
almost coincident with the exact results, for a mesh of only
16 elements. Computations with 64 elements are completely
coincident with the 16 elements results.
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Fig. 5 Interface position with exact and approximate values

Table 4 Problem II: normalised residual norm evolution for the pro-
posed formulation at selected time steps

Iter. t=18 s t=126 s t=234 s t=324 s

0 0.9997 0.8926 0.8453 0.8208

1 0.9903 0.0159 0.0097 0.0076

2 0.9770 0.0001 4.7e−5 1.7e−5

3 0.9575 1.7e−9 3.7e−10 1.1e−10

4 0.9267 1.1e−15

.

.

.
.
.
.

10 0.0006

11 5.8e−7

12 4.8e−13
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Fig. 6 Temperature evolution. Exact and approximate values for dif-
ferent number of equally spaced elements

The method without enrichment using 32 equally spaced
elements displays spurious oscillations of increasing ampli-
tude with respect to the mesh with 16 elements. These oscil-
lations are observed in all computations with the method

0 200 400 600 800 1000 1200
−4

−3

−2

−1

0

1

2

3

4

T
 [°

C
]

t [s]

Temperature evolution at 0.625m

 

 

Exact Solution
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Without Enrichment 9s
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Without Enrichment 36s

Fig. 7 Temperature evolution. Exact and approximate values for dif-
ferent time steps

Table 5 Parameters of problem III

L c k ρ

190.26 J/kg 1 J/ ◦C/kg 1.08 W/ ◦C/m 1 kg/m3

Tm T1 L T0

−0.1 ◦C 45 ◦C 4 m −4 ◦C

without enrichment. This fact can hinder its use for the esti-
mation of temperature time rates which are necessary, i.e. for
the computation of microstructure.

Figure 7 provides the temperature evolution at x =
0.625 m for time steps 9, 18 and 36 s, with a mesh of 32
equally spaced elements. The conclusions obtained for this
experiment are similar to those obtained for the previous
experiment. Our method gives accurate results without tem-
poral oscillations, whereas the method without enrichment
present spurious oscillations.

4.3 Problem III: Dirichlet/Neumann boundary conditions

Here, we study the melting of a long slab initially at temper-
ature T0 below the melting temperature Tm that is suddenly
heated by imposing a constant temperature T1 >> Tm at the
slab end x = 0. The slab end x = L is insulated, where L
is the slab length. The analytic solution for a semi-infinite
medium associated with this problem can be found in [1].

The thermophysical parameters are considered constant
and equal in both phases, such that c = cs = cl and k = ks = kl .
The problem parameters are given in Table 5.

Twelve equally spaced elements and a time step of 0.2s are
used to model this problem. The computed solution is shown
in Fig. 8 for different time instants and is compared with the
analytic solution, showing almost perfect agreement. Addi-
tionally, the solution obtained using the formulation without
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Fig. 8 Solution of problem III at different time steps. The solid line is the exact solution. The dashed line is the approximate solution without
enrichment. The solid line with circles is the approximate solution obtained with the proposed method

enrichment, proposed by Fachinotti et al. [14], is shown with
dashed lines. The solution without enrichment includes spuri-
ous oscillations, and in certain time instants is quite different
from the analytic solution.

Figure 9 displays the interface evolution over time. Again,
the method with enrichment shows nearly perfect agreement
with the analytical solution, while the formulation without
enrichment does not. In Fig. 10 the temperature evolution
at node 2 (x = 0.33 m) is provided. The enriched solution
follows the analytic solution quite well, while the solution
without enrichment has severe oscillations.

The Stefan number Stl for this problem is given by

Stl = cl(Tl − Tm)

L = 0.23704. (74)

The computational effort in this problem was important
because of the high nonlinearity from our formulation. The
mean number of iterations per time step was 12, and the
maximum number of iterations at a given time step was 35.
These values are much greater than those acquired with the
fixed mesh technique, which required 4.95 iterations per time
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Fig. 9 Interface position with exact and approximate values

step with a maximum of 8 iterations. Nevertheless, the com-
puted solution showed high accuracy, such that even though
the Stefan number was small, the solution was quite close to
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Fig. 10 Temperature evolution with exact and approximate values

Fig. 11 Square cylinder produced by SMD

the analytical solution and did not have spurious oscillations
(these oscillations are undesirable, e.g., when computing the
microstructure, which depends on the temperature history
and on the temperature rates).

4.4 Problem IV: simplified tig-wash problem

This problem studies the behaviour of the proposed method
under the presence of a moving heat source and with typi-
cal thermal dependent material properties. Figure 11 shows
a sample square tube part made by SMD of Ti–6Al–4V alloy
that was built by deposing material with a welding tig robot
[2]. A simplified one dimensional model of this part is ana-
lysed during the “tig-wash” procedure, where the part is
heated using the welding torch without deposing the material.

The dimensions of the cross-section of the bead are
d1 = 9.83mm wide and d2 = 70mm high. Initially the bead
is at room temperature Te = 299K. Suddenly the heat source
starts to heat the body from the top, traveling at a known

Table 6 Parameters of problem IV

L Tm ρ Q Torch speed

292,600 J/kg 1,905 K 4,430 kg/m3 1,512 J 5 mm/s

cr c f f f fr T f

10 mm 2.5 mm 0.4 1.6 299 K

velocity. At the same time, the part is cooled through the
top and side walls by air convection and radiation (Robin
boundary conditions are assumed for combined convection
and radiation). The base of the bead is considered to remain
at constant temperature Te.

We assume that heat conduction along the longitudinal and
transversal directions can be neglected to build a simplified
one-dimensional model. The heat source can be described
using a simplification of the Goldak heat source [18], which
is obtained as follows for the one dimensional case [13]

Qs(t) =
√

3Q√
πd1

⎧
⎨

⎩

f f
c f

exp
(

− 3 z(t)2

c2
f

)
if z(t) ≤ 0

fr
cr

exp
(

− 3 z(t)2

c2
r

)
if z(t) > 0

(75)

where c f and cr are the length parameters associated with
the axis of the front and rear semi-ellipsoids, f f and fr are
the portion of heat distributed in the front and rear semi-ellip-
soids, respectively, and Q is the total heat input. The function
z(t) gives the variation of position of the heat source relative
to the plane containing the cross section of the bead.

The material properties and other parameters of the prob-
lem are described in Table 6. The heat capacity c, the thermal
conductivity k and the thermal convection / radiation coef-
ficient h f depend on the temperature and are given by the
expressions [2]

c
[ J

kgK

]
= 0.17919 T [K] + 495.20

k
[ W

mK

]
=

{
0.0107 T [K] + 4.6619 T ≤ 1905K

0.5733 T [K] − 1067.2 T > 1905K

h f

[ W

m2K

]
= 0.26 T [K] − 55.

The variation in time of the total heat input at the consid-
ered cross-section Qs(t) for the proposed parameter values
is given in Fig. 12.

Note that the Robin boundary conditions on the side walls
are represented in the one dimensional model as a sink. These
terms, denoted by Ξ, are

Ξ = 2

d1

∫

Ω

h fn NnN T
n dΩT − 2

d1

∫

Ω

h fn NnT f dΩ, (76)
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with the elemental contribution Ξe given by

Ξe = 2

d1

3∑

p=1

ng∑

g=1

[
h fn NnN

T
n wgΩ

(p)T

− h fn NnT f wgΩ
(p)

]
. (77)

If we consider the temperature dependence of the thermal
convection coefficient h fn , new contributions to the tangent
matrix arise, which are given to the elemental level by

Υ
h f
e = 2

d1

3∑

p=1

ng∑

g=1

[
N T

n TnwgΩ
(p)Nn

∂h fn

∂T

T

− T f wgΩ
(p)Nn

∂h fn

∂T

T ]
. (78)

A time step of 0.015 s and 32 equally spaced elements are
used to model this problem. The results obtained after run-
ning the simulation are shown in Figs. 13 and 14. In Fig. 14, a
non physical variation can be observed in the initial transient
due to a thermal shock problem. The maximum number of
iterations was 4 iterations with a mean of 2.01 iterations per
time step.

The temperature evolution over time at x = 70mm is
shown in Fig. 15a. To understand the phenomenon observed
in this figure, the temperature space profile at t = 3.279s is
shown in Fig. 15b. This behaviour is physically correct, as it
represents the initial solidification of the weld surface with
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Fig. 13 Temperature profile at different time steps
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Fig. 15 Details of problem IV (melting temperature is the dashed line and temperature evolution is the solid line)

123

Author's personal copy



Comput Mech

some liquid inside, which is a typical behaviour observed dur-
ing the welding processes [22]. To show these details with
high resolution a time step of 0.003 s was used to obtain the
results.

5 Conclusions

A new approach for solving isothermal phase change prob-
lems was presented. The method has the advantages of a fixed
mesh method that does not need remeshing to conform to the
phase change interface, but also introduces the possibility
to represent the discontinuity in the temperature gradient at
the solidification front by enriching locally where it is nec-
essary. The proposed method also avoids the use of an aux-
iliary equation to determine the enrichment position, which
is common for level set formulations; instead, this position
is determined with a constraint that imposes that the tem-
perature at the phase change boundary must be the melting
temperature.

Different test problems were investigated. The proposed
method ran these tests giving results that were more accurate
than with a formulation without enrichment and without pre-
senting any spurious oscillations. Additionally, a simplified
welding problem for a Titanium alloy was presented to study
the behaviour of the current method under the influence of
a moving heat source and for typical material values. This
method is able to handle this type of problem. In future work,
the formulation of two and three-dimensional implementa-
tions will be considered.
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