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Chiral inversion of R(− ) fenoprofen and ketoprofen enantiomers in cats
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The chiral inversion process is a characteristic metabolic pathway for different
aryl-2-propionic acids or profens. Important variations have been observed
between these individual compounds as well as between animal species. In this
study, R(− ) fenoprofen [R(− )FPF] and R(− ) ketoprofen [R(− ) KTF] were
used to investigate their comparative stereoconversion in cats. After intra-
venous (i.v.) administration of R(− ) FPF, the percentage of chiral inversion
was 93.20913.70%. A highly significant correlation (r: 0.978) was observed
between the clearance of R(− ) FPF and the chiral inversion process. After i.v.
administration of R(− ) KTF, the percentage of inversion was only 36.739
2.8%. No correlation between the clearance of R(− ) KTF and this process was
observed. R(− ) FPF was metabolized by the pathways of thioesterification –
chiral inversion processes. For R(− ) KTF, the competitive metabolic path-
ways, glucuronidation and hydroxylation may be involved. However, these
metabolic steps are saturable or less functional in cats. Moreover, the thioester-
ification of R(− ) KTF in in vitro studies has been shown to be important in
carnivores. The lack of correlation between clearance and chiral inversion
process of R(− ) KTF may be finally explained by deviation of thioesterification
to other metabolic pathways of lipids and/or aminoacid conjugation, particu-
lary glicine derivatives.
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INTRODUCTION

Fenoprofen (FPF) and ketoprofen (KTF) (Fig. 1) are two non-
steroidal anti-inflammatory compounds of the 2-arylpropionic
acid class. These chiral compounds are marketed as racemates
and used for the treatment of osteoarthritis, postoperative anal-
gesia and as antipyretic (Cabre et al., 1998; Slingsby & Water-
man-Pearson, 1998). Both drugs contain a chiral carbon (C2)
and therefore exist as two non-superimposable mirror-image
forms or R(− ) and S(+ ) enantiomers.

In vitro studies on the relative anti-inflammatory activity of
individual FPF and KTF enantiomers have shown that their
effect on cyclo-oxygenase is due to the S(+ ) enantiomer (Hutt
& Caldwell, 1983; Evans, 1992). The two asymmetric com-
pounds often have different pharmacological potencies associ-
ated with stereoselective behaviours (Evans, 1992). Among
them, the metabolic chiral inversion process has considerable
therapeutic significance. This process of biotransformation cor-
responds to a selective unidirectional transformation from the

inactive R(− ) to the active S(+ ) enantiomer. The stereocon-
version mechanism has been described in different organs such
as liver, intestine, kidney and lungs (Cox et al., 1985; Jeffrey et
al., 1991; Hall et al., 1992). However, the liver seems to have
the predominant role in the chiral inversion process (Berry &
Jamali, 1991).

The molecular development of the chiral inversion mecha-
nism has been described by several authors (Wechter et al.,
1974; Nakamura et al., 1981; Knihinicki et al., 1989; Menzel et
al., 1994). Three steps are involved in this process: (i) activation
of the R(− ) profen by the formation of acyl-coenzyme A
thioester; (ii) enzymatic epimerization of the R(− ) thioester to
the S(+ ) thioester/or hydrolysis to regenerate the R(− ) enan-
tiomer; and in the final step (iii), hydrolysis of the S thioester
completes the inversion process (Fig. 2).

The chiral inversion of FPF and KTF has been documented in
a variety of species. However, there are no stereoselective
metabolic studies available for these compounds in cats. The
aim of this study was to determine the comparative chiral
inversion of FPF and KTF in cats.
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Fig. 1. Chemical structure of KTF and FPF.

from Fluka, SA, Saint-Quentin, France. All other chemical
reagents were obtained from the usual commercial sources.

Animals and experimental protocol

Two groups of four adult cats weighing from 3.8 to 4.1 kg were
used. Following an acclimatization period of at least 3 weeks,
the cats were anaesthetized and the right jugular vein was
catheterized according to the technique previously described
(Castro et al., 1998). After recovery from the anaesthesia, one
group was given R(− ) FPF and the other one R(− ) KTF at a
dose of 1 mg/kg intravenously (i.v.). Seven days later, each
group received S(+ ) FPF and S(+ ) KTF at the same doses,
respectively. The enantiomers were dissolved in a mixture of
200 mL DMSO and 800 mL physiological solution. Blood samples
were collected at 5, 10, 20 and 30 min and 1, 2, 4, 6 and 8 h
after the administration of FPF and KTF enantiomers. Samples
of 5 mL each were centrifuged and the plasma was separated
and stored at −20°C until analysis.

Analytical method

FPF enantiomers were extracted from the plasma using Sep-
Pack cartridges C18 in accordance with a method described by
Castro et al., 1998. For the KTF enantiomer extraction, 0.5-mL
plasma aliquots were acidified with HCl (1 N) and extracted
twice with 6 mL diethyloxide (Benoit et al., 1994; Delatour et

MATERIALS AND METHODS

Chemicals

FPF racemic was obtained from Sigma (Fenoprofen calcium salt,
hydrate; St Louis, MO, USA). The R(− ) and S(+ ) enantiomers
of FPF were obtained by stereospecific crystallization, using
a-methylbenzylamine as a chiral inducer (Hayball & Meffin,
1987). After completing the crystallization process, the final
purities determined by high-performance liquid chromatogra-
phy (HPLC) for the R(− ) and S(+ ) enantiomers were 98.6 and
98.0%, respectively. The R(− ) and S(+ ) enantiomers of KTF
were kindly supplied by Laboratorios Menarini S.A., Badalona,
Spain. L-leucinamide and a-methylbenzylamine were purchased

Fig. 2. Chiral inversion process of aryl-2-propionic acids or profens.
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Fig. 3. Mean plasma concentration–time curve of FPF enantiomers
in cats after i.v. administration of 1 mg/kg of R(− ) FPF.

Data analysis

Pharmacokinetic parameters were estimated using non-com-
partmental methods and were fitted using a computer program
(PK Solution®; Ashland, OH, USA) for each animal after i.v.
administration of FPF and KTF enantiomers. The areas under
the curves (AUC) were determined by the trapezoidal rule
(Baggot, 1978). The enantiomeric conversion of R(− ) FPF and
R(− ) KTF into their respective S(+ ) antipodes was calculated
using the formula of Pang & Kwan (1993):

Inversion rate: AUC(S) after (R)×dose (S)/AUC(S) after (S)×Dose (R)

Kinetic parameter comparisons of FPF and KTF enantiomers
were performed using an unpaired t-test (StartGraph®). Signifi-
cance was accepted at PB0.05.

RESULTS

Mean plasma concentrations of FPF enantiomers after R(− )
FPF and S(+ ) FPF administration are shown in Figs 3 and 4,
respectively. No trace of R(− ) FPF enantiomers could be de-
tected after S(+ ) FPF administration. On the contrary, after
R(− ) FPF dosage, the plasma concentration of S(+ ) enan-
tiomer exceeded that of R(− ) as early as 15 min after dosage.
The calculated stereoconversion rate was 93.20913.7%. The
S(+ ) FPF concentrations then slowly decreased. The inversion
rate of R(− ) into S(+ ) KTF after i.v. administration of R(− )
enantiomer was only 36.7392.8% (Fig. 5). No chiral inversion
from S(+ ) to R(− ) enantiomer was detected after the adminis-
tration of S(+ ) KTF (Fig. 6). Several pharmacokinetic parame-
ter values of FPF and KTF enantiomers are present in Table 1.
There were significant differences between the R(− ) KTF and
R(+ ) FPF enantiomers for the clearance and AUC parameters.
No statistically significant difference between both R(− ) enan-
tiomers was obtained in elimination half-life. However, after the
administration of S(+ ) enantiomer of these compounds, the
mean elimination half-life of S(+ ) FPF was longer than that of
S(+ ) KPF. A statistical significance (PB0.05) was found be-
tween all kinetic parameters [AUC(0–T), CLb, T1/2 el, AUC(0–T)

S(+ ) after R(− ) and T1/2 el S(+ ) after R(− ) for FPF and KTF
enantiomers] of S(+ ) KTF and S(+ ) FPF considered (Table 1).

Fig. 4. Mean plasma concentration–time curve of S(+ ) FPF enan-
tiomer in cats after i.v. administration of 1 mg/kg of S(+ ) FPF.

Fig. 5. Mean plasma concentration–time curve of KTF enantiomers
in cats after i.v. administration of 1 mg/kg of R(–) KTF.

Fig. 6. Mean plasma concentration–time curve of S(+ ) KTF enan-
tiomer in cats after i.v. administration of 1 mg/kg of S(+ ) KTF.

al., 1994a,b; Soraci et al., 1995; Soraci, 1995). The organic
extract obtained from the two extractions was evaporated to
dryness under a nitrogen stream. The dry residue was deriva-
tized with L-leucinamide (Foster & Jamali, 1987). The
diastereomers thus produced were resolved by HPLC according
to the method described by Soraci et al. (1995).

© 2000 Blackwell Science Ltd, J. vet. Pharmacol. Therap. 23, 265–271
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Table 1. Some mean pharmacokinetic parameters of FPF and KPF enantiomers obtained after i.v. administration of each enantiomer at a dose
level of 1 mg/kg in cats

Parameters R(−) FPF R(−) KTF S(+) FPF S(+) KTF

4.0391.42 6.4591.90‡ 3.8591.40AUC(0–T) (mg/h per mL) 1.12590.55*
235977.0 117.7939.5§978.69197.8† 216.9960.6CL(B) mL/h per kg

0.5090.17 2.8591.81¶ 0.5290.11T1/2 el h 0.5390.11
5.6290.80** 1.4790.40AUC(0–T) (mg/h per mL) S(+)after R(−)
3.2090.60†† 0.3590.10T1/2 el h S(+)after R(−)

Significantly different (PB0.05). *AUC R(−) FPF and R(−) KTF: P value of 0.0322. †CL (B) R(−) FPF and R(−) KTF: P value of 0.0209. ‡AUC S(+)
FPF and S(+) KTF: P value of 0.0267. §CL (B) S(+) FPF and S(+) KTF: P value of 0.0339. ¶T1/2 el S(+) FPF and S(+) KTF: P value of 0.0153.
**AUC S(+) after R(−) P value of 0.0001. ††T1/2 el h S(+) after R(−) P value of 0.0001.

DISCUSSION

The enantiomeric disposition kinetic data for FPF have been
described in humans (Rubin et al., 1985), rats (Berry & Jamali,
1991), rabbits (Hayball & Meffin, 1987), sheep (Soraci et al.,
1995), dogs and horses (Soraci et al., 1996). The enantioselec-
tive disposition data for KTF have been described in horses
(Jaussaud et al., 1993; Landoni & Lees, 1995a, 1996), dogs
(Delatour et al., 1994a; Soraci, 1995), calves (Landoni & Lees,
1995b), humans (Foster et al., 1988; Hayball et al., 1993) and
several laboratory species. Stereospecific variations in pharma-
cokinetic data of FPF and KTP were observed in all the above-
mentioned species. Recently, we have observed that the mean
S/R ratio for AUC of FPF racemic in cats after i.v. administration
was 8.26. (Castro et al., 1998).

These specific differences were generally associated with
metabolic inversion of the chiral center (Hutt & Caldwell,
1983). In this way, our experimental study clearly confirms
that the stereoselective pharmacokinetics of FPF observed was

due to the unidirectional chiral inversion of R(− ) FPF to the
S(+ ) antipode. An important difference in the stereoconversion
rate for these closely related compounds (FPF and KTF) was
observed in cats. The i.v. administration of R(− ) FPF to cats
showed a large chiral inversion (92.3%). A highly significant
correlation (r : 0.978) between the clearance of R(− ) FPF and
the chiral inversion process strongly suggests the involvement
of stereoconversion as the main metabolic pathway for R(− )
FPF in cats. A similar result has been reported for dogs (Soraci
et al., 1996).

This stereoselective relationship for FPF among these domes-
tic carnivores could be explained at the molecular level. The
activity of long chain fatty acid coenzyme A synthetase (EC
6.2.1.3), particularly the enzyme palmitoyl coenzyme A (CoA)
ligase, involves the limiting step of the chiral inversion process
(Knigths & Jones, 1992; Tracy et al., 1993). The expression of
this enzyme is regulated by the level of lipids in the diet (Suzuki
et al., 1990). This enzyme presents a high capacity for its
physiologic substrate (palmitic acid) and also for different aryl-

Fig. 7. Metabolic pathway of aryl-2-propionic acids.
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Fig. 8. Predominant metabolic pathways of R(− ) FPF and R(− ) KTF in cats.

carboxyl-xenobiotics in dogs (Benoit et al., 1994; Soraci &
Benoit, 1995). Concerning this, in vitro studies on dog liver
microsomes showed high Vmax values (60.6911 nmol/mg per
min) for the thiosterification of R(− ) FPF (Soraci & Benoit,
1995). Thus, the results reported here suggest the important
role of R(− ) FPF substrate for acyl-CoA synthetase, as well as
its consecutive consumption through the pathway of chiral
inversion in cats. However, to reach a definite conclusion
regarding the role of R(− ) FPF substrate for acyl-CoA syn-
thetase, further in vitro thiosterification studies would be
necessary.

The i.v. administration of R(− ) KTF to cats showed a
moderate chiral inversion (36.73%). This value was similar to
those reported in dogs (Delatour et al., 1994a; Delatour et al.,
1994b) and other species (Landoni & Lees, 1995a,b). The
statistical difference observed between S(+ ) FPF and S(+ )KTF
after R(− ) administration of FPF and KTF, respectively, could
determine a greater therapeutic and/or potential toxic activity
of racemic FPF than KTF in cats.

A low inversion rate for R(− ) KTF compared to that of R(− )
FPF and a lack of correlation between the clearance of R(− )
KTF and this process were observed in cats. These findings
could be explained by the utilization of the R(− ) KTF enan-
tiomer as a substrate by other competitive pathways, such as

aryl oxydation, glucuronic conjugation or thioesterification (Fig.
7) (Jamali, 1988; Soraci et al., 1995). Considering that the
glucuronic conjugation is an easily saturable or less functional
pathway in cats (Boutin et al., 1981; Court & Greenblatt,
1997a,b) and that the capacity to hydroxylate acyl xenobiotics
is low (Maugras & Reichart, 1979), the thioesterification could
be the principal metabolic step for R(− ) KTF in cats (Fig. 8),
and oxidative processes and glucuronidation may only con-
tribute to the modulation of the plasma profiles. Comparative in
vitro studies carried out with microsome preparations from
different animal species showed that carnivorous microsome
produced the highest thiosterification of R(− ) KTF (Delatour et
al., 1994a; Soraci, 1995; Sevoz et al., 1997). Therefore, the lack
of correlation between clearance and the chiral inversion pro-
cess could be explained by the diversion of the intermediate
thioester (R(− ) KTF-CoA) towards other metabolic pathways,
such as the metabolism of lipids with the formation of hybrid
triacylglicerides, alteration of the b-oxidation (Fears et al., 1978;
Caldwell & Marsh, 1983; Williams et al., 1986; Sallustio et al.,
1987; Moorhouse et al., 1991; Zhao et al., 1992; Hall & Quan,
1994; Knigths, 1998) and/or amino acid conjugation, particu-
larly, glicine derivatives (Caldwell, 1978, 1982; Tanaka et al.,
1992; Knigths, 1998) (Fig. 8). Moreover, studies carried out
with phenoxy-3-benzoic acid in cats showed that the conjugate

© 2000 Blackwell Science Ltd, J. vet. Pharmacol. Therap. 23, 265–271
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with glicine constitutes the main metabolite (Huckle et al.,
1981). However, further investigations should be made in order
to demonstrate this hypothesis.

This study demonstrates that there is a high enantioselective
pressure within the same species, even for chemically similar
compounds, given the important specificity of substrate of the
enzymes participating in the different metabolic processes in-
volved. This imposes, in the veterinary practice, a great thera-
peutic and toxicological caution at the moment of extrapolating
dose between different compounds.
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