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ABSTRACT: A new expression is developed which allows estimating
the sensitivity for the whole family of multivariate calibration
algorithms based on partial least-squares regression combined with
residual multilinearization. The sensitivity can be employed to
compute other relevant figures of merit such as analytical sensitivity,
limit of detection, limit of quantitation, and uncertainty in predicted
concentration. The results are substantiated by extensive Monte Carlo
noise addition simulations for a variety of systems with a different
number of analytes and interfering agents, different degrees of
overlapping in component profiles, and different numbers of instrumental data modes per sample, all requiring the achievement
of the second-order advantage. The connection between the present approach and the intuitive concept of net analyte signal is
discussed. An experimental example for which second-, third-, and fourth-order data are available is also studied, concerning the
improvement in figures of merit on increasing the data order, which is consistent with the decrease in average prediction error.

Herman Wold and co-workers developed partial least-
squares (PLS) for data modeling and regression.1 Today

PLS is a well-known chemometric resource in analytical
chemistry, with numerous applications in areas as diverse as
food, biomedical, and industrial analysis.2,3 When PLS is
applied to first-order multivariate calibration, i.e., when vector
data are measured for each experimental sample (spectra,
chromatograms, voltammograms, etc.), a sufficiently large and
representative calibration sample set is required for model
building, in order to account for the presence of potential
interfering agents in new samples. Of considerable interest is
the application of PLS in the area of higher-order multivariate
calibration, i.e., when data arrays with two or more instrumental
modes are measured for each sample, because analyte
determination can be performed using calibration sets which
are only built with the pure analyte, even when the new
specimens contain uncalibrated interfering agents. This is
possible thanks to the power of the so-called second-order
advantage exhibited by higher-order data.4−13

The useful PLS strategy can in principle be applied to higher-
order data in two different manners: (1) unfolding the original
data into vectors followed by classical PLS regression analysis,
giving rise to the U-PLS model,14 or (2) processing the original
data arrays employing a multidimensional PLS version called
N-PLS.15 None of these two strategies alone, however, is able
to achieve the important second-order advantage. To reach the
latter goal, residual bilinearization (RBL) was developed in
1990 and combined with PLS for second-order data analysis.16

After an impasse of almost 15 years, RBL was rediscovered,17

and subsequently applied to a variety of analytical systems,
showing a great potentiality due to its intrinsically flexible
structural model based on latent variables.8 Extensions of RBL

were then developed for third-order data analysis, i.e., residual
trilinearization (RTL),18 and very recently for fourth-order data
studies, i.e., residual quadrilinearization (RQL).19 They are all
members of a family of tools collectively known as residual
multilinearization (RML), which have been combined with U-
PLS, N-PLS, and other multivariate methods. Applications exist
to data of various orders, measured for samples of complex
composition and diverse origins, as has been conveniently
summarized and reviewed.5,8−13

Figures of merit can be reliably estimated in zeroth-order
(univariate) and first-order calibration, as documented in
IUPAC’s Technical Reports.20,21 Specifically for PLS, many
works have focused on the estimation of concentration
uncertainties, with emphasis on expression-based ap-
proaches.22−29 In the latter ones, the most relevant figure of
merit is the sensitivity, because it is the crucial element for
estimating other important parameters such as analytical
sensitivity, selectivity, limit of detection, limit of quantitation,
and uncertainty in predicted concentrations.30 Sensitivity may
be defined as the change in (net) response for a given change in
analyte concentration. While in univariate calibration, the
sensitivity is numerically equal to the slope of the calibration
curve,20 in first-order multivariate calibration it is usually
defined as the slope of a pseudounivariate calibration based on
the so-called net analyte signal (NAS), which is the portion of
the total signal uniquely ascribed to the analyte of interest.31,32
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In second-order calibration, different NAS definitions were
developed, particularly in the framework of the parallel factor
model (PARAFAC).33,34 These initial alternative definitions
were shown to be special cases of a general mathematical
expression, revealing the difficulties of the NAS concept in the
second-order scenario.35 Extending the NAS approach to third-
order data analysis and beyond has been even more
troublesome,36 although an improved closed-form PARAFAC
sensitivity expression has been recently developed.37 In the
latter case, a new approach to concentration uncertainties was
employed, which did not involve, at least explicitly, NAS-based
arguments.
In regards to the useful PLS/RML methodologies, a

provisional sensitivity expression is only known in the case of
second-order PLS/RBL,17 based on the rather conflicting
second-order NAS concept (see below). No expressions for the
remaining PLS/RBL figures of merit are known. Moreover,
virtually no information is available in the case of the third- and
fourth-order extensions PLS/RTL and PLS/RQL and neither
for the unfolded or multidimensional PLS versions. In the
present work, closed-form expressions are presented for
estimating several important figures of merit for the complete
family of PLS/RML calibration methods. The purpose is 2-fold:
on one hand, to provide analytical chemists with the full battery
of figures of merit for reporting meaningful results derived from
higher-order PLS data analysis, and on the other, to derive a
single mathematical expression for the sensitivity, applicable to
all PLS/RML methodologies, with a link to the intuitively
useful concept of net analyte signal.
An appropriate experimental example for which second-,

third-, and fourth-order data are available is employed to
illustrate a real application of the developed expressions and to
demonstrate the improvement in figures of merit which is
gained on increasing the data order.

■ THEORY

Sensitivity in U-PLS/RBL. Details on the specific
implementation of U-PLS/RBL are provided in the Supporting
Information and in the relevant literature.17 In the present
subsection, focus is directed toward the estimation of the
sensitivity parameter, with the expressions for additional
remaining figures of merit provided below.

We take as an example the specific case of second-order data
when a single interfering agent occurs. The relevant U-PLS/
RBL expression for modeling the test sample data can be
written as

= + ⊗ +x Pt c b eint 1 int 1 (1)

where x is the vector of unfolded test sample signals, P is the
matrix of calibration U-PLS loadings, t is the vector of test
sample scores, bint1 and cint1 are vectors containing the profiles
representing the contribution of the single interfering agent in
both data modes as obtained by principal component analysis
(PCA) of residuals (see the Supporting Information), ⊗ is the
Kronecker product operator, and e is an error term. To fit x to
the model of eq 1, P is kept fixed at the calibration values, while
RBL provides the sample score vector t and interfering agent
profiles bint1 and cint1 by least-squares minimization of e (see the
Supporting Information). If the data matrices for each sample
are of size J × K (J and K are the number of instrumental
channels in both data modes), P is of size JK × A (A is the
number of latent variables employed to model the calibration
data), and bint1 and cint1 are of size J × 1 and K × 1, respectively.
Once accomplished the goal of RBL, analyte prediction
proceeds through the usual expression:

=y v tT
(2)

where v is the vector of PLS regression coefficients in latent
variable space, as obtained during the calibration phase (if data
are mean-centered, the mean calibration concentration should
be added to the right-hand side of eq 2).
If calibration is precise, as usually assumed when estimating

the sensitivity for U-PLS/RBL,35 it is apparent from eq 2 that
the variance in concentration is given by

=y v V vvar( ) t
T

(3)

where Vt is the variance-covariance matrix for the elements of
the t vector. Using a previously discussed approach based on
the computation of the Jacobian matrix associated to the fitted
parameters in eq 1, var(y) can be expressed as a function of the
instrumental uncertainty var(x), the calibration parameters and
the interfering agent profiles as follows (see the Supporting
Information):

Table 1. Sensitivity U-PLS/RML Expressions for Data of Increasing Order

Jacobian approacha

general SENJ expression
SENJ = {vT [PT (I − Zint Zint

+) P]−1 v}−1/2

Zint = [Zint1 | Zint2 | ... | ZintN]

data order generic interfering agent Zintn block inside Zint

2 [Ic⊗bintn | cintn⊗Ib]
3 [Id⊗cintn⊗bintn | dintn⊗Ic⊗bintn | dintn⊗cintn⊗Ib]
4 [Ie⊗dintn⊗cintn⊗bintn | eintn⊗Id⊗cintn⊗bintn | eintn⊗dintn⊗Ic⊗bintn | eintn⊗dintn⊗cintn⊗Ib]

net analyte signal approachb

data order specific expression

2 SENNAS2 = [vT (PT PC⊗PB P)−1 v] −1/2

3 SENNAS3 = [vT (PT PD⊗PC⊗PB P)−1 v] −1/2

4 SENNAS4 = [vT (PT PE⊗PD⊗PC⊗PB P)−1 v] −1/2

aThe subscripts “int1”, “int2”, “intn”, “intN” are the numbering for the sources of interference, with profiles in the different data modes obtained
during RML as b, c, d, e depending on the data order, and Ib, Ic, Id and Ie are unit matrices of size J × J, K × K, L × L, and M × M, respectively.
Notice that the P matrix in the general SENJ expression depends on the data order and is of size JK × A, JKL × A, and JKLM × A for second-, third-,
and fourth-order data, respectively (see text). bPB = I − Bint Bint

+, with the loading matrix Bint containing the profiles for the interfering agent sources
in one of the data modes. The definitions of PC, PD, and PE are analogous to that for PB.
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= − + −y x v P I Z Z P vvar( ) var( ) [ ( ) ]T T
int int

1
(4)

where I is a JK × JK unit matrix, and Zint contains information
regarding the interfering agent in the following form:

= ⊗ | ⊗Z I b c I[ ]int c int 1 int 1 b (5)

where Ic and Ib are J × J and K × K unit matrices, respectively.
From eq 4, the sensitivity can be deduced as the ratio of
uncertainties in signal and concentration:37

=

= − + − −

x y

v P I Z Z P v

SEN [var( )/var( )]

{ [ ( ) ] }

J
1/2

T T
int int

1 1/2
(6)

where the subscript “J” stands for the Jacobian approach.
Generalization to more interfering agents needs only the
appropriate expansion of Zint, as shown in Table 1.
An alternative approach to U-PLS/RBL sensitivity has been

previously developed based on the concept of net analyte
signal.17 This involves two projection matrices, orthogonal to
the spaces spanned by the interfering agents in each of the data
modes, i.e., PB = I − Bint Bint

+ and PC = I − Cint Cint
+, with the

columns of Bint and Cint collecting the profiles of the various
sources of interference detected by RBL in each of the data
modes. The matrices PB and PC served to remove the matrix
signal contributed by the interfering agents, leading to the
following expression:17

= ⊗ − −v P P P P vSEN [ ( ) ]NAS2
T T

C B
1 1/2

(7)

where “NAS2” indicates a NAS-based expression for second-
order data. Although eq 7 has been supported by Monte Carlo
noise addition simulations,17 and the numerical SENNAS2 values
are identical to those of SENJ, when it comes to extending the
idea to third- and fourth-order data, this intuitive NAS
approach severely fails (see below).
Sensitivity in U-PLS/RTL and U-PLS/RQL. The extension

of both the Jacobian and NAS sensitivity approaches to third-
order data and beyond is straightforward. In the case of the
former methodology, the basic eq 6 can be applied to higher-
order cases after suitably adapting the matrix Zint (see the
Supporting Information). The complete family of Zint matrices
is shown in Table 1 for various data orders and interfering
agent sources. Notice however that the A × 1 v vector in eq 6
stems from a U-PLS calibration model built for a specific
calibration data set and data order as well as the U-PLS
calibration matrix P, which is of size JK × A, JKL × A, and
JKLM × A for second-, third-, and fourth-order data,
respectively.
On the other hand, the NAS-based eq 7 admits

corresponding extensions to third- and fourth-order data
(SENNAS3 and SENNAS4, respectively), which are also provided
in Table 1. They are based on the idea of removing the
contributions of the interfering agents by orthogonal projection
matrices, in the same manner as for the derivation of eq 7.
However, the SENNAS3 and SENNAS4 expressions seriously
underestimate the U-PLS/RTL and U-PLS/RQL sensitivities,
as shown in the Supporting Information. This should not be
taken as indicative that the concept of NAS is not useful in the
field of higher-order multivariate calibration but rather that it
should be modified to make it compatible with the Jacobian
approach, because the latter is consistent with the Monte Carlo
simulations. This interesting issue calls for additional theoretical
and experimental research.

Sensitivity in N-PLS/RML. The expressions discussed
above for U-PLS/RML can equally be applied to N-PLS/
RML, noting that in N-PLS a v vector exists as in eqs 2 and 6.
Likewise, an analogous P matrix of eqs 4 and 6 can be defined
from the different weight matrices provided by N-PLS in each
data mode (see the Supporting Information).15

Other Figures of Merit. The basic assumption throughout
this work is that the standard error in the predicted analyte
concentration by a PLS model [SD(y)] is given by the well-
known expression:21,22,26,27,38,39

=

= + +− −

y y

x h x h y

SD( ) [var( )]

[SEN var( ) SEN var( ) var( )]

1/2

2 2
cal

1/2

(8)

where SEN is the sensitivity, var(x) the variance in instrumental
signals, h the sample leverage, and var(ycal) the variance in
calibration concentrations. Details on the different parameters
appearing in eq 8 are given below.
The three terms in the right-hand side of eq 8 account for the

propagation of uncertainties derived from (in the order in
which they appear): (1) instrumental signals in the test sample
data, (2) instrumental signals in the calibration data, and (3)
calibration concentrations. The first and probably the most
relevant of these contributions is transmitted directly via the
inverse squared sensitivity, which is the key ingredient in eq 8
and whose computation is rather involved in the field of higher-
order data, as explained in the next subsection. The second and
third terms arise from calibration uncertainties and are both
scaled by the sample leverage, a dimensionless parameter
measuring the position of the sample in the calibration space.
The latter can be expressed in terms of concentrations (hc),
instrumental variables (hX), or latent variables (hL). An
appropriate expression for hL is

22

= −h t T T t( )L
T T 1

(9)

where T is the matrix of PLS calibration scores and t the vector
of test sample scores. Equation 9 is remindful of the classical
least-squares counterpart hc = yT (YT Y)−1 y, where Y is the
matrix of calibration concentrations for all analytes and y the
vector of test sample concentrations.40 Recall that if data are
mean-centered, then (1/Ical) should be added to the leverage in
eq 9, where Ical is the number calibration samples. Alternatively,
eq 8 can be modified by replacing h by (h + 1/Ical) when mean-
centering is applied.
Other important figures of merit are the analytical sensitivity

γ, the limit of detection (LOD), and the limit of quantitation
(LOQ):21

γ = xSEN/[var( )]1/2
(10)

= yLOD 3.3 SD( )0 (11)

= yLOQ 10 SD( )0 (12)

where the factor 3.3 corresponds to 5% for the so-called errors
of types I and II, and y0 is the concentration for a blank sample
or a sample containing a low analyte concentration.

Software. All calculations were implemented with MAT-
LAB41 routines, available from the authors by request.
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■ SIMULATED DATA
Data Sets. The first step in the simulations consists in

creating various synthetic data sets. For each synthetic sample, a
data array was built with the following dimensions: J × K for
second-order data, J × K × L for third-order data, and J × K ×
L × M for fourth-order data, where J, K, L, and M are the
number of data points (or sensors) in each data mode. The
number of samples to be submitted to PLS/RML analysis is in
all cases I = Ical + 1, i.e., the number of calibration samples plus
the test sample.
To represent the instrumental measurements, noiseless

Gaussian-shaped profiles for four different constituents (1, 2,
3, and 4) were defined in each data mode. The profiles
correspond to the components at unit concentration and were
normalized so that the area under the profile (the total signal
for each pure constituent) is one (Figure 1). These simulated

profiles spanned the following numbers of data points in the
different modes: J = 20, K = 15, L = 10, and M = 10. In all
cases, the peak maxima for the Gaussian profiles of constituent
1 (the analyte of interest) were fixed at the center of each of the
data ranges. The peak maxima for the remaining constituents
were placed in all data modes at 10 different random positions,
giving rise to 10 different degrees of spectral overlapping.
Figure 1 shows a particular situation for the four possible
constituents.
In all the simulated data sets, calibration sets of samples were

created with analyte concentrations taken at random and
uniformly distributed in the range 0−1, having the following
number of samples: 10 for a single calibrated analyte, 20 for two
analytes, and 30 for three analytes. Four test samples were also
produced, having component concentrations taken randomly
from the range 0−1 and analyzed by joining them, each at a
time, with the set of calibration samples.
The data sets were identified according to the total number

of components (B for binary, T for ternary, and Q for
quaternary) and with three numbers identifying the data order,
the number of analytes, and the number of interfering agents.
The complete list of studied simulated systems is shown in
Table 2. Overall, 960 different systems were analyzed,
corresponding to 3 different data orders, 6 systems with
varying number of analytes and interfering agents, 4 different
component concentrations, and 10 different sensitivities
according to spectral overlapping.

Noise Addition. In Monte Carlo studies, uncertainty can in
principle be added in four different manners: (1) in calibration
concentrations only, (2) in calibration signals only, (3) in test
sample signals only, and (4) in all concentrations and signals.
When focusing on the sensitivity parameter, only the test
sample is considered to carry instrumental noise, in order to
leave the concentration uncertainty as only depending on the
sensitivity and the signal noise (see eq 8).35−37 In the present
case, all four possibilities were considered, which provides the
opportunity of testing the adequacy of eq 8 for estimating the
prediction uncertainty.
In each of the synthetic data sets, the value of the signal

uncertainty, i.e., the value of [var(x)]1/2 was 0.002 units, and
the value of [var(ycal)]

1/2 was 0.001 units. They were selected so
that the relative impact of these values of instrumental and
concentration uncertainty is comparable. After creating each
data set, noise was added in the different manners discussed
above, and for each data set and Monte Carlo cycle, the
calibration data were joined with each test sample data and
submitted to PLS/RML. The calibration/prediction process
followed the usual steps, already described in the literature and
summarized in the Supporting Information for second-, third-,
and fourth-order data sets. It was repeated 1 000 times using
different random seeds for the signal and/or concentration
uncertainty, depending on the manner in which noise was
added to the synthetic data. Statistical analysis provides the
variance in the estimated concentration of the analyte of
interest (constituent 1 in all cases).

■ EXPERIMENTAL DATA
Equipment. Excitation−emission (EEM) fluorescence

matrixes were recorded on a fast-scanning Varian Cary Eclipse
spectrofluorometer (Melbourne, Australia) equipped with two
Czerny-Turner monochromators, a xenon flash lamp, a quartz
cell, and connected to a PC microcomputer via an IEEE 488
(GPIB) serial interface. Instrumental parameters were

Figure 1. Representative noiseless component profiles employed to
build the simulated data sets in the first mode of second-order systems.
The black line identifies the analyte of interest; the remaining colors
correspond to other sample components. Profiles and relative
overlapping in the remaining data modes and orders are similar to
those presently shown.

Table 2. Simulated Systems, Nomenclature, Data Order, and
Component Numbering

systema data order component(s) in calibration set interfering agent(s)

B2_11 2 1 2
T2_12 2 1 2 and 3
T2_21 2 1 and 2 3
Q2_13 2 1 2, 3, and 4
Q2_22 2 1 and 2 3 and 4
Q2_31 2 1, 2, and 3 4
B3_11 3 1 2
T3_12 3 1 2 and 3
T3_21 3 1 and 2 3
Q3_13 3 1 2, 3, and 4
Q3_22 3 1 and 2 3 and 4
Q3_31 3 1, 2, and 3 4
B4_11 4 1 2
T4_12 4 1 2 and 3
T4_21 4 1 and 2 3
Q4_13 4 1 2, 3, and 4
Q4_22 4 1 and 2 3 and 4
Q4_31 4 1, 2, and 3 4

aThe first letter identifies the total number of components (B, binary;
T, ternary; Q, quaternary), the first number the data order, and the
final two numbers the number of calibrated analytes and number of
interfering agents, respectively.
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excitation and emission slit widths, 5 nm; detector voltage, 600
V; scanning speed, 12 000 nm/min; cell temperature, 35 °C;
excitation range, 244−312 nm each 4 nm; emission range,
311−491 nm each 2 nm; time range, 2−13.2 min each 0.8 min;
pH values, 9.5, 9.8, 10.0, 10.2, and 10.8. Each sample gave an
array of size 18 × 91 × 15 × 5. For further details see ref 19.
Calibration and Test Samples. Five calibration samples

were prepared as aqueous solutions with the analyte carbaryl in
the range 50−250 μg L−1 using borate buffer to adjust the pH.
Nine test samples were also prepared, containing the analyte in
the range 100−250 μg L−1 and fuberidazole or thiabendazole as
interfering agents (samples 1−5, thiabendazole 25 μg L−1,
samples 6−9, fuberidazole 125 μg L−1).
Experimental Data Sets. The original fourth-order data

(arrays with four modes per sample: excitation, emission, time,
and pH) were employed to determine the analyte in the
presence of interfering agents using U-PLS/RQL. From these
data, arrays with three modes per sample (excitation, emission,
and time) were taken at the intermediate pH value of 10.0 and
subjected to U-PLS/RTL analysis. Finally, excitation−emission
data matrices were selected from the complete fourth-order
data set at intermediate values of pH (10.0) and time (7.6 min)
and were processed using U-PLS/RBL.

■ RESULTS AND DISCUSSION
Simulated Data. Results will only be discussed for U-PLS/

RML models, since those for N-PLS/RML were similar to the
former ones. For each simulated data system, the calibration
data were employed to build a U-PLS model, focusing on the
analyte of interest (component 1 in all cases). Depending on
the number of data modes per sample, postcalibration RBL,
RTL, or RQL was applied to obtain suitable sample scores for
analyte prediction in each test sample. Repeating the
calibration/prediction procedure, a number of times, using
different seeds for the noise added to the data, allowed one to
obtain the uncertainty in predicted concentration. This was
done, as discussed above, in four different situations, including
noise in calibration concentrations, in calibration signals, in test
sample signals, and in all of them. This allowed one to check
the performance of eq 8 and also of its three separate terms in
the presence of the three different uncertainty sources.
Because of the large number of studied systems, a convenient

way to summarize the results is by plotting the Monte Carlo
concentration uncertainties vs those estimated with eq 8,
identifying the different uncertainty sources using specific
symbols. Figure 2A corresponds to all second-order systems,
Figure 2B to all third-order systems and Figure 2C to all fourth-
order systems (see captions to Figure 2 and Table 3). Each of
these plots provides information on 960 different systems: 10
different overlapping situations, 4 different test samples, 6
different number of analytes and interfering agents, and 4
different uncertainty sources. It should be noticed that all
systems required the second-order advantage for successful
analyte quantitation, since in all cases uncalibrated interferences
occurred in the test samples.
The overall results presented in Figure 2A−C suggest that

the presently described approach to U-PLS/RML sensitivities
and concentration uncertainties is appropriate, since the Monte
Carlo uncertainties reasonably match those computed from eq
8, after inserting a suitable sensitivity parameter calculated
through the relevant eq 6. This also means that the expression
shown in Table 1 under the heading Jacobian approach, i.e., eq
6, is the correct formula for estimating the sensitivity in these

systems. Visual inspection of Figure 2A−C immediately
indicates that the uncertainty transmitted by calibration (blue
circles and green down triangles) is smaller than that
propagated from the test sample (red up triangles), because
the former ones are scaled by the sample leverage.
It is interesting to note that the intuitive net analyte signal

approach, which leads to the NAS expressions shown in Table
1, is not adequate, in general, to cover the expected sensitivities
(see the Supporting Information). Only in the case of PLS/
RBL applied to second-order signals, the Jacobian and the NAS
approaches agree, leading to numerically identical SEN values.
In a more general framework, it is a strong indication that the
intuitive higher-order NAS concept based on the direct removal
of the interfering agent signals should be revisited to make it
consistent with the correct Jacobian approach.

Experimental Data. The experimental data corresponds to
the quantitation of the fluorescent pesticide carbaryl, which
hydrolyzes in alkaline media to fluorescent 1-naphthol. The
kinetics of the reaction is pH-dependent, providing the
opportunity to measure fourth-order excitation−emission
fluorescence matrixes as a function of time and pH. The
calibration samples only contain the analyte carbaryl, but the

Figure 2. Plot of uncertainties in predicted concentration after Monte
Carlo noise addition, as a function of estimations based on eq 8. (A)
Results for all second-order data systems (B2_11, T2_12, T2_21,
Q2_13, Q2_22, and Q2_31, see Table 2 for explanation of symbols).
(B) Results for all third-order data systems (B3_11, T3_12, T3_21,
Q3_13, Q3_22, and Q3_31). (C) Results for all fourth-order data
systems (B4_11, T4_12, T4_21, Q4_13, Q4_22, and Q4_31). In the
three plots, the symbols identify the following cases: blue circles, noise
only in calibration concentrations; green down triangles, noise only in
calibration signals; red up triangles, noise only in test sample signals;
and black squares, noise in all concentrations and signals.
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test samples contain, in addition to the analyte, another
fluorescent pesticide as an interfering agent (thiabendazole or
fuberidazole). Hence the second-order advantage is required for
successful analyte determination.
For the analysis of the experimental data, fourth-order data

are available, and thus it is possible to explore all the different
possibilities provided by second-, third-, and fourth-order
calibration. The first step was thus to select, from the complete
fourth-order data for each sample, a second-order subarray
which would correspond to measuring excitation−emission
fluorescence matrixes at fixed values of reaction time and pH.
These data were analyzed using U-PLS/RBL. The use of cross-
validation for assessing the optimum number of calibration
latent variables rendered A = 1. Although two chemical
components occur in calibration, since they are mutually
correlated because one component is hydrolyzed to yield the
second one, a single U-PLS latent variable is understandable. In
order to model the presence of the interfering agents in the test
signals, on the other hand, RBL required a single component,
which is also the expected result in view of the composition of
the test samples. Figure 3 shows the emission and excitation
profiles which were obtained by RBL in two typical test samples
(one containing fuberidazole as the interfering agent and
another one containing thiabendazole), in comparison with the
known profiles for pure carbaryl (the analyte of interest) and of
1-naphthol (its hydrolysis product). The success in retrieving
these profiles is directly tied to the success in achieving the
second-order advantage, allowing the RBL procedure to
remove the contribution of the interfering agent from the
total test signal for each sample. The prediction results are
shown in Table 3, along with the corresponding figures of merit
estimated using eqs 8−12, which will be compared below with
those corresponding to third- and fourth-order data analysis.

Sensitivity should improve on recording and processing
third-order data corresponding to the measurement of the
above data matrices as a function of time. This can be studied
by selecting, from the fourth-order data for each sample, third-
order data at a fixed pH value (10.0). When this data set was
submitted to U-PLS calibration, cross-validation suggested
again that A = 1 is a reasonable choice, even when two
responsive chemical components occur in the calibration set.
The result is understandable in view of the mutual correlation
of these two components due to the kinetics of the reaction
being monitored. For each of the test samples containing
interferences, RTL allowed to model the corresponding
interfering agent in each sample. A comparison of the excitation
and emission profiles is provided in Figure 3, where an excellent
match to the results from RBL applied to the second-order data
set is observed. The time profile (not shown) retrieved by RTL
from the third-order data set is a constant profile (as expected
since the interfering agent is pH-stable). The specific prediction
results and figures of merit are shown in Table 3 (see below for
a full comparison with other data orders).
The complete fourth-order data set was finally submitted to

U-PLS/RQL, with similar qualitative results in comparison with
the above analyses, but with an additional profile in the pH
mode for the interfering agent profiles. The excitation and
emission fluorescence profiles retrieved by this algorithm are
comparable to those provided by U-PLS/RBL and U-PLS/
RTL, as can be seen in Figure 3. The quantitative
determination of the analyte carbaryl is reported in Table 3
for comparison with the previous methodologies.
In comparing the relative figures of merit presented in Table

3 for second-, third-, and fourth-order data for the studied
experimental system, increasing sensitivities and analytical

Table 3. Analytical Results and Figures of Merit for the
Experimental Example Using U-PLS/RBL, U-PLS/RTL, and
U-PLS/RQL

sample nominal U-PLS/RBL U-PLS/RTL U-PLS/RQL

Analytical Resultsa

1 100 86(1.6) 85(0.6) 98(0.5)
2 125 108(1.5) 107(0.5) 120(0.4)
3 150 134(1.5) 136(0.5) 149(0.4)
4 200 172(1.6) 171(0.5) 186(0.4)
5 250 218(1.6) 223(0.6) 245(0.6)
6 100 85(1.6) 85(0.6) 89(0.5)
7 100 91(1.6) 92(0.5) 94(0.5)
8 200 184(1.5) 185(0.5) 197(0.4)
9 250 202(1.6) 253(0.7) 241(0.6)

Figures of Meritb

RMSEP/μg L−1 25 18 7.3
REP/% 16 12 4.9
SEN/AFU L μg−1 1.3 5.5 12
γ/L μg−1 0.7 3.1 6.7
LOD/μg L−1 5.3 2 1.5
LOQ/μg L−1 16 6 4.5

aAll concentrations in μg L−1. Standard deviations from eq 8 in
parentheses. In all cases, data were processed after mean centering,
with one U-PLS latent variable and one RML component. bRMSEP =
root-mean-square error of prediction, REP = relative error of
prediction based on the mean calibration concentration, SEN from
eq 6), and γ, LOD, and LOQ from eqs 10−12, [var(ycal)]1/2 = 1 μg
L−1, [var(x)]1/2 = 2 AFU (arbitrary fluorescence units).

Figure 3. Excitation (A) and emission (B) profiles for the various
components of the experimental example. Green and red lines
correspond to the experimental spectra for the analyte carbaryl and its
hydrolysis product 1-nahphtol, respectively. Blue and black lines (three
similar traces) indicate the profiles for the interfering agents
fuberidazole and thiabendzaole, as retrieved from the test samples 1
and 6 respectively, by U-PLS/RML analysis of second-, third-, and
fourth-order data.
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sensitivities are apparent on increasing the data order. A steady
improvement in the average concentration error indicators
(root-mean-square error (RMSE) and relative error of
prediction (REP)) is also observed as well as in uncertainty
in predicted concentrations and detecting capabilities (LOD
and LOQ). However, the improvement in SD, LOD, and LOQ
is not directly proportional to the gain in sensitivity. This is
expected on inspection of eq 8, where two of the three terms
are directly affected by the sensitivity parameter. The last term,
however, depends on the sample leverage and on the
uncertainty in calibration concentrations but not on the
sensitivity. This implies a milder effect at high sensitivities,
because the uncertainty may be mainly controlled by the
calibration concentration uncertainty, which is constant across
all data orders. Figure 4 compares the LOD values with the

rough approximation which ignores the sample leverage and
considers only the first term in eq 8 in estimating SD(y0), i.e.,

= xLOD 3.3[var( )] /SEN1/2
(13)

It is apparent that this latter approximation seriously
overestimates the detection capability (Figure 4), while the
values shown in Table 3, based on the complete eq 8, provide a
more realistic estimation.

■ CONCLUSIONS
The new expressions derived in this report for second-, third-,
and fourth-order multivariate calibration using partial least-
squares regression with residual multilinearization provide
valuable information for advanced data processing users by
(1) allowing important figures of merit to be estimated and
reported for multivariate calibration of all data orders, (2)
offering new insights into the intuitively useful concept of net
analyte signal, challenging the traditional definition and
triggering further research on this subject, and (3) paving the

way to a future sensitivity expression applicable to all
multivariate algorithms.
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