
1

2

3

4

5
6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28

29

30

31

32

33

34

Q1

JSS 8042 No. of Pages 12, Model 5+

10 August 2007 Disk Used
ARTICLE IN PRESS
www.elsevier.com/locate/jss

The Journal of Systems and Software xxx (2007) xxx–xxx
O
O

F

Improving the schedulability of soft real-time open dynamic
systems: The inheritor is actually a debtor

Rodrigo Santos a,*, Giuseppe Lipari b, Jorge Santos a

a Dep. Ing. Eléctrica y Computadoras, Universidad Nacional del Sur, Avda. Alem 1253, 8000 Bahı́a Blanca, Argentina
b RETIS Lab, Scuola Superiore Sant’Anna, Piazza Martiri della Liberà 33, 56127 Pisa, Italy

Received 27 September 2006; received in revised form 11 July 2007; accepted 11 July 2007
E
C

T
E
D

P
R

Abstract

This paper presents the Clearing Fund Protocol, a three layered protocol designed to schedule soft real-time sets of precedence related
tasks with shared resources. These sets are processed in an open dynamic environment. Open because new applications may enter the
system at any time and dynamic because the schedulability is tested on-line as tasks request admission. Top-down, the three layers
are the Clearing Fund, the Bandwidth Inheritance and two versions of the Constant Bandwidth Server algorithms. Bandwidth Inheri-
tance applies a priority inheritance mechanism to the Constant Bandwidth Server. However, a serious drawback is its unfairness. In fact,
a task executing in a server can potentially steal the bandwidth of another server without paying any penalty. The main idea of the Clear-
ing Fund Algorithm is to keep track of processor-time debts contracted by lower priority tasks that block higher priority ones and are
executed in the higher priority servers by having inherited the higher priority. The proposed algorithm reduces the undesirable effects of
those priority inversions because the blocked task can finish its execution in its own server or in the server of the blocking task, whichever
has the nearest deadline. If demanded, debts are paid back in that way. Inheritors are therefore debtors. Moreover, at certain instants in
time, all existing debts may be waived and the servers are reset making a clear restart of the system. The Clearing Fund Protocol showed
definite better performances when evaluated by simulations against Bandwidth Inheritance, the protocol it tries to improve.
� 2007 Published by Elsevier Inc.

Keywords: Open systems; Soft real-time; Scheduling
 R

35

36

37

38

39

40

41

42

43

44

45
U
N

C
O

R1. Introduction

In the classical definition, Real-Time Systems are those
in which results must be not only correct from an arithme-
tic–logical point of view but also produced before a certain
instant called deadline. Because of that it is said that the
system has time constraints. If no deadline can be missed,
the system is said to be hard real-time as opposed to soft

real-time, in which some deadlines may be missed. Schedul-
ing theory addresses the problem of determining the neces-
sary and sufficient conditions that a real-time system must
46

47

48

49

50

0164-1212/$ - see front matter � 2007 Published by Elsevier Inc.

doi:10.1016/j.jss.2007.07.004

* Corresponding author. Tel.: +54 291 4595181; fax: +54 291 4595154.
E-mail addresses: ierms@criba.edu.ar (R. Santos), lipari@sssup.it (G.

Lipari), iesantos@criba.edu.ar (J. Santos).

Please cite this article in press as: Santos, R. et al., Improving the sc
(2007), doi:10.1016/j.jss.2007.07.004
meet in order that no deadline is missed (hard systems) or
that as few as possible are missed (soft systems).

In some cases, tasks’ parameters (execution and interar-
rival times, and deadlines) are not exactly known in
advance. Because of this uncertainty, it may happen that
a task exceeds its expected execution time or has a shorter
interarrival time. In that case, interference with other tasks
must be prevented. This can be done by the provision of
temporal isolation implemented by means of dedicated
constant bandwidth servers, each one serving only one
application (Deng and Liu, 1997; Lipari and Butazzo,
2000; Caccamo and Sha, 2001) (a server is an entity used
by the scheduler to reserve a fraction of processor-time to
a task Marzario et al., 2004). In that way, a task can use
only the time assigned to it and cannot use time assigned
to others tasks. When tasks do not share resources, they
hedulability of soft real-time open dynamic ..., J. Syst. Software

mailto:ierms@criba.edu.ar
mailto:lipari@sssup.it
mailto:iesantos@criba.edu.ar
rodrigo
Inserted Text
,

T

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

2 R. Santos et al. / The Journal of Systems and Software xxx (2007) xxx–xxx

JSS 8042 No. of Pages 12, Model 5+

10 August 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

are said to be spatially isolated. If they are not spatially iso-
lated, undue priority inversions may take place and it is
desirable not only to bound their duration but also to
reduce the undesirable effects suffered by the task which
execution was postponed in spite of having a higher prior-
ity. The Clearing Fund Protocol makes all this in the frame
of an Open Dynamic System, ODS. It is open because new
applications may enter the system at any time and dynamic
because the acceptance test, even if the tasks’ parameters
are not exactly known, is performed on-line.

The main load is composed of sets of periodic or quasi-
periodic preemptible soft real-time tasks related by prece-
dence (STRP). Each STRP can be executed independently
of the others by a series of linearly ordered computational
steps on the single processor; in this way, logical concur-
rency is achieved. The tasks of one STRP may share
resources with tasks of the same or of different STRPs.
Hard real-time tasks and non-real-time tasks may, under
certain circumstances, be admitted. After this introduction,
related work is discussed in Section 2; in Section 3, the Sys-
tem Model and in Section 4 the Clearing Fund Protocol are
respectively presented; Section 5 is devoted to the manage-
ment of hard real-time STRPs sharing the processor with
soft real-time STRPs; in Section 6, experimental results
are analysed. Finally, conclusions are drawn in Section 7.

2. Related work

The problem of scheduling real-time systems with
resource constraints is addressed, for instance, in Lipari
and Butazzo (2000). When resources are shared, a lower
priority task may block the execution of a higher priority
one. This is called the priority inversion problem. In Sha
et al. (1990), the authors proposed two protocols to deal
with it, the Priority Inheritance and the Priority Ceiling
protocols. Both work under Rate Monotonic Scheduling,
a fixed priority discipline in which tasks are ordered by
decreasing rates or, what is the same, by increasing periods.
The Stack Resource Policy (Baker, 1990), is a concurrency
control protocol that bounds the priority inversion phe-
nomenon in static as well as in dynamic priority systems,
expanding the previous results. However, it does not
address the problem of scheduling ODSs.

Many algorithms designed to deal with aperiodic and
sporadic tasks have been proposed. The Polling, Deferrable
(Strosnider et al., 1995), Priority Exchange (Sprunt et al.,
1988) and Sporadic (Sprunt et al., 1989) servers, are some
examples. All these algorithms have in common that they
work with fixed priorities, in particular Rate Monotonic.
They are used in hybrid systems where there are hard
real-time periodic tasks and non-real-time aperiodic ones.
The servers are meant to reduce the mean response time
of aperiodic tasks. In order to do it, the hard real-time sys-
tem must be completely specified, in the sense that tasks’
execution times, periods and deadlines must be known.
This restriction prevents their use in ODSs, in which tasks’
parameters are not exactly known. Some other algorithms,
Please cite this article in press as: Santos, R. et al., Improving the sc
(2007), doi:10.1016/j.jss.2007.07.004
E
D

P
R

O
O

F

Slack Stealing (Ramos-Thuel and Lehoczky, 1994) and k-
schedulability (Santos et al., 2004), have a better perfor-
mance at a higher computational cost but, again, they can-
not be applied to the ODSs case.

Other related works addressing the problem are Con-
stant Bandwidth Servers with shared resources (Caccamo
and Sha, 2001), Resource Kernel (Rajkumar et al., 2000),
Cooperative Scheduling Server (Saewong and Rajkumar,
1999) and Constant Utilization and Total Bandwidth Serv-
ers (Deng and Liu, 1997), but they require a complete
knowledge of the sistem’s specification. This makes their
use impossible in applications in which the parameters
are not exactly known and resources are shared, which is
precisely the problem this paper addresses.

The Bandwidth Inheritance algorithm, BWI, proposed
in Lipari et al. (2004), extends the Constant Bandwidth
Server, CBS, algorithm (Abeni and Buttazzo, 1998) to
real-time tasks not spatially isolated, by using a technique
derived from the Priority Inheritance Protocol (Sha et al.,
1990). However, BWI presents some drawbacks. One prob-
lem is that a blocking task can capture most of the band-
width of a blocked task, causing long priority inversions
without paying any penalty. Besides, the computation of
sets of precedence constrained tasks is not considered. In
Santos and Lipari (2003) an Extended BWI was presented
to deal with precedence constrained tasks and it corrected,
in some way, the bandwidth distribution by penalizing the
blocking server. This is not enough because the blocked
server never receives back the time it has spent servicing
inherited tasks and, consequently, it may miss deadlines
that could otherwise be met.

The scheduling of resource-sharing precedence-related
tasks is addressed here by means of the three layered Clear-
ing Fund Protocol, CFP. Top down, the three layers are
the Clearing Fund, the BWI, and the CBS algorithms.
Temporal isolation is provided between spatially isolated
sets of tasks by separate constant bandwidth servers. How-
ever, priority inversions may take place between groups of
sets sharing resources. Their effect, however, is reduced by
the possibility of executing the blocked task either in its
own server or in the server of the blocking task.

The basic idea consists in the incorporation of a balanc-
ing fund similar to the clearing realized by banks at the end
of the day. When a task of low priority blocks a task of
higher priority, it migrates to the server of the blocked task
and it is executed at the priority of the blocked task. Then
the blocking server contracts a processor-time debt with
the blocked server that, if the lender demands its payment,
will have to be paid. Moreover, the mechanism reduces the
postponements in the deadlines of the servers, which is a
characteristic of the CBS algorithm. The main advantage
is that the effects of priority inversions due to the lack of
spatial isolation are reduced because the blocked STRP
can finish its execution in its own server or in the server
of the blocking STRP. This gives the option of choosing
the one with the nearest deadline making possible to meet
deadlines that would otherwise be missed. Finally a pre-
hedulability of soft real-time open dynamic ..., J. Syst. Software

rodrigo
Inserted Text
a

T

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177 Q2

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247248

250250

251

252

253

Fig. 1. c1, c7, c10, execute at servers S1, S7 and S10, respectively. Nodes and
arcs indicate tasks and precedence, respectively. Dashed lines indicate
shared resources.

R. Santos et al. / The Journal of Systems and Software xxx (2007) xxx–xxx 3

JSS 8042 No. of Pages 12, Model 5+

10 August 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

scription law for debts is incorporated: at certain instants
in the evolution of the system, called singularities (Santos
et al., 2004), the last pending task released before the singu-
larity has completed its execution. From the point of view
of pending executions, the system is as in the initial state.
Servers may update their parameters (partially consumed
budgets and postponed deadlines) and a reinitialization
of the system takes place. Consequently, debts may be for-
given. Although in an ODS paradigm, hard schedulability
guarantees are not the main target, the CFP is also able to
provide them although at the expense of certain limitations
on the acceptance of soft applications.

The main ideas of this article have been presented at the
10th International Conference on Real-Time Computing
Systems and Applications (Göteborg and Sweden, 2004)
(Santos et al., 2004). The presentations, however, were only
preprinted for the conference’s attendants and are not com-
mercially available nor can they be downloaded from the
conference’s web page. Besides, this paper enhances the ori-
ginal presentation by adding a second protocol using the
Constant Bandwidth Server Algorithm with Hard Reserva-
tion as the first layer. This modified version of the CBS
Algorithm was designed to cope with some problems that
may arise when acyclic multimedia or interactive tasks
are processed.

3. System model

The system model will now be described. The CFP is sla-
ted to schedule soft real-time STRP, defined as sets of peri-
odic or quasi-periodic preemptible soft real-time tasks
related by precedence and sharing resources. Each set can
be executed independently of the others by a series of line-
arly ordered computational steps. However, a variant of
the protocol is proposed to handle also acyclic tasks,
understood as non periodic tasks, active during long inter-
vals of time. In certain applications, and although non-
real-time in a strict sense, they are better processed if the
rate of execution does not vary much along time. Finally,
although not as efficiently as other methods, the CFP can
also handle hard real-time tasks.

Since tasks are periodic, they can be viewed as a stream
of jobs (or instances) requesting the execution of a compu-
tation on a shared processor. sip shall denote the pth instan-
tiation of si. In the model, time is considered to be slotted
and the duration of one slot is taken as the indivisible unit
of time. Slots are notated t and numbered 1, 2, . . . The
expressions at the beginning of slot t and instant t mean
the same. The execution of a task can be interrupted by a
task of higher priority. This preemption is assumed to be
possible only at the beginning of slots. An empty slot is a
slot in which there is no task ready to be executed; the pro-
cessor, then, goes idle. A singularity, s, is a slot in which all
real-time tasks released in [1, (s-1)] have been executed (San-
tos et al., 2004). Note that s-1 can be either an empty slot or
a slot in which a last pending task completes its execution. s

is a singularity even if at t = s, other tasks are released. The
Please cite this article in press as: Santos, R. et al., Improving the sc
(2007), doi:10.1016/j.jss.2007.07.004
E
D

P
R

O
O

F

concept of singularity is similar to the end of a busy period
as defined in Palencia and Gonzalez Harbour (1999).

When, in order to be executed, a task sj needs data pro-
duced by other task si, a precedence relation, notated
si � sj, is established and determines a partial ordering of
the tasks. If si � sj and there is no task sl such that
si � sl � sj, si and sj shall be called predecessor and succes-
sor, respectively.

A digraph G can be associated to the computation
(Ramammritham, 1990). Each node of the graph repre-
sents a task and there is a directed arc from the node rep-
resenting si to the node representing sj only if they are
predecessor and successor respectively.

As usual, a root is a task with no predecessor and a leaf
is a task with no successor. The level of the task in the
graph is its minimum distance to the root, measured in
arcs. Although they may share resources, tasks of one
STRP are not precedence-related to tasks of other STRPs.
A STRP starts always at a root node and ends at a leaf
node. Since the tasks that form a STRP are periodic, the
STRP itself is periodic and will have successive instantia-
tions. In what follows it will be assumed that all the tasks
of a STRP have the same period which will also be the per-
iod of the STRP.

The STRP starting at node g shall be notated cg. The
cardinality of the STRP, i.e., the number of tasks in the
STRP, shall be notated � g. Single independent tasks have
� g ¼ 1 (unitary STRPs).

Example. The set of tasks {s1,s2, . . .s10} in Fig. 1 are
arranged in three STRPs

c1 ¼ fs1; s2; . . . s6g � 1 ¼ 6

c7 ¼ fs7; s8; s9g � 7 ¼ 3

c10 ¼ fs10g � 10 ¼ 1

Tasks may share physical or logical resources, notated
Rk. A shared resource may be, for instance, a section of
memory. If the contents of the shared section are not
hedulability of soft real-time open dynamic ..., J. Syst. Software

rodrigo
Inserted Text
a

rodrigo
Inserted Text
b

rodrigo
Cross-Out

rodrigo
Inserted Text
s

rodrigo
Inserted Text
a

rodrigo
Cross-Out

rodrigo
Cross-Out

rodrigo
Cross-Out

rodrigo
Inserted Text
,

rodrigo
Inserted Text
,

T

R
O

O
F

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

Fig. 2. Open System Architecture.

4 R. Santos et al. / The Journal of Systems and Software xxx (2007) xxx–xxx

JSS 8042 No. of Pages 12, Model 5+

10 August 2007 Disk Used
ARTICLE IN PRESS
C
O

R
R

E
C

modified by the accessing tasks (e.g., a read-only portion of
code), a mutual exclusion problem does not exist. How-
ever, if the contents, for instance data, can be modified,
access must be serialized in order to maintain consistency.
The section is then called critical and its access is controlled
by the use of mutual exclusion semaphores with wait and
signal operations, notated P(Rk) and V(Rk), respectively.
When a task enters a critical zone, the semaphore is locked
and no other task can enter the zone. Successive accesses to
critical sections can be nested. In that case, it is assumed
that they are always properly nested, in the sense that it
is only possible to have sequences of the type
P(Ra)� � �P(Rb)� � �V(Rb)� � �V(Ra). The times of use of a crit-
ical section may be different for different tasks.

Example. In Fig. 1, s1 and s8 share resource R1; s3 and s6

share resource R2; s3 and s9 share resource R3; s9 and s10

share resource R4.

The relative deadlines (absolute deadline slot minus
absolute release slot) of all the tasks of a STRP are
assumed to be equal among them and equal to or greater
than the period of the server.

Two STRPs that share a common resource are said to
have an interference relation. The interference relation is
reflexive, symmetric and transitive and it is therefore an
equivalence relation partitioning the set of STRPs in equiv-
alence classes. A STRP belonging to a class must not inter-
fere with STRPs of other classes. Therefore, temporal
isolation (in the CBS sense) must be guaranteed between
STRPs of different classes.

The priority discipline to be used is Earliest Deadline
First, EDF. It is a dynamic priority discipline in which
the task to be executed at each unit of time is the one nearer
its deadline. In Liu and Layland (1973) it has been formally
proved that EDF is optimal in the sense that if a real-time
system is not schedulable under EDF is not schedulable at
all. The schedulability test boils down to verify that the sis-
tem’s utilization factor is less than, or equal to, 1. Because
of its simplicity it may be performed on-line when deciding
if a task may be accepted or not. If, because the tasks’
parameters are not exactly known in the accepting process,
while executing, the task actually exceeds the processing
time alloted to it, its deadline may be missed but it certainly
will not affect the execution of other tasks, isolated by their
own servers.
 N

330

331

332

333

334

335

336

337

338
U4. The Clearing Fund Protocols

The Clearing Fund Algorithm, CFA, is the third layer of
a three layered protocol. The second layer is the BWI algo-
rithm. There are two versions of the first layer, the CBS
algorithm: plain CBS and CBS with hard reservation,
CBSHR. Consequently, there are two versions of the pro-
tocol, CFP and CFPHR. As illustrated in Fig. 2 the proto-
cols run in an Open System Architecture.
Please cite this article in press as: Santos, R. et al., Improving the sc
(2007), doi:10.1016/j.jss.2007.07.004
E
D

P
4.1. Open system architecture

The Open System Architecture resembles the one pro-
posed by Deng and Liu (1997), in which:

(1) Each CBS is considered to be a virtual processor and
holds only one STRP.

(2) Each virtual processor has its own bandwidth, which
is the product of its utilization factor times the band-
width of the real processor, e.g., in Mflops.

(3) There are two distinct schedulability architectural
levels: STRPs must be scheduled in the virtual proces-
sor and virtual processors must be scheduled in the
real processor.

(4) In case that a level in the STRP (its distance to the
root) has more than one task, the tasks that do not
share resources with other tasks outside the STRP
are executed first; the others execute in reverse order
of their declared execution time. The rationale behind
this rule is that tasks imposing shorter delays to other
tasks are taken out of the way first.

(5) Tasks can share resources with tasks of the same or of
different STRPs, i.e., executed in the same or in differ-
ent virtual processors, respectively.
4.2. How CFP improves BWI

A well known phenomenon of priority inversion may
take place in the case of tasks sharing a resource. It hap-
pens when a lower priority task is executed instead of a
higher priority one because of the lower priority task hav-
ing accessed first, and not being able to release, the shared
resource. Note that inversions may exist in a priority driven
system regardless of the scheduling discipline used. In
inheritance type protocols, the lower priority task inherits
hedulability of soft real-time open dynamic ..., J. Syst. Software

T

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

Fig. 3. CBS with and without Hard Reservation.

R. Santos et al. / The Journal of Systems and Software xxx (2007) xxx–xxx 5

JSS 8042 No. of Pages 12, Model 5+

10 August 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

the priority of the higher one which is then said to be
blocked. Combined with a proper use of semaphores
guarding the entrance to the shared resources, the time that
a task can be blocked may be bounded, and that is pre-
cisely what the BWI algorithm does. However, although
BWI provides a bounding mechanism, it does not provide
a compensating one such that the lower priority task
(inheritor) pays back to the higher priority one the time
spent in executing under a priority inversion.

CFP improves BWI by converting the inheritor into a
debtor; it does so by incorporating a new queue and a
dynamic variable to each server. The variable is incre-
mented by one for each slot that the STRP is executed out-
side the server contracting a debt, and decremented by one
for each slot used to pay back the debt. The blocked STRP
that has been postponed in its execution, is enqueued in the
high priority queue of the server of the blocking STRP.
Depending on which is the nearest deadline, it may be exe-
cuted in its own server or in the server of the blocking
STRP until the debt is paid or prescribes in a singularity.
A singularity means that the last pending task released
before the singularity has completed its execution; collect-
ing debts is no longer necessary for the lenders and debts
may therefore prescribe and be cleared.

In the CFA, each STRP is assigned to a dedicated peri-
odic server. Each server, Sg, is specified by two parameters:
Qg and Pg, where Qg is the budget, time available for exe-
cution, and Pg is the period. The server is allowed to exe-
cute at least during Qg out of every Pg units of time. The
period of the server is assumed to be shorter or equal to
the period of the STRP it hosts.

The relation between Qg and Pg is the utilization factor
of the server. Since there is only one real processor in the
system, the total utilization factor can not be greater than
1, that is 8i

P
Qi=P i 6 1.

In the CFA, the servers have three dynamic variables:
qg, dg and mg,f. The first variable is the current available
budget and keeps track of the portion already consumed.
The second variable, dg, is the server’s absolute deadline,
that is the number of the slot or, what is the same, the
instant before which the task is expected to be processed.
The third variable, mg,f, counts the borrowed budget and
keeps track of the debts contracted by the server Sg with
the server Sf of higher priority.

Each server has two STRP queues, each one with a dif-
ferent priority. The higher priority one is for external
STRPs; it holds the blocked STRP after an inheritance
has taken place. The lower one is for the STRP allocated
to the server. Initially qg is equal to Qg and is decremented
by one for each unit of time the server executes. When it
reaches zero, the budget is recharged and the deadline is
postponed.

The CBS presents some drawbacks when serving acy-
clic tasks, understood as non-periodic non-real-time tasks
that are active for long intervals of time, covering there-
fore many periods of the sever. This is particularly nega-
tive for multimedia or for interactive tasks since it may
Please cite this article in press as: Santos, R. et al., Improving the sc
(2007), doi:10.1016/j.jss.2007.07.004
E
D

P
R

O
O

F

lead to a loss of quality of service and interactivity. The
main cause is the fact that in CBS, servers, recharged
immediately after being exhausted, can be used immedi-
ately within the same period if the server’s deadline,
although postponed, is still the earliest. This leads to a
temporal over execution that may be followed by a star-
vation altering the rate of the multimedia or the interac-
tive application.

IRIS (Marzario et al., 2004) was proposed to solve this
problem. Besides the budget and the period parameters of
the server, a recharging time, ri, is set in such a way that
under no circumstances the server that exhausts its budget
may execute again until ri. In IRIS, ri is the beginning of
the next period of the server and in the interval between
exhausting its budget and been able to use it again, the ser-
ver is said to be in the recharging state. The method is
called hard reservation and the modified CBS algorithm
is notated CBSHR.

In CBSHR, servers have three states: idle (no task is
demanding execution within the server), active (at least
one task is demanding execution) or recharging (there is
at least one task demanding execution but the server has
consumed his budget). It may happen, however, that being
no active servers in the system and some of them being in
the recharging state, deadlines are missed. To avoid this,
a simple rule to advance the activation instant is included.

Example. Suppose there is only one server in the system
with parameters (2,6) and a task requires an execution time
of 4. Following CBS, the temporal evolution of the system
will be the one shown in Fig. 3a. Following CBSHR
instead, the evolution will be as shown in Fig. 3b. As can be
seen, CBS produces an over execution followed by a
starvation while CBSHR keeps processing the application
at a constant rate.
4.3. Rules

The rules of the two versions of the Clearing Fund Pro-
tocol will now be presented.
hedulability of soft real-time open dynamic ..., J. Syst. Software

T

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

6 R. Santos et al. / The Journal of Systems and Software xxx (2007) xxx–xxx

JSS 8042 No. of Pages 12, Model 5+

10 August 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

4.3.1. CFP (CFA/BWI/CBS)

Rules A–C correspond to CBS, rules D and E corre-
spond to BWI and rules F to I are CFA specific:

A. When at time agh the hth instantiation of cg arrives,
the server Sg checks the condition qg 6 Qg(dg � agh)/
Pg. If it holds, the current pair (qg,dg) stands, other-
wise a new pair qg :¼ Qg and dg :¼ agh + Pg is com-
puted to be used.

B. If server Sg executes for Dt units of time, the budget is
decremented accordingly, that is qg :¼ qg � Dt.

C. Server Sg is allowed to execute while qg > 0. When the
budget is depleted, a new pair (qg,dg) is computed: the
absolute deadline is postponed to dg = dg + Pg and
the budget is recharged to qg :¼ Qg. Since the sched-
uling deadline has changed, the EDF queue of the
servers may have to be reordered and preemptions
may occur.

D. If task si 2 cg is blocked when accessing a resource Rk

that is locked by task sj 2 cl, then sj is added to the
queue of the server Sg. If, in turn, sj is currently
blocked on some other resource, then the chain of
blocked tasks is followed, and server Sg adds all the
tasks in the chain to its queue, until it finds a non
blocked task. In this way, each server can have tasks
belonging to more than one STRP, but only one of
these tasks is not blocked.

E. If there is more than one task blocked in Rk, one of
them is unblocked when the resource is released. All
the servers that added it to their list must discard it.

F. After each singularity s, when a new instance of cg

arrives, the server Sg updates its variables: qg :¼ Qg

and dg :¼ agh + Pg.
G. If sj 2 cl allocated to server Sl executes inside server Sg

postponing the execution of STRP cg, then cg is incor-
porated to the high priority queue of server Sl with a
priority higher than that of cl. cg is in the queue of both
servers Sl and Sg and executes in the one with the clos-
est relative deadline. Until the debt is paid or forgotten,
each time it is released, Cg will remain on both queues.

H. For each unit of time that cg, allocated to server Sl,
executes inside server Sg postponing the execution
of STRP cg, the variable ml,g is incremented by one
unit. It keeps track of the debt contracted by debtor
Sl with lender Sg.

I. For each unit of time that cg, allocated to server Sg, is
executed inside server Sl after being blocked by cl, the
variable ml,g is decremented by one unit. The debt is
being paid and the execution can go on until ml,g

reaches value 0.

The first three rules, corresponding to the CBS mecha-
nism, provide the important properties of temporal isola-
tion and hard schedulability guarantee. However, a
transient overload produced by an increment in the execu-
tion time of a task produces a postponement in its deadline.
While this mechanism guarantees that the overload does
Please cite this article in press as: Santos, R. et al., Improving the sc
(2007), doi:10.1016/j.jss.2007.07.004
E
D

P
R

O
O

F

not affect other tasks, it penalizes the server for the rest
of the life of the system by differentiating the deadline of
the STRP from the deadline of the server. The idea is to
establish a prescription to this penalization whenever a sin-
gularity appears in the system. In this way, successive post-
ponements in the deadlines of a CBS are forgotten and new
values for the dynamic variables can be computed as if an
initialization of the system is taking place; this is done by
means of rule F. Rules D and E implement the Bandwidth
Inheritance among servers when a STRP is blocked. The
other rules describe the balancing mechanism when a debt
is contracted and paid later.

The performance of CFP will generally improve the per-
formance of BWI. To begin with, in order to complete its
execution, a blocked task will never have less time, as
proved in the following lemma:

Lemma 1. A task blocked under CFP never has less

available time to complete its execution than under BWI.

Proof. From rules D and E, under BWI a blocked task can
resume its execution only when its server has no more
blocking tasks in its ready queue and has the earliest dead-
line among all active servers (giving it the highest priority).
Under CFP, instead, rules G–I guarantee that a blocked
task may execute on its own server or in the debtor server,
whichever has the higher priority. In this way, the time
available to complete its execution may be increased but
never reduced. h

As a consequence, a schedule under CFP will not pro-
duce more deadlines’ misses than a schedule under BWI,
and it may produce less. This is because, with the exception
of the case in which rules H and I are not used because
debts are cancelled at singularities, the blocked task will
have its own time plus more time available to complete
its execution. Having more time available, the number of
deadlines’ misses cannot be increased and, on the contrary,
it may be reduced.

Example. In order to illustrate the main characteristics of
the CFA, an example is given. In Figs. 4 and 5, the
evolution of a system operating under the BWI/CBS and
the CFA/BWI/CBS protocols in the interval [1, 30] are
respectively depicted. The explanation about how the rules
are applied is restricted to the interval [1,6]. In Appendix,
however, the explanation is extended to the interval [1, 30].
The system has three servers: S1 (2, 6), S2 (6,18) and S3

(8,24). Each one serves a task with period equal to the
server-period and worst case execution time equal to the
budget of the server. The first two servers share a critical
section on resource R, S1 for the duration of its execution
time and S2 for the first five slots of its execution time.

The rules of the BWI/CBS protocol as applied in the
interval [1, 6] are:

– t = 1. s21 and s31 arrive. Since d2 = 19 < d3 = 25 holds,
the processor is assigned to S2 (EDF policy). R is locked.
hedulability of soft real-time open dynamic ..., J. Syst. Software

T

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

Fig. 4. System evolution under BWI. ", task arrival; d, new deadline. In
the three axes the activity of each server is depicted.

Fig. 5. System evolution under CFA. ", task arrival; d, new deadline. In
the three axes the activity of each server is depicted.

R. Santos et al. / The Journal of Systems and Software xxx (2007) xxx–xxx 7

JSS 8042 No. of Pages 12, Model 5+

10 August 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C– t = 2. s11 arrives. It cannot access R. Since s11 has the

earliest deadline, s21 is transferred to S1 (Rule D) and
executed there.

– t = 4. S1’s budget is depleted and recharged to 2. Its
deadline is postponed to 14 (Rule C).

– t = 6. S1’s budget is depleted and recharged to 2. Its
deadline is postponed to 20 (Rule C). s21 frees R but
now, d2 = 19 < d1 = 20 holds. s21 returns to S2 (EDF
policy) and finishes its execution there.

The rules of the CFA/BWI/CBS protocol as applied in
the interval [1, 6] are:

– t = 1. s21 and s31 arrive. Since d2 = 19 < d3 = 25 holds,
the processor is assigned to S2 (EDF policy). R is locked.

– t = 2. s11 arrives. It cannot access R. Since S1 has the
earliest deadline, s21 is transferred to S1 (Rule D) and
executed there. For every slot executed by s21 in S1,
m21 is incremented in one unit (Rule H). s11 is incorpo-
rated to the high priority queue of S2 (Rule G).

– t = 4. S1’s budget is depleted and recharged to 2. Its
deadline is postponed to 14 (Rule C). m21 is equal to 2
(Rule H).

– t = 6. S1’s budget is depleted and recharged to 2. Its
deadline is postponed to 20 (Rule C). m21 is equal to 4
(Rule H). s21frees R but now, d2 = 19 < d3 = 20 holds.
Please cite this article in press as: Santos, R. et al., Improving the sc
(2007), doi:10.1016/j.jss.2007.07.004
E
D

P
R

O
O

F

s21 returns to S2. s11 starts execution in S2 (Rule G)
and locks R. For each slot executed in S2, m21 is decre-
mented in one unit (Rule I).

As can be seen, executing under BWI/CBS, in the inter-
val [1, 30] s1 misses the deadlines in the first four instantia-
tions. This does not happen if CFA/BWI/CBS is used.

4.3.2. CFPHR (CFA/BWI/CBSHR)

For the CFP to work under the hard reservation
scheme, rule C has to be modified.

C. Server Sg is allowed to execute while qg > 0. When the
budget is depleted, a new pair (qg,dg) is computed: the
absolute deadline is postponed to dg = dg + Pg and
the server goes into a recharging state. At
rg = Pg � dg the budget is recharged to qg :¼ Qg and
the server becomes active again. In case no server is
active and there is at least one server in the recharging
state, the activation time for the servers can be
advanced by determining advance = min {ri � t} for
every server in the recharging state. Then update
the activation time of the servers: ri = ri � advance.

This modification does not alter the basic properties
explained in the previous section. It must be noticed, how-
ever, that under hard reservation a server may not post-
pone its deadline more than once per period. Moreover,
the maximum debt that an inheritor server may contract
in a period is bounded by the budget of the lender server,
as proved in the following theorem.

Theorem 2. Under CBSHR the maximum debt a server Si

can contract with server Sg is limited to Qg per period.

Proof. A server Sg executing a blocking task can execute
up to Qg units of time before suspending itself and passing
to the recharging queue. Only at the reactivation time the
server will be able to continue with the execution. Thus,
server Si can only contract a debt of Qg units of time out
of every Pg. h

The previous theorem does not bound the total debt a
server may contract but the rate at which it does it. In fact,
the critical section of the blocking task may be so large
compared to the period of the blocked one that it may take
several periods of the lender to execute it.

In Fig. 6, the temporal evolution of the previous exam-
ple is shown and explained.

At t = 4, the budget of S1 is depleted and there is a dead-
line postponement. By the modified Rule C, S1 will not be
active until t = 14. As S2 is the server with the nearest dead-
line, the scheduler dispatches it and continues with the exe-
cution of the critical section. The debt contracted is mig = 2.
As soon as task 2 releases the semaphore at t = 6, s1 col-
lects its debt by executing in S2. At t = 14, S1 becomes
active again and has the higher priority so task 1 can be
executed in it.
hedulability of soft real-time open dynamic ..., J. Syst. Software

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

Fig. 6. System evolution under CFAHR. ", task arrival; d, new deadline.
In the three axes the activity of each server is depicted.

8 R. Santos et al. / The Journal of Systems and Software xxx (2007) xxx–xxx

JSS 8042 No. of Pages 12, Model 5+

10 August 2007 Disk Used
ARTICLE IN PRESS
As can be seen, there are some differences between the
temporal evolutions under both protocols. The debt con-
tracted by S2 with S1 in the first period is only of 2 units
of time instead of 4 and, as a consequence, at t = 8, server
S1 resumes the execution of task 1.

In general, the hard reservation approach may cause the
loss of more deadlines than the simple one. This is because,
once their budgets have been depleted, the servers are
suspended until the next activation instant if other servers,
even of lower priority, are in the active state and may
execute. This is the price to pay for ensuring a more con-
stant rate in multimedia applications. The designer may
chose the proper protocol having in mind the intended
applications.
 T 684

685

686

687

688

689

690

692692

693

694

695

696

697

698

700700
U
N

C
O

R
R

E
C5. Catering for HRT STRPs

As it was shown in the previous section, the Clearing
Fund Protocol is specially apt to manage an Open
Dynamic System of soft real-time STRPs. However, it
may be used to schedule hard real-time systems, although
with two caveats:

(i) If it handles only hard tasks, its use is not as efficient
as for instance Rate Monotonic plus Priority Inheri-
tance and Ceiling protocols.

(ii) If it handles a mix of hard and soft subsystems, the
price to be paid is that a complete spatial isolation
must exist between both subsystems.

If a soft application shares resources with a hard one,
meeting hard deadlines cannot be guaranteed anymore.
If, on the contrary, spatial isolation is preserved, the hard
subsystem will meet all its time-constraints while the soft
subsystem will receive the second best treatment.

Having that in mind, some definitions about blocking
chains must be given. Then some properties of the algo-
rithm used in determining the HRT schedulability will be
proved. Based on them, the actual method to compute
the duration that an HRT STRP may suffer is given. With
them, the schedulability of the HRT subsystem may be
tested.
Please cite this article in press as: Santos, R. et al., Improving the sc
(2007), doi:10.1016/j.jss.2007.07.004
E
D

P
R

O
O

F

5.1. Blocking chains

A blocking chain, notated Hi = {sI,RI,sII,RII, . . . ,sk,
Rk, . . . ,Rz�1,sz} is a set of tasks and shared resources
ordered according to the following rules:

– s1 = si

– Tk 6 Tk+1

– sk and sk+1 share the resource Rk.
– Accesses are of type

P(Rk�1)� � �P(Rk)� � �V(Rk)� � �V(Rk�1).
– sk 2 cg) 9= sh21,2,. . . z�k 2 cg

Therefore:

(1) The subscript of the chain identifies its first task in the
graph as defined in Section 3.

(2) Tasks are ordered by monotonically increasing
periods.

(3) Each pair of adjacent tasks share the resource in
between.

(4) Accesses are properly nested (the higher subscript
inside the lower one).

(5) Only one task of each STRP belongs to a given block-
ing chain.

It must be noted that, according to the previous rules, sII

will be the first task of a chain HII, which is a subchain of
HI.

It is assumed that because of the precedence relation, a
successor cannot start its execution until its predecessor fin-
ishes its execution. Therefore, although they can share a
resource, no blocking may take place between tasks
belonging to the same STRP.

Example. In the graph of Fig. 1, three blocking chains can
be identified:

H 1 ¼ hs1;R1; s8i
H 3 ¼ hs3;R3; s9;R4; s10i
H 9 ¼ hs9;R4; s10i

Note that H9 is a subchain of H3. Also that, although
sharing R2, s6 can not block s3 and therefore there is not
H2.

Each task can have more than one blocking chain. The
hth blocking chain of task si is notated Hh

i .

Example. In Fig. 7

H 1
2 ¼ hs2;R1; s4;R2; s5i

H 2
2 ¼ hs2;R1; s4;R3; s6i

H 3
2 ¼ hs2;R1; s7i

H 1
3 ¼ hs3;R4; s7i

H 1
4 ¼ hs4;R2; s5i

H 2
4 ¼ hs4;R3; s6i
hedulability of soft real-time open dynamic ..., J. Syst. Software

T

701

703703

704

705

706

707

708

710710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

Fig. 7.Q3

R. Santos et al. / The Journal of Systems and Software xxx (2007) xxx–xxx 9

JSS 8042 No. of Pages 12, Model 5+

10 August 2007 Disk Used
ARTICLE IN PRESS
R
E
C

Example. In Fig. 8

H 1
1 ¼ hs1;R1; s2i

H 2
1 ¼ hs1;R1; s3i

H 1
2 ¼ hs2;R1; s3i

Ci denotes the set of tasks of all the blocking chains or
subchains starting at si but excluding it. C(cg) denotes the
union of all Cijsi 2 cg and represents, therefore, the set of
tasks that may interact with the STRP cg.

Example. In Fig. 7

C2 ¼ fs4; s5; s6g
C3 ¼ fs7g
C4 ¼ fs5; s6g
Cðc1Þ ¼ C2

[
C3 ¼ fs4; s5; s6; s7g

Cðc4Þ ¼ fs5; s6g

Cg,l denotes the set of tasks belonging to Cg that may be
blocked by cl such that the last task in the blocking chain
belongs to cl.

Example. In Fig. 1, C1,7 = {s1,s3}, C1,10 = {s3}. In Fig. 7,
C1,4 = {s2}, C1,5 = {s2}, C1,7 = {s2,s3}. In Fig. 8,
C1,2 = {s1}, C1,3 = {s1}.
 R

757

758

759

760

761

762

763

764

765

766

767
U
N

C
O5.2. Properties

Only properties that modify, or are added to, the prop-
erties of the CBS and the BWI algorithms presented in
Abeni and Buttazzo (1998) and Lipari et al. (2004) shall
be proved.

Lemma 3. Only one task of cl can block cg in each instance.

Proof. Assume that cg, in the present instance, is blocked a
first time by a task belonging to cl. After that blocking
Fig. 8.

Please cite this article in press as: Santos, R. et al., Improving the sc
(2007), doi:10.1016/j.jss.2007.07.004
E
D

P
R

O
O

F

ceases, cg will execute, either in Sg or in Sl, with higher pri-
ority than cl and therefore cannot be blocked again by cl in
the present instance. h

Lemma 4. A STRP can be blocked on the same resource

more than once.

Proof. Although, according to Lemma 1, only one task of
each STRP can block another STRP, nothing precludes
that two tasks of different STRPs block another STRP
on the same resource. h

The interference time of STRP cg, notated Ig, is defined
as the total blocking time that cg may suffer in the worst
case. It will be the sum of the longest blocking times that
each of its tasks may suffer. Because of the precedence rela-
tions, tasks of one STRP cannot block tasks of the same
STRP or, in other words, a STRP cannot block itself.

Lemma 5. Each STRP containing tasks belonging to C(cg)

can contribute to Ig for at most the longest execution among

the critical sections shared by both STRPs.

Proof. Immediate from Lemma 3 h

However, a STRP may be successively blocked by sev-
eral other STRPs. Obviously, only tasks belonging to
C(cg), as defined in Subsection 5.1, can interfere and Ig

results to be the maximum time that those tasks can exe-
cute inside Sg for each instantiation of cg.

Bk(Rk�1) shall denote the longest time that task sk can
spend in the critical section of resource Rk�1, blocking
therefore tasks sI,sII , . . .sk�1. BðHh

i Þ ¼
P

kBkðRk�1Þ is the
sum of the longest times that each task of the chain H h

i

can block task si. Of all the Hh
i chains, the one producing

the maximum BðH h
i Þ shall be chosen. Ig will be the sum

of the maximums for each task of the STRP.
768

769

770

771

772

773

774
5.3. Computation of the interference time

An algorithm to compute the interference time is pre-
sented in pseudo code. It is based on the previous defini-
tions and lemmas. The computation is made for each
STRP. Two sets are passed as parameters to the algorithm:
G = {Cgl, l 5 g} and W ¼ fWl

gi; 8i; lg
The algorithm presented in pseudo code computes Ig,

the interference time for STRP cg, exploring all the possible
blocking chains. They are grouped according to the STRP
of the last task. In this way all the blocking chains that end
in cl are considered together (lines 6–9). In order to do this,
for each task si 2 cg that can be blocked directly or indi-
rectly by a task in cl, it computes the maximum blocking
time.

Since cl can block cg only once, the longest blocking
chain is considered (line 8). When all the tasks si that can
be blocked by cl have been considered, the maximum
blocking time computed in line 8 is added to Ig (line 10)
and a new blocking STRP is considered (lines 3–11). When
hedulability of soft real-time open dynamic ..., J. Syst. Software

rodrigo
Inserted Text
τ_2, τ_3 and τ_4 have three, one, two blocking chains, respectively.

rodrigo
Inserted Text
τ_1 and τ_2 have two and one blocking chains, respectively

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

10 R. Santos et al. / The Journal of Systems and Software xxx (2007) xxx–xxx

JSS 8042 No. of Pages 12, Model 5+

10 August 2007 Disk Used
ARTICLE IN PRESS
all the STRPs have been considered Ig has the interference
time that cg may suffer.

6. Experimental results

A comparative performance evaluation of the CFA/
BWI/CBS and the CFA/BWI/ CBSHR protocols against
BWI was carried out. Since BWI was taken as benchmark
and it cannot handle STRPs of precedence related tasks,
the evaluation was performed on sets of unitary STRPs.

Algorithm 1. Interference Time Computation Interfer-
ence_Computation (G, W)

1 {
2 Ig = 0;

3 for each Cgl 2 G
4 {
5 block = 0;
6 for each si 2 Cgl

7 {
8 block ¼ maxðmaxhðBðHhiÞjHhi 2 Wl

gi
Þ;blockÞ;

9 }
10 Ig = Ig + block;
11 }
T

847

848

849

850

851

852

853

854

855

856

857

858

50 55 60 65 70 75 80 85 90 95 100
10—7

10—6

10—5

10—4

10—3

10—2

10—1

Utilization Factor

AM
D

R

Fig. 9. Simulation Results, o – BWI, + – CFAHR, * – CFA. Zero values
have no representation on logarithmic scale.
U
N

C
O

R
R

E
C

6.1. Setting the simulations

About one hundred thousand sets composed of 10 uni-
tary STRPs each were run. The STRPs’ periods were ran-
domly generated with uniform distribution in the sample
space [10,20,30, . . . , 100]. The set utilization factor was
forced to take values in the range [0.54,0.55, . . . , 0.99]. Nine
of the ten STRPs (each one already with its defined period)
were selected at random. Each one was assigned an execu-
tion time to produce a STRP utilization factor randomly
selected in the interval [0.03, 0.10] of the set of STRPs’ uti-
lization factor. The execution time of the tenth STRP was
adjusted to produce the final sought set utilization factor.
Also, for each set, the following parameters were randomly
generated: (1) The number of shared resources (none, 1, 2
or 3). (2) Which STRPs access a shared resource. (3) For
how long each sharing STRP uses the resource and at what
instant it access it.

For each STRP in the system a CBS server with budget
and period equal to the worst case execution time and per-
iod of the STRP, respectively, were assigned. Each set was
run for about ten thousand slots, a run time long enough to
produce a good variety of inheritances and preemptions
among the servers holding the STRPs. Each generated set
of ten STRPs was run under the three protocols. Whenever
a task missed a deadline, a counter was incremented; when
the run of the system was finished, this counter was stored
together with the utilization factor of the system. Finally, a
factor of demerit was computed. It is the Average Missed
Deadline Ratio (AMDR), defined as the ratio between
Please cite this article in press as: Santos, R. et al., Improving the sc
(2007), doi:10.1016/j.jss.2007.07.004
E
D

P
R

O
O

F

the sum of all the missed deadlines associated to a certain
utilization factor and the number of systems run with that
utilization factor. A metric for the QoS of the methods
could be the reciprocal of the AMDR.

6.2. Results obtained

Results (AMDR vs. UF), plotted in a semilogarithmic
graph, are presented in Fig. 9.

BWI, CFAHR and CFA, in that order, start losing
deadlines at utilization factors of approximately 0.53,
0.57 and 0.73, respectively. As could be expected, the
miss-ratio increases with utilization factors. For UF =
0.99, the miss-ratios differ roughly by one and two orders
of magnitude.

As the difference between BWI and the other two proto-
cols is of one and two orders of magnitude, the results are
plotted in a semilogarithmic graph.

6.3. Results explained

The results obtained sustain the conclusions drawn from
the examples. The BWI has the higher AMDR because the
inheritance procedure has no compensating mechanism for
the lender server; since, according to the CBS rules, the
servers recharge their budget and postpone their deadline
everytime the budget is depleted, the deadline of the server
is soon very different (much later) than the deadline of the
STRP, producing a degradation of the servers’s priority.
For the CFA/BWI/CBSHR case, things improve consider-
ably. There is a compensating mechanism but the restric-
tion on the activation of the server prevents sometimes
the immediate restitution of the bandwidth consumed.
Finally, the CFA/BWI/CBS has the best performance of
the three protocols. This is due to the fact that there is
no restriction for the servers to execute if there are ready
tasks in their queues.
hedulability of soft real-time open dynamic ..., J. Syst. Software

T

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

R. Santos et al. / The Journal of Systems and Software xxx (2007) xxx–xxx 11

JSS 8042 No. of Pages 12, Model 5+

10 August 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

The AMDR for the BWI/CBS protocol at the higher uti-
lization factor is approximately 0.1, which is quite good
considering that it is a simple straightforward protocol. In
the CFA/BWI/CBS case, things are much better because
the ratio of missed deadlines is only slightly bigger than
0.001, certainly a good result specially for applications in
which although some deadlines may be missed, it is better
to lose as few as possible. CFA/BWI/CBSHR has a general
performance in between the other two protocols and it
would be useful in cases in which more uniform rates of exe-
cution of STRPs with long total execution times, necessarily
partitioned in successive smaller budgets, are convenient.

7. Conclusions

In this paper, the Clearing Fund Protocol was pre-
sented. It is a three layered protocol, based on the CBS
and the BWI algorithms, to schedule soft real-time STRPs
in an open and dynamic environment. In the context of this
paper, they are defined as sets of precedence-related shar-
ing-resources tasks, each one executed in its own constant
bandwidth server. A STRP may consist of only one task
(unitary STRPs). The main idea behind the protocol is
the facility of executing a blocked STRP either in its own
server or in the server of the blocking STRP, whichever
has the nearest deadline. For accounting purposes, a coun-
ter in the blocking server keeps tab of the time its STRP
spent in the higher priority server. This acquired debt must
be paid on demand but it can also be cleared at singulari-
ties, defined as instants in the evolution of the system in
which the last pending task is executed. At that time, bud-
gets and deadlines are restored to their original values,
reinitializing the whole system with a clear start.

Extensive simulations were performed to obtain a com-
parative evaluation of the proposed protocols against BWI.
The metric used is a factor of demerit, the Average Missed
Deadlines Ratio, defined as the ratio between the number
of deadlines that were missed while running different sets
of STRPs with the same utilization factor, and the number
of jobs generated in those sets. The results favour the two
variants of the Clearing Fund Protocol, CFP and CFPHR,
by two and one order of magnitude, respectively.

Acknowledgements

The authors express their sincere appreciation to the
anonymous referees for all their comments and sugges-
tions, which have substantially improved the paper.

Appendix

The example presented in Fig. 4 is now described com-
pletely. The rules of the BWI algorithm as applied in the
interval [1,30] are:

– t = 1. s21 and s31 arrive. Since d2 = 19 < d3 = 25 holds,
the processor is assigned to S2 (EDF policy). R is locked.
Please cite this article in press as: Santos, R. et al., Improving the sc
(2007), doi:10.1016/j.jss.2007.07.004
E
D

P
R

O
O

F

– t = 2. s11 arrives. It cannot access R. Since s11 has the
earliest deadline, s21 is transferred to S1 (Rule D) and
executed there.

– t = 4. S1’s budget is depleted and recharged to 2. Its
deadline is postponed to 14 (Rule C).

– t = 6. S1’s budget is depleted and recharged to 2. Its
deadline is postponed to 20 (Rule C). s21 frees R but
now, d2 = 19 < d1 = 20 holds. s21 returns to S2 (EDF
policy) and finishes its execution there.

– t = 7. s11 starts execution in S1 (EDF policy). R is
locked.

– t = 8. s12 arrives. s11 keeps executing in S1 but it misses
its deadline.

– t = 9. S1’s budget is depleted and recharged to 2. R is
unlocked. Its deadline is postponed to 26 (Rule C). s31

starts executing in S3 because d3 = 25 < d1 = 26 holds
(EDF policy).

– t = 14. s13arrives, and s12 misses its deadline. Rule A is
applied and S1 keeps its parameters unchanged.

– t = 16. s31 finishes and S3’s budget is recharged to 8 and
its deadline postponed to 49 (Rule C).

– t = 17. S1 is the only active server so it begins to execute
s12.

– t = 19. S1’s budget is depleted and recharged to 2. Its
deadline is postponed to 32 (Rule C). s13 misses its dead-
line. s14 arrives and s13 begins its execution. R is locked.
s22 arrives, S2’s parameters are updated (Rule A), bud-
get recharged to 6 and deadline postponed to 37.

– t = 21. S1’s budget is depleted and recharged to 2. R is
unlocked. Its deadline is postponed to 38 (Rule C).
d2 = 36 < d1 = 38 so S2 has the earliest deadline and
begins to execute s22. R is locked.

– t = 25. s32 arrives, S3’s parameters are kept unchanged
(Rule A). R is unlocked.

– t = 26. s22 finishes its execution, S2’s budget is depleted
and recharged to 6 and its deadline postponed to 55.
s14 misses its deadline. s15 arrives. Rule A is applied
and S1 keeps its parameters unchanged. d1 = 38 < d3 =
49, by EDF, the processor is granted to S1 and s14

executes. R is locked.
– t = 28. S1’s budget is depleted and recharged to 2 and its

deadline postponed to 44. R is unlocked. d1 = 44 <
d3 = 49 and S1 is granted the processor by EDF and
s15 executes. R is locked.

– t = 30.S1’s budget is depleted and recharged to 2 and its
deadline postponed to 50. s1 meets its fifth deadline after
loosing the first four. R is unlocked.

In Fig. 5 the evolution of the same example is presented
for the case of the CFA. The rules applied in the interval [1,
30] are:

– t = 1. s21 and s31 arrive. Since d2 = 19 < d3 = 25 holds,
the processor is assigned to S2 (EDF policy). R is locked.

– t = 2. s11 arrives. It cannot access R. Since S1 has the
earliest deadline, s21 is transferred to S1 (Rule D) and
executed there. For every slot executed by s21 in S1,
hedulability of soft real-time open dynamic ..., J. Syst. Software

T

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

12 R. Santos et al. / The Journal of Systems and Software xxx (2007) xxx–xxx

JSS 8042 No. of Pages 12, Model 5+

10 August 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

m21 is incremented in one unit (Rule H). s11 is incorpo-
rated to the high priority queue of S2 (Rule G).

– t = 4. S1’s budget is depleted and recharged to 2. Its
deadline is postponed to 14 (Rule C). m21 is equal to 2
(Rule H).

– t = 6. S1’s budget is depleted and recharged to 2. Its
deadline is postponed to 20 (Rule C). m21 is equal to 4
(Rule H). s21 frees R but now, d2 = 19 < d3 = 20 holds.
s21 returns to S2. s11 starts execution in S2 (Rule G)
and locks R. For each slot executed in S2, m21 is decre-
mented in one unit (Rule I).

– t = 8. s11 finishes on time, R is unlocked. m21 is equal to 2
(Rule I). s12 arrives and begins its execution in S2 (Rules
G–I). R is locked. S1’s parameters are kept unchanged
(Rule A).

– t = 10. s12 meets its deadline. m21 is equal to 0, s1 is
removed from S2 high priority queue. s21 continues its
execution in S2 (Rules G–I).

– t = 11. S2’s budget is depleted and recharged to 6. Its
deadline is postponed to 37. (Rule C). S3 is the only
active server so s31 begins its execution.

– t = 14. s13 arrives and S1’s parameters are kept
unchanged (Rule A). d1 = 19 < d3 = 25 so S1 is granted
the processor (EDF policy) and s13 begins its execution.
R is locked.

– t = 16. s13 finishes and S1’s budget is recharged to 2 and
its deadline postponed to 26 (Rule C). R is unlocked. S3

is the only active server and continues with the execution
of s31.

– t = 19. s21 arrives, S2’s parameters are kept unchanged.
d3 = 25 < d2 = 37 so S3 is granted the processor (EDF
policy) and s31 continues executing.

– t = 20. s14 arrives, S1’s parameters are kept unchanged.
d3 = 25 < d1 = 26 so S3 is granted the processor (EDF
policy) and s31 continues executing.

– t = 21. S3’s budget is depleted and recharged to 8, its
deadline is postponed to 49 (Rule C).
d1 = 26 < d2 = 37 so S1 is granted the processor (EDF
policy) and s14 begins its execution. R is locked.

– t = 23. s14 finishes, S1’s budget is depleted and recharged
to 2 and its deadline postponed to 31 (Rule C). S2 is the
only active server so s22 begins its execution.

– t = 25. s32 arrives, S3’s parameters are kept unchanged
(Rule A).

– t = 26. s15 arrives. Rule A is applied and S1 keeps its
parameters unchanged. d1 = 31 < d2 = 37 < d3 = 49,
by EDF, the processor is granted to S1 and s15 tries to
lock R. It cannot access R. s22 is transferred to S1 (Rule
E) and executed there. For every slot executed by s22 in
S1, m21 is incremented in one unit (Rule H). s1 is incorpo-
rated to the high priority queue of S2 (Rule G). m21 is
equal to 0.

– t = 28. S1’s budget is depleted and recharged to 2 and its
deadline postponed to 37. R is unlocked. d1 = 37 <
d2 = 37 and S2 is granted the processor by EDF and
s15 executes in S2. R is locked. m21 is decremented in
one for each slot s1 executes in S2 (Rules H, I).
1087
Please cite this article in press as: Santos, R. et al., Improving the sc
(2007), doi:10.1016/j.jss.2007.07.004
E
D

P
R

O
O

F

– t = 31. s15 finishes, m21 is equal to 0. s22 completes its exe-
cution, S2’s budget is depleted and recharged to 6 and its
deadline postponed to 55.

References

Abeni, L., Buttazzo, G., 1998. Integrating multimedia applications in hard
real-time systems. In: Proceedings of the 19th IEEE Real Time Systems
Symposium, pp. 4–13.

Baker, T., 1990. A stack-based allocation policy for real-time processes.
In: Proceedings of the 11th IEEE Real Time Systems Symposium, pp.
191–200.

Caccamo, M., Sha, L., 2001. Aperiodic servers with resource constraints.
In: Proceedings of the 22nd IEEE Real Time Systems Symposium, pp.
161–170.

Deng, Z., Liu, J.W.S., 1997. Scheduling real-time applications in open
environment. In: Proceedings of the 18th IEEE Real Time Systems
Symposium, pp. 308–319.

Lipari, G., Butazzo, G., 2000. Analysis of periodic and aperiodic tasks with
resource constraints. Journal of Systems Architecture 46, 327–338.

Lipari, G., Lamastra, G., Abeni, L., 2004. Task synchronisation in
reservation-based real-time systems. IEEE Transactions on Computers
53 (12), 1591–1601.

Liu, G.L., Layland, J.W., 1973. Scheduling algorithms for multiprogram-
ming in hard real time environment. ACM 20, 46–61.

Marzario, L., Lipari, G., Balbestre, P., Crespo, A., 2004. Iris: a new
reclaiming algorithm for server-based real-time systems. In: Proceed-
ings of the 10th IEEE Real-Time and Embedded Technology and
Applications Symposium, pp. 211–218.

Palencia, J.C., Gonzalez Harbour, M., 1999. Exploiting precedence
relations in the schedulability analysis of distributed real-time systems.
In: Proceedings of the 20th IEEE Real Time Systems Symposium, pp.
328–339.

Rajkumar, R., Abeni, L., Niz, D.D., Gosh, S., Miyoshi, A., Saewong, S.,
2000. Recent developments with linux/rk. In: Proceedings of the Real
Time Linux Workshop.

Ramammritham, K., 1990. Allocation and scheduling of complex periodic
tasks. In: Proceedings of the 10th International Conference on
Distributed Computer Systems, pp. 108–115.

Ramos-Thuel, S., Lehoczky, J.P., 1994. Algorithms for scheduling hard
aperiodic tasks in fixed-priority systems using slack stealing. In:
Proceedings of the 15th IEEE Real Time Systems Symposium, pp. 22–33.

Saewong, S., Rajkumar, R., 1999. Cooperative scheduling of multiple
resources. In: Proceedings of the 20th IEEE Real-Time Systems
Symposium, pp. 90–101.

Santos, R., Lipari, G., 2003. Scheduling precedence constraint tasks in
open dynamic systems. In: Proceedings of the WIP 15th Euromicro
Conference on Real-Time Systems.

Santos, R.M., Urriza, J., Santos, J., Orozco, J., 2004. New methods for
redistributing slack time in real-time systems: applications and compar-
ative evaluations. Journal of Systems and Software 69 (1–2), 115–128.

Santos, R., Lipari, G., Santos, J., 2004. Scheduling open dynamic systems:
The clearing fund algorithm. In: 10th International Conference on
Real-Time Computing Systems and Applications.

Sha, L., Rajkumar, R., Lehoczky, J., 1990. Priority inheritance protocols:
an approach to real time synchronization. IEEE Transactions on
Computers 39 (9), 1175–1185.

Sprunt, B., Lehoczky, J.P., Sha, L., 1988. Exploiting unused periodic time
for aperiodic service using the extended priority exchange algorithm.
In: Proceedings of the 9th IEEE Real-Time Systems Symposium, pp.
251–258.

Sprunt, B., Sha, L., Lehoczky, J.P., 1989. Aperiodic scheduling for hard
real-time system. Real-Time Systems 1 (1–2), 27–60.

Strosnider, J.K., Lehoczky, J.P., Sha, L., 1995. The deferrable server
algorithm for enhanced aperiodic responsiveness in hard real-time
environments. IEEE Transactions on Computers 44 (1), 73–91.
hedulability of soft real-time open dynamic ..., J. Syst. Software

rodrigo
Inserted Text
a

rodrigo
Inserted Text
b

	Improving the schedulability of soft real-time open dynamic systems: The inheritor is actually a debtor
	Introduction
	Related work
	System model
	The Clearing Fund Protocols
	Open system architecture
	How CFP improves BWI
	Rules
	CFP (CFA/BWI/CBS)
	CFPHR (CFA/BWI/CBSHR)

	Catering for HRT STRPs
	Blocking chains
	Properties
	Computation of the interference time

	Experimental results
	Setting the simulations
	Results obtained
	Results explained

	Conclusions
	Acknowledgements
	 blank
	References

