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Abstract

As reported in the literature, Wiener models have arisen as an appealing proposal for nonlinear process representation due to
their simplicity and their property of being valid over a larger operating region than a LTI model. These models consist of a cascade
connection of a linear time invariant system and a static nonlinearity. In the description of these models, there are several ways to
represent the linear and the nonlinear blocks, and several approaches can be found in the literature to perform the identification
process.

In this article, we provide a parametric description for the Wiener system. This approach allows us to describe the uncertainty
as a set of parameters. The proposed algorithm is illustrated through a pH neutralization process.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Nonlinear model-based control has been widely used in the chemical engineering field. The reason for this is
that all processes are nonlinear and, in many cases, controllers based on linear models are no longer satisfactory.
The use of models based entirely on fundamental process understanding has the advantage of possessing a clear
physical interpretation. However, these models tend to be highly complex making impossible their application in
popular model-based control strategies [1]. On the other hand, purely empirical models (black-box), based entirely
on input/output data, lack physical interpretation. Although black-box models can be established without knowing
the detailed underlying physics and dynamics of the system, they have shown to be useful and flexible for many
applications.

A third approach is used when some physical insight is available, but several parameters remain to be determined
from the observed data. In this category, Pearson and Pottmann [2], included the Wiener model. This model is a kind
of block-oriented nonlinear model consisting in a dynamic linear time invariant (LTI) submodel H(z), and a static
(i.e. memoryless) nonlinear block N (.).
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The use of these models has been treated in the literature in various contexts such as chemical and biological
processes [3–8], among others [9–12]. The advantage of using Wiener models are twofold: the low computational
effort associated to the identification and the suitability for control design.

Some representation for the linear and nonlinear blocks of Wiener models have been presented in the literature [2,
11,13–21].

In general, the linear dynamics and the static nonlinearity cannot be identified in an independent way due to
the cascade structure of the Wiener model. In this sense, several identification algorithms had been presented. One
of these approaches is based on correlation techniques [22,23] but it needs the verification of the rather restrictive
requirement on the input to be white noise. Another approach is the iterative algorithm proposed by Narendra and
Gallman [24]. Originally, this scheme was proposed for the identification of Hammerstein models and it is the most
direct approach, and is based on a “successive” procedure where the parameters of the linear and nonlinear blocks
are computed recursively to refine the model. The more recent approach is based on the “simultaneous” identification
of the complete set of parameters. It was introduced by Kalafakis et al. [3,17] and extended to more general block-
oriented models by Bai [25] and Gómez and Baeyens [20].

In this paper, we present a novel characterization approach as well as an identification algorithm for uncertain
Wiener models. The goal is to obtain a nominal model of the process plus a parametric description of the uncertainty,
which is the main contribution of this work. For this purpose, Laguerre polynomials are used to model the linear
dynamic block, and a piecewise linear (PWL) representation of the nonlinear static block is provided. PWL models
are often used to represent the behaviour of nonlinear systems, since they constitute the simplest extension of
linear systems that approximate nonlinear systems with an arbitrary accuracy. This modeling approach proves to
be advantageous due to its simplicity, easy implementation and good application results. Moreover, it happens to be
a convenient formulation in order to model the uncertainty which, in this way, can be easily mapped onto the model
parameters. From the first canonical expression by Chua and Kang [26], the theory of canonical representations of
PWL functions has evolved in a substantial manner. That paper was followed by the improvements and contributions
introduced by Güzelis and Göknar [27], Kahlert and Chua [28], and Lin et al.. [29]. Since then, PWL have been
used in many applications in a wide variety of fields such as the modeling of electronic devices [30], in the analysis
and synthesis of systems with complex dynamics [31,32], as well as in the areas of modeling and control [33–35].
Recently, in [36,34,37], a systematic way of defining the PWL representation for arbitrary (continuous) domains in a
more compact and efficient form was introduced. This PWL representation uses the concept of simplicial partitions
of the domain of interest. This is the approach followed in the present work.

The paper is organized as follows. In Section 2, general concepts about models and uncertainties are introduced.
In Section 3 the description and identification technique of Wiener systems are reviewed. The proposed uncertainty
model is presented in Section 4 and an algorithm for parameter uncertainty characterization is introduced. In Section 5,
the results are evaluated on the basis of a simulation of a pH neutralization process. The final remarks are made
in Section 6.

2. Process information, models and uncertainties

Let us consider that process data are available in the form of two sets of process inputs (u = {u0, u1, . . . , uN })
and outputs (y = {y0, y1, . . . , yN }). Then, we aim at finding an appropriate mathematical model, i.e. a model whose
response matches the collected input–output data. This is performed in a two-step procedure. In the first step, a model
structure is selected. This structure indicates in which way the input–output data are related. We use the previous
knowledge about the process:

ŷk+1 = f (ŷk, . . . , ŷk−Ny , uk, . . . , uk−Nu , θ), (1)

where the predicted output at time k +1 depends on the present and the Nu previous inputs, as well as on the predicted
present and the Ny previous outputs. The set of parameters (θ ) is also needed to determine ŷk+1. In the second step,
the parameters (θ ) are computed to minimize the difference between the process and model outputs (yk − ŷk) to any
time. This can be performed using an optimization algorithm. In what follows we denote this set of parameters as
nominal parameters θN .

When the interest aims at obtaining an uncertainty related with this nominal model, a typical approach is to define
a set of possible models to represent all the process behaviours. This is performed by considering a set of model
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Fig. 1. Model under uncertainties.

Fig. 2. The Wiener model structure.

parameters Θ such that when these parameters θ ∈ Θ are used, the whole set of exciting inputs u is “mapped” onto
an output set which contains the set of the output data y (see Fig. 1). In this way, we assume the same format for all
the possible models in the uncertain set. These models’ family is defined in terms of a set of parameters. Based on
this, we can have an idea of the conservatism of the model description, by analyzing the difference between the sets
{ŷ | ŷ = f (u, θ), θ ∈ Θ} and y.

3. Wiener model identification

3.1. Model description

Fig. 2 depicts a Wiener model. It consists of a LTI system H(z) followed by a static nonlinearity N (.). That is,
the linear model H(z) maps the input sequence {u(k)} into the intermediate sequence {v(k)}, and the overall model
output is y(k) = N (v(k)).

In this paper, the linear block of order Nl is described as [38–40].

H(z) =

Nl∑
i=0

hi L i (z, a) (2)

L i (z, a) =

√
1 − a2

z − a

(
1 − az

z − a

)i

, (3)

where the parameters of the model are the coefficients hi , the functions L i (z, a) are the Laguerre basis for LTI models
and a ∈ R, with |a| < 1, is a filter coefficient chosen a priori.

The advantage in using the Laguerre basis is that it needs a lower number of parameters to describe a system with a
slow impulse response or a damped system than other representations. Moreover, it allows the use of prior knowledge
about the dominant poles (parameter a).

The nonlinear block N (.) is, in general, a real-value function of one variable, i.e. y = N (v). We describe the
nonlinear function as

y =

Nn∑
i=0

f̃i Λ̃ (v, βi ) , (4)

where the basis functions Λ̃ (v, βi ) are predetermined PWL functions, the values f̃i are the parameters that should be
computed and Nn will be referred to as “order” of the nonlinearity. The use of fixed basis functions Λ̃ (v, βi ) makes
the output to be a linear function of the parameters. This allows us to use a linear regression to estimate the parameters.
The two basic advantages of this approach are the low complexity and the uniqueness of the solution.

The PWL functions have proved to be a very powerful tool in the modeling and analysis of nonlinear systems. The
general formulation of PWL functions allows us to represent a nonlinear system through a set of linear expressions,
each of them valid in a certain operation region. To make this approximation, the domain of variables ℵ is partitioned
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into a set of σ nonempty regions ℵ
i , such that ℵ =

⋃σ
i=1 ℵ

i . In each of these regions the nonlinear function is
approximated using a linear (affine) representation. These functions allow a systematic and accurate treatment of the
approximating functions. It can be proved [41] that any nonlinear continuous function N (v) : Rm

→ R1 can be
uniquely represented using PWL functions in the form of Eq. (4). In this description, βi are given parameters that
define the partition of the domain of v, and Λ̃ are functions that involve nested absolute values.

3.2. Nominal model identification

As mentioned in the Introduction, different methods for Wiener models identification have been reported in the
literature. A simultaneous approach (see for example, [17]) will be herein used for nominal model identification.

Let us assume that an input–output data set is available, noted as uk and yk , respectively. To obtain these data sets,
several aspects should be taken into account. For example, the process should be persistently excited in the whole
domain of the nonlinear block, such that all the relevant dynamics are captured.

From Fig. 2, the signal vk can be written as the output of the linear block:

vk = H(z) • uk . (5)

On the other hand, vk is also the input of the nonlinear block and then, it can be obtained from the output yk and the
inverse N−1(.). Therefore:

vk = N−1(yk) =

Nn∑
i=0

fiΛ (yk, βi ) . (6)

Equating both sides of these equations (with the inclusion of an error function ε(k) to allow for modeling error) the
following equation is obtained

Nn∑
i=0

fiΛ (yk, βi ) = h0l0(uk) +

Nl∑
i=1

hi li (uk) + ε(k) (7)

or, equivalently,

ε(k) =

Nn∑
i=0

fiΛ (yk, βi ) − h0l0(uk) −

Nl∑
i=1

hi li (uk) (8)

which is a linear regression. Define

θ =
[

f0, f1, . . . , fNn , h1, h2, . . . , hNl

]T (9)

φ(k) =
[
Λ (yk, β0) ,Λ (yk, β1) , . . . ,Λ

(
yk, βNn

)
, −l1(uk), −l2(uk), . . . ,−lNl (uk)

]T
. (10)

Then, Eq. (8) can be written as

ε(k) = θTφ − l0(uk). (11)

Note that, without loss of generality, the coefficient h0 is set equal to one. Now, an estimate θ̂ of θ can be computed
by minimizing a quadratic criterion on the prediction errors ε(k) (i.e. the least squares estimate). It is well-known that
this estimate is given by:

θ̂ =

(
ΦN ΦT

N

)−1
ΦN Γ , (12)

where Γ = [−l0(u1), . . . ,−l0(uN )]T and ΦN = [φ(1), . . . , φ(N )] are formed using the set of the N data available
from the process.

Now, estimates of the parameters f̂i (i = 0, . . . , Nn), ĥ0 = 1 and ĥi (i = 1, . . . , Nl ) can be computed by
partitioning the estimate θ̂ , according to the definition of θ in (9). It is important to remark that we are identifying the
inverse of the nonlinearity, which is frequently used in many control applications.
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Fig. 3. Uncertainties in the Wiener model.

Fig. 4. Uncertainty sets in the Wiener model.

4. Uncertainty characterization

In this section we develop an algorithm, based on the ideas of Section 2, to characterize the uncertainties of the
model obtained in Section 3. We introduce a set of parameters H for the linear dynamic block and a set F for the
parameters of the inverse of the nonlinear block (see Fig. 3):

H =

{
h : h = ĥ + δh, −hl

i ≤ δh
i ≤ hu

i , 0 ≤ i ≤ Nl

}
(13)

F =

{
f : f = f̂ + δ f , − f l

i ≤ δ
f

i ≤ f u
i , 0 ≤ i ≤ Nn

}
. (14)

To define these bounds, let us define some sets. Given the input data uk , the linear uncertain system is defined by H
maps at some specific time k over a set

Vu =

{
v : v =

Nl∑
i=0

hi li (uk), h ∈ H
}

. (15)

Given an input uk , the Laguerre term of order i , i.e. li (uk), is a real number and the set Vu takes the form of
Vu = {v : vl ≤ v ≤ vu}.

On the other hand, if we consider the parameter uncertainty description in F , a given output yk maps at some
specific time k over a set

Vy =

{
v : v =

Nn∑
i=0

fiΛ(yk, βi ), f ∈ F
}

. (16)

This situation is showed in Fig. 4. From this picture it is clear that the parameter set will match the uncertainty
description of Section 2 if Vy ∩ Vu 6= ∅. In this way, the point uk is mapped onto Vu through H. Then, since
Vy ∩ Vu 6= ∅, this point will be mapped in yk through the inverse of F . Then, it is only necessary to compute the
parameter bounds to satisfy this condition. The nominal linear model parameters ĥi can be written as a vector, by
considering that the Laguerre basis li (uk) is a set of real numbers for each input uk . Let l(uk) be the vector whose i th
entry is the Laguerre basis li (uk). Then, the expression of the linear model is

v̂(k) = ĥTl(uk). (17)

In a similar way, the PWL basis Λ (yk, βi ) is a set of positive real numbers for each output yk . Λ (yk) is the vector
whose i th entry is the PWL basis Λ (yk, βi ). Then, the nonlinear model expression is:

v(k) = f̂ TΛ(yk). (18)

In the following, let us analyze the bounds on the parameters.
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4.1. Uncertainty concentrated in the linear block

In this case, let us assume that the uncertainty is concentrated in the linear block.3 We are looking for the uncertain
linear model that maps the set of data u to the set v = f̂ TΛ(y). To define an uncertain model that allows us to
describe the complete set of data, we should compute the set {h : h = ĥ + δh, −hl

i ≤ δh
i ≤ hu

i , i = 0, . . . , Nl}.
Now, since that the entries of l(uk) could be positive or negative, it is possible to split the vector l(uk) by defining
l+(uk) = max(l(uk), 0) and l−(uk) = min(l(uk), 0). Then, forming the vector γ = [−(l−(uk))

T, (l+(uk))
T
]
T, we

can compute the uncertainty bounds as

min
hl ,hu

Nl∑
i=0

(
hl

i + hu
i

)
subject to [

(hl)T, (hu)T
]
γ ≥ e(k), if ε(k) ≥ 0; k = 1, . . . , N

−

[
(hu)T, (hl)T

]
γ ≤ e(k), if ε(k) ≤ 0; k = 1, . . . , N

hl
i , hu

i ≥ 0,

where

ε(k) = f̂ TΛ(yk) − ĥTl(uk). (19)

4.2. Uncertainty concentrated in the nonlinear block

In this case, let us assume that the uncertainty is concentrated in the nonlinear stationary block [43]. Then, we
are looking for the uncertain model that maps the set of data y to the set v = ĥTl(u). Then, to define an uncertain
model that allows us to describe the complete set of data, we should compute the set { f : f = f̂ + δ f , − f l

i ≤

δ
f

i ≤ f u
i , i = 0, . . . , Nn}. Now, since the entries of Λ(yk) are positive, we can compute the uncertainty upper

bound as

min
f u

Nn∑
i=0

f u
i

subject to
−( f u)TΛ(yk) ≤ ε(k), k = 1, . . . , N
f u
i ≥ 0

and the lower bound as

min
f l

Nn∑
i=0

f l
i

subject to
( f l)TΛ(yk) ≥ ε(k), k = 1, . . . , N
f l
i ≥ 0.

4.3. Uncertainty in both the linear and nonlinear blocks

In this case, we consider the most general case, where the uncertainty is split into both the linear and the nonlinear
blocks. Note that the intersection of the uncertainties in the linear and nonlinear models should be nonempty. This can
be solved as:

3 Note that in this paper we propose a parametric description for the uncertainty. However, there are other methods to characterize the uncertainty
of LTI control systems, such as the frequency response approach [42].



Author's personal copy

J.L. Figueroa et al. / Mathematical and Computer Modelling 48 (2008) 305–315 311

Table 1
Neutralization parameters

Parameter Value

x1i 0.0012 mol HCL/l
x2i 0.0020 mol NaOH/l
x3i 0.0025 mol NaHCO3/l
Kx 10−7 mol/l
Kw 10−14mol2/l2

qA 1 l/m
V 2.5 l

min
hl ,hu , f l , f u

(
α

Nl∑
i=0

(hl
i + hu

i ) + (1 − α)

Nn∑
i=0

( f l
i + f u

i )

)
subject to [

(hl)T, (hu)T, ( f l)T
] [

γ

Λ(yk)

]
≥ e(k), if ε(k) ≥ 0; k = 1, . . . , N[

−(hu)T, −(hl)T, −( f u)T
] [

γ

Λ(yk)

]
≤ e(k), if ε(k) ≤ 0; k = 1, . . . , N ,

where the parameter α ∈ (0, 1) is a selected factor which allows us to weight the uncertainty on the linear or nonlinear
block.

5. Process description

To illustrate both the uncertainty characterization and the identification procedures, simulation results were
obtained. The example consists of the neutralization reaction between a strong acid (HA) and a strong base (BOH) in
the presence of a buffer agent (BX) [44,45]. A Wiener model has often been chosen in the literature for pH process
representation. The linear block can be used to describe the mixing dynamics of the reagent streams inside the reactor,
while the static nonlinearity stands for the titration curve, which can represent the mathematical relationship between
the chemical species and the pH [3].

The neutralization herein considered takes place in a CSTR with a constant volume V . An acidic solution with a
time-varying flow qA(t) of composition x1i (t) is neutralized by using an alkaline solution with flow qB(t) of known
composition made up of base x2i and buffer agent x3i . For this specific case, under some assumptions [44], the
dynamic behaviour of the process can be described by considering the state variables: x1 = [A−

], x2 = [B+
] and

x3 = [X−
]. Then, the mathematical model of the process is:

ẋ1 = qA/V x1i − (qA + qB)/V x1 (20)

ẋ2 = qB/V x2i − (qA + qB)/V x2 (21)

ẋ3 = qB/V x3i − (qA + qB)/V x3 (22)

F(x, ξ) ≡ ξ + x2 + x3 − x1 − Kw/ξ − x3/[1 + (Kxξ/Kw)] = 0, (23)

where ξ = 10−pH. The parameters of the system are addressed in Table 1. Using this model a set of data is generated by
simulating 2000 samples with a sample time Ts = 0.5. A random signal uniformly distributed in [0, 1] is applied to the
manipulated variable qB , this input changes after every set of five samples. Before proceeding with the identification,
the steady values are removed from the input (qB = 0.5) and output (pH = 7.7182) data, respectively.

In a first step, we compute a nominal Wiener Model as described in Section 3. We consider three Laguerre
polynomials (i.e. Nl = 2) with a = 0.7 to represent the linear model. It should be remarked that, the present approach
does not require prior knowledge of the real linear subsystem structure. As regards the nonlinear block, a PWL model
with an 8-section partition was selected to describe the static gain. The identification is performed using a set of 1000
data, and the remaining data are used for validation. Fig. 5 shows a set of these results, restricted to 400 samples (half
for identification and half for validation). Two curves are shown: the signal v(k) as the output of the linear block and
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Fig. 5. Simulation for the nominal Wiener model.

Fig. 6. Uncertainty in the linear parameters.

as the output of the inverse of the nonlinear block N−1(y(k)). The parameters are:

ĥT
=
[
1 −0.2022 0.1386

]
f̂ T

= [−0.660 −0.445 −0.416 −0.389 −0.374

−0.303 −0.042 0.132 0.204 0.219 0.557]

for the linear and the nonlinear blocks, respectively.
In a second step, we assume that the uncertainty is concentrated in the linear block. From the physical point of view,

this assumption involves the fact that the titration curve is unique. By solving the problem described in Section 4.1,
the uncertainty (see Fig. 6) in the parameters is described by:

hu
=
[
0.9060 0.0879 0.6786

]
hl

=
[
0.8732 0.4189 0.0226

]
.

A measure for this uncertainty is errorh =
∑Nl

i=0(h
u
i + hu

i ) = 2.9872.
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Fig. 7. Uncertainty in the nonlinear parameters.

The case in which the uncertain parameters are all concentrated in the nonlinear block is now considered. This
case can be interpreted as if the whole source of uncertainty resides in the titration curve, i.e. the nonlinear gain of the
process. Solving the problem of Section 4.2, the parameter bounds (see Fig. 7) are:

f u
= [0.0000 0.1377 0.2601 0.0000 0.2738 0.3048

0.4046 0.0544 0.2952 0.2060 0.0798]T

f l
= [0.0000 0.0835 0.0602 0.0740 0.0562 0.1354

0.2938 0.3556 0.2162 0.4788 0.0530]T .

A measure for this uncertainty is error f =
∑Nn

i=0( f u
i + f u

i ) = 3.8232.
Finally, let us consider the case with uncertainty in both blocks. Fig. 8 shows the functions errorh and error f as

functions of α. For example, for α = 0.5 the parameter bounds (see Fig. 9) are:

f u
= [0.0000 0.0000 0.0000 0.0000 0.0000 0.0428

0.2192 0.0036 0.0000 0.0000 0.0000]T

f l
= [0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.2474 0.0109 0.1978 0.0755 0.0000]T

hu
=
[
0.6080 0.000 0.1573

]
hl

=
[
0.3385 0.000 0.000

]
.

For this case, the norms of these uncertainties are errorh =
∑Nl

i=0(h
u
i +hu

i ) = 1.1037 and error f =
∑Nn

i=0( f u
i + f u

i ) =

0.7973. Note that even the sum of both errors (errorh and error f ) is lower than the values that were previously
calculated for the cases of uncertainty concentrated in only one of the blocks. The interpretation for this result, is that
this last case (i.e. the one of distributed uncertainty) admits an additional degree of freedom, which allows the Wiener
model to fit better the input–output collected data.

6. Conclusions

In this article, identification and robustness analysis of Wiener systems are considered. The main contribution of
this work is a method for robust identification of both the linear and the nonlinear blocks present in an uncertain Wiener
model. For this purpose, a parametric representation has been used in order to describe the model. The proposed
approach accomplishes the parameter identification by solving an optimization problem. Once the identification is
performed, a convex hull of parameters is obtained, with the fact that the overall data used in the identification can be
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Fig. 8. Uncertainty norm as a function of parameter α.

Fig. 9. Uncertainty in the linear and nonlinear parameters.

generated by the model’s family associated to the set of parameters. Although the uncertain model herein proposed
makes use of the Laguerre and PWL bases for the linear and nonlinear blocks, respectively, it must be remarked that
the identification approach is also valid for any other parametric description of the model with uncertainty.
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