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A newMATLAB graphical interface toolbox for implementing third-ordermultivariate calibrationmethodologies is
discussed. Multivariate calibration 3 (MVC3) is a sequel of the already described first-order (MVC1) and second-
order (MVC2) toolboxes. MVC3 accepts a variety of ASCII data for input, depending on whether the third-order
data are vectorized ormatricized. If required, data for sample sets are arranged into four-way arrays for processing
with several quadrilinear and non-quadrilinear algorithms. Quadrilinear decomposition techniques and latent
structured models based on partial least-squares regression and residual trilinearization are included in the soft-
ware. Appropriate working sensor regions in the three data dimensions can be selected. Model development
and its subsequent application to unknown samples are straightforward from the interface. Prediction results
are provided alongwith analyticalfigures ofmerit and standard concentration errors, as calculated bymodern con-
cepts of uncertainty propagation.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Higher-order multivariate calibration is increasingly used by the
analytical community, as instrumental hyphenation becomes popular
for increasing sensitivity and selectivity of the determinations. Several
reviews have appeared on the subject, all highlighting the progress in
both instrumentation and data processing which has taken place in
recent years [1–3]. In the field of third-order data recording for quantita-
tive analytical purposes, several recent works can be mentioned. They
are based on: (1) two-dimensional gas chromatography (GC–GC) with
mass spectrometric (MS) detection [4–6] or two-dimensional liquid
chromatography (LC–LC) with UV–visible diode array detection (DAD)
[7,8], and (2) time evolution of excitation–emission luminescencematri-
ces, either following the kinetics of a reactionwith fluorescencematrices
[9–16] or the time decay of phosphorescence matrices [17].

Programs for first- and second-order multivariate analysis are freely
available on the internet (Table 1), with MATLAB [18] as the preferred
programming environment. However, although the latter shows a num-
ber of advantages, implementingmulti-way analysis inMATLAB requires
some level of programming skill.MATLAB graphical user interfaces (GUI)
are useful in bridging the gap between pure chemometricians and end
users [19–22], though considerable work is still required in developing
easy-to-use software for routine applications inmost analytical laborato-
ries. Commercial software is available for implementing first- and

second-order calibration (Table 1), but in the latter case the gap between
commercial and free academic software is significant.

MVC3 was developed as an integrated chemometric MATLAB tool-
box in order to manage several different third-order multivariate cali-
bration algorithms in an easy-to-use graphical interface environment.
The toolbox can be applied to any type of data which are structured as
three-dimensional arrays for each sample. It is a sequel of the already
described MVC1 MATLAB interface [19] and the MULTIVAR Visual
Basic program [23], both developed for handling first-order multivari-
ate calibration methods, and the MVC2 MATLAB interface for second-
order multivariate calibration [22].

The third-order multivariate calibration techniques included in
MVC3 can be divided in two relevant groups, namely those based on:
(1) quadrilinear decomposition (QLD) or (2) residual trilinearization
(RTL). The former group includes parallel factor analysis (PARAFAC)
[24], alternating penalty QLD (APQLD) [25] and alternating weighted
residual constraint QLD (AWRCQLD) [26].

The second group of methods, based on residual trilinearization,
comprise: 1) trilinear least-squares followed by RTL (TLLS/RTL) [27],
2) unfolded partial least-squares/RTL (U-PLS/RTL) [27], 3) multi-
dimensional partial least-squares/RTL (N-PLS/RTL) [14], and unfolded
principal component analysis/RTL (U-PCA/RTL) [16]. The lattermethod-
ology has been developed to produce test sample scores from non-
linear instrumental data, which are free from the contribution of inter-
ferences, for further analysis using artificial neural networks [16]. In the
U-PLS and N-PLS methods, the calibration models can be optimized by
leave-one out cross-validation [28].

For discussions concerning the properties and applicability of the
different algorithms, see the reviews [1–3].
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Concerning the estimation of figures of merit, the subject is now
well-established in the field of second-order multivariate calibration
[29–31]. However, expressions for assessing the third-order sensitiv-
ity, which is a key ingredient for most figures of merit, have been elu-
sive for some time [32]. Very recently, a closed expression has been
developed for PARAFAC [33]. The latter can conceivably be extended
for the RTL-based methodologies, but considerable theoretical work is
still needed to firmly establish its applicability. Following a somewhat
provisional definition, the following figures of merit are estimated and
reported in MVC3: sensitivity (SEN), selectivity (SEL), analytical sensi-
tivity (γ), limit of detection (LOD) and standard error in concentration
for each predicted concentration (SD).

Calculations and graphical outputs are conveniently managed in
MVC3 through graphical user interface (GUI) shells. The software does
not require a highly experienced user, but a basic knowledge on the un-
derlying methods is advisable in order to successfully interpret the
results.

In the present report, the toolbox versatility and performance are
illustrated through the analysis of a simulated and an experimental
example.

2. Software

The software runs under MATLAB version 7 [18]. The files do only
need to be copied into a folder declared in the MATLAB path. Please
refer to the document named ‘MVC3_manual.doc’ which is provided
with the software. The codes are freely available, along with examples
and manual, and will be provided on request via e-mail. Please con-
tact the corresponding author or download the program (including
manual and examples) from: http://www.chemometry.com/Index/
Links%20and%20downloads/Programs/Olivieri/mvc3_zipped.zip.

In order to perform PARAFAC and N-PLS modeling, the interface em-
ploys the routines available in R. Bro'swebpage (http://www.models.kvl.
dk/algorithms, accessed November 2011). The APQLD and AWRCQLD
routines were developed by H.L. Wu and R.Q. Yu (Hunan University,
China), while all RTL routines were written by A.C. Olivieri (University
of Rosario, Argentina).

3. Simulated data

A set of simulated data is provided along with the program andman-
ual. It involves simulated time-evolving fluorescence excitation–emission
third-order data for a set of calibration and test samples containing two
calibrated analytes and a single interferent. Fig. 1 shows the noiseless pro-
files fromwhich the simulated datawere built. All of themare normalized
to unit length. Notice that a strong overlapping occurs between the

profiles of analyte 2 and the interferent, particularly in the first data di-
mension. This implies that, although the total signals for both analytes
are the same (i.e., 1, because the profiles are normalized), the final sensi-
tivity toward themwill be different: analyte 2will show lower sensitivity.
Nine calibration samples with a central composite design for the concen-
trations of both analytes (in the range of 0–1 concentration units) are pro-
vided, along with ten test samples with the three components in random
concentrations. The concentration of the interferent in the test samples
was kept high, in the range from 0.5 to 1 concentration units, in order
to ensure that all samples present the challenge of achieving the
second-order advantage to the available algorithms. Random Gaussian
noise with 0.002 units of standard deviation was added to all signals,
andwith 0.01 units was added to all nominal concentrations. This implies
a ca. 1% of noisewith respect to bothmaximum signal and concentration.
This simulated data set will be discussed in detail below.

4. Experimental data

In the selected experimental system,malondialdehydewasmeasured
in olive oils treatedwithmethylamine, which led the analyte to develop a
strongly fluorescent product [16]. Calibration was performed with four-
teen samples with the analyte in the range of 0.00–2.16 mg L−1, and
8 spiked olive oils were examined. When analyzing each test sample,
the size of the four-dimensional array was 15 samples×14 excitation
wavelengths×11 emission wavelengths×21 times. See Ref. [16] for fur-
ther details. These data are available from the authors on request.

5. Program description

MVC3 has a single main window (Fig. 2), from which all steps re-
quired to implement the different third-order multivariate calibration
strategies can be carried out. The first step is to select the desired mul-
tivariate methodology and the corresponding number of responsive
components (this can be the total number of components for QLD algo-
rithms, the number of unexpected sample components for TLLS/RTL, or
the numbers of calibrated and unexpected sample components for U-
PLS/RTL, N-PLS/RTL and U-PCA/RTL).

The working sensor regions should be provided so that the program
is able to reconstruct the third-order data arrays if unfolded data are
used as input. Sensor regions can be selected from the screen, if part
of the data arrays need to be discarded (for example, when unwanted
phenomena occur, such as scattering in fluorescence spectroscopy).

Several different data types are admissible, all contained in ASCII
files, whose names should be provided to the graphical interface.
They may be arranged in any of the following formats: 1) X_vectors
means one-column unfolded vectors, with each J×K×L data array

Table 1
Free and commercial software for multivariate calibration.

Free software

Algorithm Website

Parallel factor analysis, N-way partial least-squares and other multi-way methods http://www.models.kvl.dk/algorithms
Multivariate curve resolution http://www.ub.es/gesq/mcr/mcr.htm
Multivariate curve resolution http://personal.ecu.edu/gemperlinep
Several first-order and multi-way methods www.chemometry.com
Generalized rank annihilation and direct trilinear decomposition http://www.cpac.washington.edu

Commercial software

Software Company Website

First-order partial least-squares GRAMS IQ Thermo Scientific www.thermoscientific.com
First-order partial least-squares PLS Toolbox Eigenvector.com www.eigenvector.com
First-order partial least-squares PLS Toolbox The MathWorks www.mathworks.com
First-order and N-way partial least-squares, and multivariate curve resolution UNSCRAMBLER Camo www.camo.com
First-order partial least-squares and multivariate curve resolution PIROUETTE Infometrix Software www.infometrix.com
First-order partial least-squares EZINFO Umetrics www.umetrics.com
PARAFAC and other multi-way methods 3 Way Pack The Three-mode Company http://three-mode.leidenuiv.nl
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unfolded and saved as a JKL×1 vector, 2) X,Y_vectors implies two-
column data with the first column indicating, for example, the wave-
length and the second the unfolded signal, 3) X,Y_matrices corresponds
to data in the form of J×2Kmatrices repeated L times, with a column of
wavelengths separating successive data matrices recorded at different
times (the latter format is produced by some spectrofluorimeters).

Specific calibration samples can be excluded from the model, for ex-
ample, if they have been found to have wrong nominal concentrations.

Uncertainties in both signals and calibration concentrations will sub-
sequently be used in the estimation of certain analytical figures of merit
(AFOM), such as standard error in concentrations, limit of detection, etc.
These uncertainties will be taken as: (1) the fitting residuals of the test
sample to the corresponding model for signals and (2) the average
uncertainty in predicting the calibration samples for concentrations.

6. QLD models for simulated data

All implemented methods require a certain number of responsive
components to be preset for building the calibration models. In the

case of the QLD models, this number can be estimated by analyzing
how the core consistency varies as a function of an increasing number
of trial components. The optimum number of components is reached
when the core consistency significantly drops below 50 [34]. The re-
sidual standard deviation of the least-squares fit of the four-way
data array to the quadrilinear model is another important parameter,
which stabilizes when the correct number of components has been
reached.

PARAFAC specific results obtained for the processing of a typical
test sample of the simulated data are as follows: (1) core consistency
values for 1 to 5 trial components are 100, 99.2, 31.9, −0.2 and 0.12,
and (2) residual fit values (in signal units, to be compared with the
degree of signal uncertainty of 0.002, see above) are 0.01, 0.004,
0.002, 0.002 and 0.002 respectively. As can be seen, the core consis-
tency parameter and the analysis of the residual fit leads to the con-
clusion that three responsive components are present in these
samples. Similar results are found with the remaining QLD models
(APQLD and AWRCQLD). It should be noticed that an additional indi-
cator that the correct number of components has been surpassed is
that repeated profiles are obtained.

Once the number of components is set to three, the ‘Predict’ button
allows one to perform quadrilinear decomposition of the four-way data
set formed by joining calibration and test sample data (this activity is
conducted sample by sample). A plot of separate component profiles
in each dimension is then produced (Fig. 3), allowing the user to select
the relevant component number which best correlates with the known
properties of the analyte. In our case, comparisonwith Fig. 1 shows that
analyte 1 is component 2 and analyte 2 is component 1, while compo-
nent 3 is the interferent (this component numbering may vary from
sample to sample). Finally, a pseudo-univariate scores-concentration
plot for the selected analyte is produced (Fig. 4 shows the results for an-
alyte 1), and the analyte concentration is estimated by interpolation in
the pseudo-univariate graph. Concentrations predicted in this manner
for both analytes are collected in Table 2. As can be seen, for this partic-
ular example, PARAFAC, APQLD and AWRCQLD furnish good prediction
results, which are incidentally better for analyte 1 than for analyte 2.
This can be judged from the root mean square errors of prediction
(RMSEP) quoted in Table 2, and is due to the lower intrinsic sensitivity
toward analyte 2 (see above). Also noticeable in Table 2 is the homoge-
neity of standard deviations in predicted concentrations (lower for an-
alyte 1 than for analyte 2), a result which directly follows from the
capability of these QLD models in efficiently decomposing the signals
for the analyte from the mixture signal.

Table 3 shows the estimated figures of merit for the three QLD algo-
rithms. There is a good correlation between the higher sensitivity for
analyte 1 and the lower RMSEP values for this analyte in Table 2. Con-
versely, analyte 2 shows a correspondingly larger RMSEP, consistent
with the lower sensitivity toward this constituent.

Notice that in certain specific analytical cases (not in the presently dis-
cussed one), QLD models need to be properly initialized and constrained
[1–3]. This can be done in MVC3 using any of the several initializing and
constraining options which come with Bro's PARAFAC package.

7. RTL models for simulated data

RTL models require two separate numbers of components: the cali-
brated ones and the unexpected ones or interferents, respectively. In
the case of the TLLSmethod, the number of calibrated components is au-
tomatically set according to the number of columns of the concentration
matrix used for calibration,which is provided in a separate concentration
file. In the latent-structured RTL cases (i.e., U-PLS and N-PLS), the num-
ber of calibration factors can be tuned through leave-one-out cross-
validation (‘Cross-validation’ button in the MVC3 screen). This involves
the systematic removal of one of the training samples in turn, and use
of the remaining ones for building PLS models. The predicted concentra-
tions of the left-out samples are compared with the nominal values for

Fig. 1. Noiseless profiles employed to build the synthetic data set analyzed by the present
MVC3 software. A), B) and C) First, second and third dimension profiles for the analytes
respectively. The color codes are: black line, analyte 1, red line, analyte 2, green line, inter-
ferent. The first dimension mimics fluorescence excitation spectra, the second the
corresponding emission spectra and the third the kinetic time evolution.
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each calibration sample, and the predicted error sum of squares [PRESS=
Σ (cact−cpred)2] is calculated. After finishing the cross-validation proce-
dure, the optimum number of factors is assessed using Haaland and
Thomas' criterion [28]. The following statistical parameters are displayed
as a function of the number of factors: the PRESS, the root mean square
error of cross-validation (RMSECV), the F ratio between successive
PRESS values to the minimum PRESS, and the associated probability.
This information is given in tabular format (see Table 4 for U-PLS when
calibrating for analyte 1), and also by activating the button ‘CV Plots’. Sim-
ilar results were obtained for analyte 2 and for N-PLS calibration. Addi-
tionally, outliers can be detected using the criteria suggested in Ref. [28].

Once the number of calibration factors is set, the number of RTL
components can be estimated by examining the changes in residual
fit as this number is increased. Table 4 provides such results for
U-PLS/RTL when calibrating for analyte 1, which allows one to set 1
as the number of RTL components to be included in subsequent anal-
yses, because at this number the residual fit achieves the value of the
instrumental noise (0.002, see above) and does not significantly de-
crease on increasing the number of RTL components. The same result
was obtained for analyte 2 and for N-PLS/RTL.

For the TLLS/RTL case, the number of calibrated constituents must
be known from the start (two in the present case), while the number

Fig. 2. Main screen of the graphical interface MVC3, prepared to process an unknown sample with PARAFAC using three responsive components.

Fig. 3. Profiles retrieved by PARAFAC for the three responsive components, labeled according to their contribution to the overall spectral variance. Compare with the component
profiles in Fig. 1. At the bottom of this figure, the component number corresponding to the calibrated analyte and the file name containing the calibration concentrations should
be provided to the program.

12 A.C. Olivieri et al. / Chemometrics and Intelligent Laboratory Systems 116 (2012) 9–16
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of RTL or unexpected components can be set using a procedure simi-
lar to that described in relation with U-PLS/RTL and N-PLS/RTL.
Table 4 shows that this number is also 1 for TLLS/RTL.

With both number of components established, the ‘Predict’ button
produces a plot of profiles for the RTL components (Fig. 5). This latter
figure shows that the retrieved profiles coincide with those for the
interferent included in the test samples (compare with Fig. 1).

The estimated analyte concentrations are then provided by the pro-
gram, which are collected in Table 2 for the RTL methods (N-PLS/RTL

gave very similar results to U-PLS/RTL). They are of similar analytical
quality to those obtained by employing the QLD models. As regards
the standard deviations in predicted concentrations, they appear as
more dispersed in comparison with the QLD models, due to the fact
that for RTL models this parameter depends on all calibrated analytes.
Notice that the cross-validation and prediction procedure should be re-
peated for each calibrate analyte for U-PLS/RTL and N-PLS/RTL, while
TLLS/RTL provides the concentrations of all calibrated analytes at the
same time.

Finally, the comparison of figures of merit shows similar values to
those furnished by the QLD models (Table 3). They allow for similar
correlations with the RMSEP parameters collected in Table 2 for the
predicted analyte concentrations.

The U-PCA/RTL model is unique in that no concentration informa-
tion is obtained, because the aim of this model is to produce calibration
and test sample scores to be employed in the training of a suitable
non-linear multivariate model, such as neural networks. The idea is to
free the test sample data from the effect of unexpected sample compo-
nents.When the button ‘Unfolded principal component analysis’ is acti-
vated, a variety of statistical indicators are provided, in order to select
the correct number of principal components to model the calibration
sample set.

Fig. 4. Pseudo-univariate plot of PARAFAC scores for the selected component vs. nominal analyte 1 calibration concentrations. Blue circles, calibration samples, red cross, unknown
sample interpolated into the calibration graph. The regression fit for the calibration graph is provided by the program.

Table 2
Predicted concentrations for both analytes using the QLD and RTL methods in the ten
samples of the test set.

Test sample Nominal PARAFAC, APQLD and AWRCQLD TLLS/RTL U-PLS/RTL

Analyte 1a

1 0.408 0.419 (3) 0.417 (6) 0.421 (5)
2 0.392 0.395 (3) 0.394 (4) 0.394 (4)
3 0.334 0.328 (3) 0.327 (4) 0.331 (6)
4 0.370 0.369 (3) 0.368 (4) 0.370 (1)
5 0.600 0.610 (3) 0.608 (4) 0.611 (6)
6 0.544 0.558 (3) 0.556 (5) 0.558 (5)
7 0.410 0.394 (3) 0.393 (5) 0.395 (4)
8 0.366 0.375 (3) 0.373 (4) 0.374 (4)
9 0.564 0.570 (3) 0.568 (6) 0.571 (5)
10 0.216 0.222 (3) 0.222 (8) 0.226 (6)
RMSEP 0.01 0.01 0.01

Analyte 2a

1 0.714 0.68 (1) 0.69 (2) 0.65 (2)
2 0.206 0.23 (1) 0.24 (1) 0.24 (1)
3 0.782 0.77 (1) 0.78 (2) 0.72 (2)
4 0.402 0.41 (1) 0.42 (1) 0.40 (1)
5 0.716 0.71 (1) 0.72 (1) 0.69 (2)
6 0.590 0.56 (1) 0.58 (1) 0.55 (2)
7 0.512 0.53 (1) 0.53 (2) 0.51 (1)
8 0.276 0.26 (1) 0.27 (1) 0.27 (1)
9 0.710 0.69 (1) 0.71 (2) 0.67 (2)
10 0.790 0.78 (1) 0.79 (2) 0.72 (2)
RMSEP 0.02 0.02 0.04

a Standard deviation in concentration between parenthesis.

Table 3
Analytical figures of merit for all methods in typical samples of the simulated test set.a.

AFOM PARAFAC, APQLD
and AWRCQLD

TLLS/RTLa,b U-PLS/RTLa,b

Analyte Analyte Analyte

1 2 1 2 1 2

SEN 0.89 0.21 0.89 0.22 0.86 0.20
SEL 0.89 0.21 0.89 0.22 – –

γ 440 110 450 110 400 92
LOD 0.007 0.03 0.008 0.02 0.008 0.04

a Figures of merit have been computed for the test sample No. 1. To estimate γ and
LOD, the standard deviation of signal residuals was 0.01.

b LOD estimated from the sample of lowest analyte concentration.
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8. QLD and RTL models for experimental data

The experimental data set was analyzed using all models, follow-
ing the general prescriptions detailed above in connection with the
simulated data set. In this case a single analyte occurs, whose re-
sponse is embedded in the background signal of the test samples.
The three QLD models (PARAFAC, APQLD and AWRCQLD) all required
two components for successful decomposition (typical emission, ex-
citation and time profiles are shown in Fig. 6). Once selected the com-
ponent ascribed to the analyte, the pseudo-univariate plot of scores
vs. concentrations is produced (see Fig. 7 for a typical plot produced
by PARAFAC for a certain test sample). As can be seen, the relation-
ship between scores and concentrations is not linear, but can be ade-
quately described by a simple second-degree polynomial expression
(a short MATLAB code for performing this calibration is provided
along with the data set). This permits quantitation of the analyte con-
centration in the eight test samples, whose values are quoted in

Table 5. In this case the results from the three QLD methods are al-
most identical, with good success in analyte quantitation, even due
to the non-linear nature of the signal–concentration relationship.

In the case of TLLS/RTL, a single analyte occurs, and a single RTL
component is needed to model the signal of the interferent in all sam-
ples. This is in agreement with the above QLD results, which required
two components (one analyte and one interferent). U-PLS/RTL, on the
other hand, requires a single latent variable for modeling the calibra-
tion data (as dictated by cross-validation analysis). Since TLLS and U-
PLS are basically linear, analyte quantitation proceeds with moderate
accuracy (see Table 5).

These experimental data illustrate the subtleties and complica-
tions which may arise in real-world third-order multivariate applica-
tions to experimental analytical systems. It should be noticed that the
above discussed experimental system can also be tackled by non-
linear calibration models based on artificial neural networks, which
are universal non-linear approximators, combined with RTL. The
reader may found details on this subject in Ref. [16].

9. Conclusions

MVC3, a new flexible and free MATLAB toolbox is described for
the implementation of many third-order multivariate calibration
methods. Calibration and prediction of unknown samples are per-
formed from a single window without requiring any extra efforts.
Outlier detection, prediction confidence intervals and analytical fig-
ures of merit are readily obtained. These characteristics make the
new toolbox useful for less experienced users which would like to
adequately process third-order instrumental data with analytical
purposes.

10. Validations

Two independent researchers have tested the software, and their
comments are provided below.

Prof. Olivieri's Group has developed the MVC3 toolbox for third-
order multivariate calibration, which consists of up to 7 different
third-order multivariate calibration methodologies through easily
managed graphical user interfaces. After preparing the dataset fol-
lowing the specifications in MVC3's manual, calibration, validation,

Table 4
Leave-one-out cross-validation (U-PLS) and RTL results (TLLS/RTL and U-PLS/RTL) for
analyte 1 when processing the test sample No. 1.

Cross-validation results

Latent
variables

U-PLSa

PRESS F p

1 0.49041 505 0.999
2 0.00103 1.06 0.533
3 0.00097 1 0.5
4 0.00097 – –

5 0.00097 – –

RTL results

RTL components TLLS/RTL U-PLS/RTLb

SD SD

0 0.011 0.011
1 0.002 0.002
2 0.002 0.002
Calibration residue 0.001 0.002

a Calibrating for analyte 1.
b Using 2 calibration latent variables and calibrating for analyte 1.

Fig. 5. Profiles in both dimensions for the RTL component, as retrieved by the U-PLS/RTL method. Compare with the black interferent profiles in Fig. 1.
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prediction and model selection can be performed within the main
window intuitively. This work will bridge the gap between pure
chemometricians and end users. There are a few issues which I
would like to see addressed in the future: the first is MVC3 depends
on the PARAFAC and N-PLS packages, it seems necessary for the au-
thors to integrate the used functions of PARAFAC and N-PLS into
MVC3 to make easier in usage and installation. The other is the
dataset given in the toolbox seems rather simple, the authors should
add more examples in the manual and datasets into the toolbox.
Then, the readers and users can easily know the limitation and appli-
cation domain of each method in the toolbox.

The MVC3 graphical interface software can be employed for the
processing of four-way analytical data, and implements several
third-order multivariate calibration algorithms. These algorithms in-
clude those based on quadrilinear decomposition (QLD): PARAFAC,
APQLD and AWRCQLD, and those based on residual trilinearization
(RTL): TLLS, U-PLS, N-PLS, and U-PCA, all in combination with the
RTL algorithm. The toolbox has been already used in several analytical
applications since 2004, although including only several of the select-
ed prediction algorithms in older versions of the MVC3 interface. I
had the opportunity of using the MVC3 graphical interface and I can
confirm that the software is working fine in different analytical

Fig. 6. Profiles recovered by PARAFAC for both components of the experimental data set.

Fig. 7. Pseudo-univariate PARAFAC plot of scores for the selected component vs. nominal analyte calibration concentrations in the experimental data set. Blue circles, calibration
samples, red cross, unknown sample. Notice that pseudo-univariate calibration should be implemented in this case by fitting the scores to the nominal concentrations using a
polynomial rather than a straight line.

15A.C. Olivieri et al. / Chemometrics and Intelligent Laboratory Systems 116 (2012) 9–16
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situations with data of different complexities. The new version of the
MVC3 toolbox is now including a higher number of prediction algo-
rithms, as those based on APQLD and AWRCQLD have been added.
The MVC3 graphical interface toolbox is of interest to scientists that
need to perform multivariate calibration with any class of four-way
data.
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Table 5
Predicted analyte concentrations using the QLD and RTL methods in the eight samples
of the experimental test set. All concentration values are given in mg L−1.

Test
sample

Nominal PARAFAC, APQLD
and AWRCQLDa

TLLS/RTLb U-PLS/RTLc

1 0.00 0.05 0.14 0.19
2 0.00 0.04 0.14 0.18
3 0.54 0.47 0.46 0.49
4 0.54 0.49 0.48 0.51
5 1.08 0.99 0.90 0.91
6 1.08 1.13 1.04 1.03
7 1.62 1.59 1.55 1.50
8 1.62 1.51 1.46 1.40
RMSEP 0.07 0.12 0.14
REP% 8.6 15 17

a Using a two-component quadrilinear model. Mean centering was applied to
remove background signals.

b Using mean centering and a single RTL component to model the interferent.
c Using one calibration latent variable, mean centering and a single RTL component.
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