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Abstract
Nonlinearmechanisms are frequently invoked to explain unexpected observations during processes
of energy exchange inmechanical systems.However, whether the same phenomena could be observed
in a purely linear system is seldom considered. In this paper, we revisit the problemof two linearly
coupled, damped, harmonic oscillators, with emphasis on the dynamics of theirmutual exchange of
energy. A novel criterion is established to discern between twowell-differentiated regimes of energy
exchange under ringdown conditions, when all external excitations are turned off and the oscillatory
motion is left to decay by dissipation. The two regimes are induced by different sets of initial
conditions, and correspond to extremal values of the total net energy transferred during ringdown.
Although the problem is in principle fully solvable, its algebraic involvedness requires in practice to
resort to approximated expressions for oscillation frequencies and decay rates.We explicitly provide
such approximations in the limit of high quality factors andweak coupling. This limit is relevant to
current experiments onmicro- and nanomechanical oscillators, whose physical behavior is usually
explained by extensive allusion to energy exchange. Our results should help to discern between
observations that are genuinely due to nonlinear effects, and those that can be explained in terms of
linearmechanisms only.

1. Introduction

The dynamics of energy exchange between different degrees of freedom in amechanical system is a key
ingredient of our physical understanding on how the systemworks, but it is also essential to the design and
operation of all kinds of highly relevant technological devices. Controlled processes of energy extraction,
harvesting, conversion, and delivery –whose importance escalates in aworldwhere overexploited power sources
call for increasingly sophisticated alternatives–are based on the transfer of energy froma natural supply, through
somemachinery thatmakes it usable and, ultimately, back to the environment [1, 2]. Careful engineering of
energy dissipation is also critical tomany applications. Rapid switching between different dynamical regimes, for
instance, requires fast dampingmechanisms [3, 4]. On the other hand, devices such as pacemakers and certain
kinds of sensors base their functioning on themaintenance of oscillatorymotion for long periods at low power
consumption, which demands small dissipation rates [5–7]. In the laboratory, observation of energy dissipation
in amechanical system is a standard tool to disclose the ingredients that shape its behavior, in particular, the
occurrence of nonlinearity [8–11].

In the last two decades,much emphasis has been put on the study of nonlinear effects in the energy exchange
ofmechanical systems, including how to exploit those effects to get specific dynamical regimes during
dissipation [3]. Very recent ringdown experiments onmicro- and nanomechanical oscillators –where an initial
external forcing is suddenly turned off, and oscillations are left to die out by damping–have disclosed the
occurrence of one ormore transitions between time intervals where oscillation amplitudes decay at different
rates [12, 13]. This kind of behavior has been ascribed to nonlinearity both in the intrinsic dynamics of the
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oscillators and in the coupling between their various oscillationmodes. In fact,micro- and nanomechanical
oscillators arewell-known instances of nonlinear systems [14].Models including anharmonic restoring forces,
as well as nonlinear coupling, have successfully reproduced theirmany dynamical regimes [12, 13, 15, 16].

What it is not so clear, however, is towhich extent onemust always invoke nonlinearity to explain a given
empirical observation on a nonlinearmechanical system. Indeed, the fact that the system involves anharmonic
forces does not automaticallymean that nonlinearity reveals itself in all the dynamical features, or that such
features could never be present in a purely linear system. To clarify this point in connectionwith the experiments
onmicro- and nanomechanical oscillatorsmentioned above, in this paperwe revisit the classical problemof two
coupled linear dampedmechanical oscillators [17], with emphasis on theirmutual exchange of energy.
Coupled-oscillatormodels, in fact, yield a standard description formodal interaction in vibrating solid bodies,
ranging from the beams of building structures to the components ofmicroscopicmachines [18, 19]. Ourmain
aim is to characterize as completely as possible the different regimes associatedwith energy exchange between
the two oscillators, thus providing a reference set of results withwhich empirical observations can be contrasted.

After presenting the equations ofmotion for our system, stationary and ringdown solutions are numerically
and analytically studied in sections 2 and 3, with emphasis in the dynamics of energy exchange. Section 4 is
devoted to a summary of the results, and to a discussion in connectionwith experimental observations.

2. Equations ofmotion and stationary oscillations

Weconsider two harmonic oscillators with coordinates x1(t) and x2 (t) andmassesm1 andm2, coupled through a
bilinear interaction potential = -V Jx xint 1 2. An external harmonic force of amplitude F and frequencyΩ is
applied to oscillator 1. For the rescaled coordinates ºu x1 1 and ºu m m x2 2 1 2, the equations ofmotion,
normalized by the respectivemasses, are

g w

g w

+ + = + W

+ + =

˙
˙ ( )

u u u ju f t

u u u ju

¨ cos ,

¨ , 1

1 1 1 1
2

1 2

2 2 2 2
2

2 1

with γ1,2>0 the damping coefficients permass unit,ω1,2
2 the natural frequencies, =j J m m1 2 , and

f=F/m1. The net instantaneous power transferred fromoscillator 1 to oscillator 2 due to their interaction is
given by the difference between thework per time unit performed by the respective coupling forces:

= - = - ( ˙ ˙ ) ( ˙ ˙ ) ( )W J x x x x jm u u u u . 21 2 1 2 1 2 1 1 2 1 2

Ourmain results in the following sections concern this quantity, both during forced stationary oscillations
( ¹f 0) and during ringdown ( f= 0).

Naturally, being equivalent to a set of four linear first-order differential equations, the equations ofmotion
(1) can formally be given a full solution, in terms of eigenvalues and eigenvectors of the related fourth-order
algebraic problem [20]. This result, in turn, can be replaced into (2) to explicitly compute W1 2. In practice,
however, the general solution can hardly be cast in aworkable form,mainly due to the involved expression of the
eigenvalues, which are the roots of a fourth-degree polynomial. Therefore, our strategy is toworkwithin
approximations that allow formore compact expressions and that, at the same time, are relevant to the
experimental conditions withmicro- and nanomechanical oscillators. Similarly, we do not switch to the
standard eigenvector representation of a linear problem such as (1), but preserve the description in term of the
original coordinates u1,2 and their velocities, which are expected to be directly observable quantities in the
experiments.

Under the action of the external harmonic forcing Wf tcos , and after a transient whose length is controlled
by the damping coefficients γ1,2 (see section 3), the system asymptotically attains a stationary state where the two
oscillators perform synchronizedmotionwith the same frequency as the external force. Namely,

f= W + º W( ) ( ) [ ( )]u t A t a i tcos Re exp1,2 1,2 1,2 1,2 , with f= ( )a A iexp1,2 1,2 1,2 .Without generality loss, we
assume A 01,2 and f,Ω>0. This formof u1,2 (t) is a solution to (1) if

=
-

=
-

( )a
L f

L L j
a

jf

L L j
, , 31

2

1 2
2 2

1 2
2

with w g= - W + WL i1,2 1,2
2 2

1,2 .
It is customary to characterize the resonant response of an oscillating system to harmonic external forcing of

frequencyΩ by specifying the oscillation amplitudes and phases as functions ofΩ [21]. Amore comprehensive
description –absorbing all the parameters into non-dimensional rescaled quantities–is obtained in the present
case in terms of the rescaled detunings
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The rescaled oscillation amplitudes read
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Note that, except for the proportionality a µ -∣ ∣j2
1, the positive non-dimensional parameterΛ captures all the

information about the coupling strength between the oscillators. These results,moreover, are independent of
the sign of j.

Infigure 1, we showplots of the rescaled amplitudesα1,2 as functions of the detunings δ1,2 for three values of
the coupling parameterΛ. For smallΛ, as expected for ordinary resonance under the action of harmonic forcing,
the amplitude of oscillator 1 ismaximal when its own detuning δ1 is close to zero. A small downward indentation
inα1 appears however around δ2=0, where oscillator 2 is best tuned to resonantly receive the energy
transferred from the external force through oscillator 1. Correspondingly,α2 displays resonance ridges around
the axes δ1=0 and δ2=0, and attains itsmaximumwhen the two oscillators are perfectly tuned to the force
(δ1=δ2=0). As coupling becomes stronger andΛ increases, the indentation inα1 grows deeper, indicating
that energy transfer to oscillator 2 ismore efficient. At the same time, both forα1 andα2, the points ofmaximal
amplitude shift from the axes toward larger detunings. ForΛ=1, specifically, themaximumofα2 becomes a
saddle point, and two lateralmaxima appear in the quadrants where δ1,2 have equal signs. The shift of resonance
ridges to nonzero detuning asΛ grows is associatedwith a change in the oscillation frequencies, induced by
linear coupling (see section 3).

Equations (5) and (6) readily show that, as illustrated byfigure 1, thewidth of the resonance ridges is always
of order unity in the rescaled detunings δ1,2, irrespectively of the value of the coupling parameterΛ. In contrast,
as advanced in the preceding paragraph, the position of the resonance ridges is strongly dependent onΛ, with a
qualitative change of behavior atΛ≈1. ForΛ= 1, (5) reduces to

a
d

a
d d

»
+

»
+ +( )( )

( )1

1
,

1

1 1
, 71

1
2

2

1
2

2
2

which clearly represent the resonance ridges along the axes δ1=0 and δ2=0, with a cusp inα2 for δ1=δ2=0.
ForΛ? 1, on the other hand, the ridges occur along the hyperbola δ2=Λ/δ1. On this curve, the amplitudes are

Figure 1.The rescaled oscillation amplitudesα1 (upper panels) andα2 (lower panels), given by (5), as functions of the detunings δ1,2 in
(4), for three values of the coupling parameterΛ. The scales for all the panels are the same as indicated in the lower-left plot.
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For the stationarymotion considered here, the oscillation phasesf1,2 are defined up to an arbitrary additive
constant. The only relevant quantity associated to them is therefore the phase differencef1−f2, given through

f f
d

d
f f

d
- =

+
- =

+
( ) ( ) ( ) ( ) ( )j j

cos
sgn

1
, sin

sgn

1
. 91 2

2

2
2 1 2

2
2

Note that whether one of the phases is ahead or behind the other depends on the sign of the interaction
constant, ( )jsgn .

The phase difference appears in the expression for the net power transfer W1 2 of (2):

f f
d

= W - =
W

+
 ( ) ∣ ∣ ( )W jm A A j m

A A
sin

1
. 101 2 1 1 2 1 2 1

1 2

2
2

Remarkably, in spite of the oscillatory dynamics of the system, W1 2 is constant in time.Moreover, it is always
positive, indicating that a sustained energyflux occurs fromoscillator 1 –where energy is injected by the external
force–to oscillator 2. Using the rescaling for the amplitudes introduced in (5), the corresponding non-
dimensional expression for the power transfer turns out to be equal to a2

2. Therefore, the dependence of the
power transfer on the detunings δ1,2 is qualitatively well illustrated by the lower row offigure 1.

3. Ringdowndynamics

3.1. Approximations for the eigenvalues
In the absence of external forcing, f=0 in (1), and formoderate values of the damping coefficients γ1,2, the
motion of our system consists of damped oscillations, with decaying, asymptotically vanishing amplitudes. The
solutions u1,2(t) can be explicitly written down as linear combinations of the exponentials l( )texp a b, , where the

two pairs of complex-conjugate numbers l m= -  W ia b a b a b, , , are the eigenvalues of the Jacobian

 w g

w g

= - -

- -

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )j

j

0 0 1 0
0 0 0 1

0

0

. 11
1
2

1

2
2

2

Their real parts are always negative (μa,b>0) and control the exponential decay of the amplitudes. Their
imaginary parts, in turn, are given by the ‘non-normal’ oscillation frequenciesΩa,b (which do not coincide with
the normal-mode frequencies of the undamped system [17]).Without generality loss, we chooseΩa,b>0. The
solutions l( )texp a b, also describe, in the casewith external forcing considered in the preceding section, the
transientmotion toward stationary oscillations.

In principle, being the roots of a fourth-degree polynomial, the eigenvalues l
a b, can bewritten out explicitly.

Practical approximate expressions, however, can only be obtained in suitable limits. In the following, we focus
on the limit γ1,2=ω1,2. Indeed, in systemswhere energy exchange between oscillatingmodes has a significant
dynamical role, it is expected that the times associatedwith energy dissipation (of order g-

1,2
1) aremuch longer

than the typical oscillation periods (of order w-
1,2

1). This limit is relevant to applications tomicro- and
nanomechanical oscillators, onwhichwe focus in this paper. The quality factor of such devices –given by the
ratio between the frequency and the damping coefficient,Q=ω /γ–can in fact reach values from104 to 108

[12, 15, 22]. In experiments withmacroscopic oscillators –ranging frompendulums, to vibrating strings, to
cantilevers–typical quality factors areQ∼102 to 103 [23, 24], so that the limit still holds.

In externally forced linear oscillators, the quality factor is an inversemeasure of thewidth of the resonance
peak relative to the frequency of the external force: the larger the value ofQ, the narrower the resonance
frequency band. In connectionwith this feature, the assumption of high quality factors in our two-oscillator
systembrings about a further simplification. In fact, sizable dynamical effects of the interaction between the two
oscillators are only expectedwhen their natural frequencies are not too far from each other, so that theirmutual
resonance peaks overlapwith each other. This condition requires w w g-∣ ∣1 2 1,2. Combinedwith the
assumption of highQ, γ1,2=ω1,2, itmakes it possible to restrict the analysis to the case of identical natural
frequencies,ω1=ω2≡ω, as we do hereafter.

From the viewpoint of themathematical procedure, it turns out that the limit of weak damping, γ1,2→0,
cannot be taken irrespectively of the value of the rescaled coupling constant j. In fact, as for the stationary
oscillations analyzed in section 2, the behavior of the systemdepends on how the interaction forces compare
with damping forces –cfthe non-dimensional parameterΛ in (6). Therefore, it is necessary to consider as two
separate cases the limits γ1,2→0 and j→0, evenwhen the condition of highQ, γ1,2=ω, must always hold. In
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both cases, our approach is the same: wefind the exact eigenvalues of the Jacobian for either γ1,2=0 or j=0 as
the roots of the corresponding fourth-order polynomial and, then, we obtain approximate solutions to thefirst
significant order, as perturbations of those exact roots.

3.1.1.Weak damping
For γ1,2=0, the eigenvalues of in (11) are

l g w= =   ( ) ( )i j0 . 12a b, 1,2
2

As expected, these imaginary roots describe undamped, purely oscillating solutions. Note, however, that this
requires that coupling is not too large, i.e.j<ω2.

Thefirst significant correction to this result adds a real part to the eigenvalues, without changing their
imaginary parts, namely:

l
g g

w» -
+

  ( )i j
4

. 13a b,
1 2 2

This correction is the same for the two pairs of complex-conjugate eigenvalues and does not depend on the
coupling constant j. To the next order, the correction is proportional to g w g1,2

2
1,2 and only affects the

imaginary parts of l
a b, . The leftmost panel offigure 2 compares the approximated decay rates given by (13)

(dashed line)with the exact values (full lines) for selected parameters.
For weak damping, thus, the oscillation amplitude decays at a uniform rate, independent of the coupling

strength, within a typical time scale of order g g+ -( )1 2
1. Oscillations, in turn, are generally given by the

combination of two harmonicmotions of different frequencies.

3.1.2.Weak coupling
In contrast with the previous case, for j=0 the eigenvalues of have both real and imaginary parts:

l g w g g w= = -  - » -  ( ) ( )j i i0
1

2

1

4

1

2
. 14a b, 1,2

2
1,2
2

1,2

Not unexpectedly, each complex-conjugate pair involves the damping coefficient of only one of the two
oscillators.

Thefirst significant correction in the limit of weak coupling affects both the decay rates and the frequencies:

l
g

g w
w

g g
w

» - +  +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )j

g
i

j

g2
1 1

4
, 15a b,

1,2
2

1,2 1,2
2

2
1 2

1,2
2 4

with g g= - = -g g1 2 2 1. Note that the new terms are quadratic in the coupling constant.Moreover, the relative
correction to the imaginary part is of order g w  11,2

2 2 as compared to that of the real part. A comparison of
the approximated and exact decay rates for selected values of the parameters is shown in the rightmost panel of
figure 2.

Figure 2. Left: decay rates (given by the absolute value of the real part of Jacobian eigenvalues) for w w w= º = 11 2 , j=0.1, as
functions of γ1, with g g= 3 22 1 . Full lines: exact vales; dashed line: weak-damping approximation, given by (13). Right: decay rates
forω=1 and γ1=2γ2/3=0.01, as functions of j. Full lines: exact values; dashed lines: weak-coupling approximation, given by (15).
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3.2. Explicit ringdown solution
Once the eigenvalues l m= -  W ia b a b a b, , , have been obtained –either exactly, or within any suitable
approximation–we can explicitly write down the general solution to thefirst of equations (1) as

f= W + +m-( ) ( ) { } ( )u t A t be cos , 16a
t

a a1 a

where {b} stands for a termwith the same form as the preceding one, except that all subindices are b instead of a.
For the second of equations (1), the solution is

f f= W + + W + +m- -( ) [ ( ) ( )] { } ( )u t j A C t S t be cos sin , 17a
t

a a a a a a2
1 a

with

w m m g m g= - W + - = W -( ) ( ) ( )C S, 2 . 18a b a b a b a b a b a b a b, 1
2

,
2

, , 1 , , , 1

The amplitudesAa,b and the phasesfa,b are arbitrary constants, whose values become determinedwhen a
suitable set of initial conditions is specified. Fixing the coordinates u1,2 (0) and the velocities ˙ ( )u 01,2 at time t=0,
amplitudes and phases can be obtained from the following set of equations:

f
f f

m f f
m f f

f f

= +
= + +

- = + W +
- = +

+ W - +

( ) { }
( ) ( ) { }

˙ ( ) ( ) { }
˙ ( ) [ ( )

( )] { } ( )

u A b

ju A C S b

u A b

ju A C S

C S b

0 cos ,

0 cos sin ,

0 cos sin ,

0 cos sin

sin cos . 19

a a

a a a a a

a a a a a

a a a a a a

a a a a a

1

2

1

2

This system is linear in the products fA cosa b a b, , and fA sina b a b, , , which can therefore be immediately found to
later computeAa,b andfa,b.

Equations (16) to (19) complete the solution to the present problem. Fromnowon, we focus the attention on
the exchange of energy between the two oscillators. The net instantaneous power transfer fromoscillator 1 to
oscillator 2, W1 2, is given by (2). This quantity has an explicit simplified form in the relevant limit of weak
damping and coupling, g wj,1,2

1 2
1,2, already discussed in section 3.1. In this limit, as shown by (13) and

(15), the frequenciesΩa,b differ from each other by a small quantity. Assuming, without generality loss, that
Ωa>Ωb, they can bewritten as

n
W = W  ( )

2
, 20a b, 0

whereΩ0=(Ωa+Ωb)/2 and n = W - W Wa b 0, with ν>0. Because of a partial compensation of the
oscillations in the power transferred by the interaction forces, ˙Jx x1 2 and ˙Jx x1 2, the dominant oscillating
contributions to W1 2 have frequency ν:

n n
W » + +
´ + + F - - + F

m m m m-


- - - +( )
[( ) ( ) ( ) ( )] ( )

( )m W S A S A A A

S S t C C t

e e e

cos sin , 21
a a

t
b b

t
a b

t

a b a b

1 0
1

1 2
2 2 2 2a b a b

withΦ=fa−fb. The long-time behavior of W1 2 is controlled by the term in (21)with the slowest
exponential decay. Assuming, without generality loss, thatμa<μb, the asymptotic power transfer is

W  ¥ » m-


-( ) ( ) ( )m W t S A e , 22a a
t

1 0
1

1 2
2 2 a

whose sign is determined by that of Sa. Using (13) and (15), it can readily be shown that, within the
approximations considered in section 3.1, the sign of Sa is always the same as that of the difference g1=γ2−γ1.
For long times, therefore, the net flux of energy always occurs from the oscillator with the smaller damping
coefficient toward that with the larger damping coefficient. Power is thus transferred by coupling to the oscillator
with higher capacity to dissipate energy.

The total energy transferred fromoscillator 1 to oscillator 2 along thewhole ringdown process,

ò=
¥

E W dt1 2
tot

0 1 2 , is given by

m m

m m n

W » +

+
+ F - F - - F - F

+ +

-
( )

( ) ( ) ( ) ( )
( )

( )

m E
S A S A

A A
S S C C

2 2

sin cos
, 23

a a

a

b b

b

a b
a b a b

a b

1 0
1

1 2
tot

2 2

0 0

2 2

with m m m m nF = + + +( ) ( )sin a b a b0
2 2 , n m m nF = + +( )cos a b0

2 2 . In the following, E1 2
tot is used

to discern between different ways inwhich energy is exchanged during the ringdown dynamics.
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3.3.Different regimes of energy exchange
Different dynamical regimes of energy exchange during ringdown can be characterized by the extremal
(maximal orminimal) values of E1 2

tot . For a given set of parameters, such regimeswould ultimately be
determined by the initial conditions, as explained in the following.

Expansion of (23) straightforwardly shows that, within the approximations considered in section 3.2, the
total energy transferred during ringdown is a homogeneous quadratic function of the products fA cosa b a b, , and

fA sina b a b, , . Namely, E1 2
tot is a linear combination of terms given by themultiplication of two of those products.

Via (19), in turn, we can express the products as linear combinations of the initial conditions. Consequently,

E1 2
tot is also a quadratic function of the initial conditions. In otherwords, introducing the vector of initial

conditions = ( ( ) ( ) ˙ ( ) ˙ ( ))u u u uU 0 , 0 , 0 , 01 2 1 2 , there exists amatrix such that =
†E U U1 2

tot . The elements of
 depend on the systemparameters only. Extremization of E1 2

tot with respect to the initial conditions thus
amounts to solving the equation  =( )†U U 0U . This calculation, however, cannot be done on the
unrestricted set of all possible initial conditions: otherwise, wewould obtain trivial solutionswith  ¥∣ ∣U and

∣ ∣U 0, for which E1 2
tot reaches arbitrarily large and small values, respectively.

A reasonable constraint to perform the extremization is to require that all the initial conditions correspond
to the same initial value of the total energy,

w w

w w
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= + + + -
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Wenote that this also is a homogeneous quadratic function ofU. Namely, there is amatrix  such that
= †E U U0 . As in the case of, the elements of  depend on the systemparameters only. The extremization of

E1 2
tot on themanifoldwhere the initial energy is a prescribed value E0 results from the equation

 r + - =[ ( )]† †EU U U U 0U 0 , where ρ is a Lagrangemultiplier. This problem turns out to be equivalent to
solving the eigenvalue equation

  r=-( ) ( )U U. 251

In otherwords, the eigenvectors resulting from (25) give the initial conditions forwhich E1 2
tot adopts its

extremal values, with the constraint that the initial energyE0 isfixed.
Note that E0 does not appear in (25). Therefore, the corresponding eigenvectors and eigenvalues canfirst be

found as functions of the systemparameters only. Then, the eigenvectors can be rescaled by a suitable factor, in
such away that the identity = †E U U0 is fulfilled for the desired value of the initial energy. The respective
eigenvalues –which are not affected by the eigenvector rescaling–give the ratio between the total energy
transferred during ringdown and the initial energy: r = E E1 2

tot
0.

While thematrix that defines the initial total energy can be immediately written down, as



w

w=

-

-

⎛
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, 261
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generally, thematrix cannot be given a compact expression.However, under the conditions of high quality
factors andweak coupling considered in section 3.1.2, it approaches the simple form


g g

=
+

-
-
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270 1

1 2

when j→0. In the same limit, thematrix  becomes diagonal,
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, 280 1
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and the eigenvalue problem (25) can be readily solved. The resulting eigenvectors and eigenvalues are

u w w r

u w w r

u w w r

u w w r

= - =

= - - - =

= - = -

= - = -
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( )
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1, 1, , , , 29

1
0

0 1
0

0

2
0

0 2
0

0
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0

0 3
0

0

4
0

0 4
0

0

with u w= E m20 0
2

1 and g g w= +( )r j20 1 2 .We see that U1
0 and U2

0 on one side, and U3
0 and U4

0 on the
other, formpairs of degenerate eigenvectors.Moreover, if j>0, the initial conditions given by U1

0 and U2
0

correspond to a positive extremumof the total energy transfer during ringdown: g g w= + ( )E jE21 2
tot

0 1 2 . For
U3

0 and U4
0, the extremumof E1 2

tot has the samemodulus and opposite sign. If j<0, these relations are
interchanged. In the following, we use this limit case as a reference situation for the numerical characterization
of the dynamics of energy exchange between the two oscillators.

3.3.1. Numerical results
Wehave explored the problemof extremization of E1 2

tot numerically, for selected values of the parameters. In all
cases, without generality loss, we have chosen γ2>γ1. According to our discussion around (22), such choice
implies that, for sufficiently long times, the energy alwaysflows fromoscillator 1 to oscillator
2, i.e.  ¥ > ( )W t 01 2 .

Within the approximation of large quality factor andweak coupling, but forfinite values of j, numerical
solution of the eigenvalue problem (25) shows that the degeneracy of the eigenvectors in (29) breaks down.
Specifically, for j>0, the eigenvectorU1 (»U1

0) corresponds to amaximumof E1 2
tot , whileU2 (»U2

0) is a saddle
point. Namely, the respective eigenvalues verify ρ1ρ2. As for the other two eigenvectors,U4 (»U4

0)
corresponds to aminimumof the total energy transfer, whileU3 (»U3

0) is another saddle point, with ρ3ρ4.
For j<0 the relations are inverted, withU1 andU4 respectively corresponding to theminimumand the
maximumof E1 2

tot .
To study the dynamics of energy exchange during ringdown, we have performed numerical integration of

the ringdown version of (1) –namely, with f=0–using a standard fourth-order Runge-Kutta scheme. In order
to obtainmore generic results, we relaxed the approximationω1=ω2 used in our analytical derivations,
although the condition w w g-∣ ∣1 2 1,2, relevant to the limit of high quality factor (see section 3.1), was
maintained.We have explored a variety of parameters compatible with a high quality factor andweak coupling,
verifying that initial conditions corresponding to the extremal values of E1 2

tot indeed characterize different
regimes of energy exchange.

As an illustration, themain plots infigure 3 show the net instantaneous power transferred fromoscillator 1
to oscillator 2, W1 2, as a function of time, forω1=1,ω2=1.001, γ1=0.001 5, γ2=0.03, and j=0.001.We
have used dashed lines to indicate negative values of W1 2. In all cases, the initial energy, given by (24), has been
fixed atE0=1. For these parameters, usingm1=1, the eigenvectors and eigenvalues are as follows:

Figure 3.Main plots: power transfer W1 2 as a function of time, obtained fromnumerical resolution of (1) forω1=1,ω2=1.001,
γ1=0.001 5, γ2=0.03, j=0.001, with unitary initial energy, E0=1, for initial conditionsU1 andU4, respectively corresponding to
maximal (left) andminimal (right) total energy transfer E1 2

tot . Dashed lines indicate negative values of W1 2. Insets: Positive
envelopes of the coordinates u1 and u2 as functions of time, for the same cases as in the respectivemain plots.
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cf(29). In the leftmost panel, we used the initial conditionU1, for which E1 2
tot attains itsmaximum.We see that

 ( )W t1 2 is always positive, with amonotonous decay as time elapses. Clearly, the evolution of  ( )W t1 2 in this
regime is divided into two stages. In thefirst one, the dynamics is dominated by the largest decay rate, m g»2 b 2.
In the second, when the component decaying at rate 2μb has died out, dominance is overtaken by the smallest
decay rate, m g»2 a 1, which controls the final approach to rest. This separation results into twowell defined
slopes in different zones of the logarithmic plot.

The rightmost panel offigure 3 shows the power transferred as a function of time for the same parameters,
butwith the initial conditionU4, which corresponds to theminimumof E1 2

tot . For this initial condition,

 ( )W t1 2 is initially negative, so that energyflows fromoscillator 2 to oscillator 1. Eventually, as expected from
(22), this sign is reversed and the final decay of  ( )W t1 2 occurs from the positive side. It is the balance between
stageswith opposite signs for the instantaneous energy exchange that explains theminimal value of the total
energy transferred between the oscillators. As amatter of fact, as it results from the eigenvalues reported in (30),
in this case <E 01 2

tot .
The insets in the two panels offigure 3 show the oscillation amplitudes of the two oscillators –as given by the

(positive) envelopes of the coordinates u1 and u2–as functions of time.We see that the amplitude of oscillator 1
decays at a practically constant rate, m g» 2a 1 , which is controlled by its own damping coefficient. In turn, the
amplitude of oscillator 2 ‘copies’ the time behavior of W1 2, with a clear change in its decay rate for the initial
condition given byU1, and nonmonotonic evolution forU4. Note that the long-time amplitude decay rates are
the same in all cases.

When the initial condition is taken as given by the eigenvectorU2 –which, asmentioned before, correspond
to a saddle point of E1 2

tot –the evolution of  ( )W t1 2 is practically identical to that obtained fromU1. Comparing
(30), it is clear thatU1 andU2 represent quite different initial conditions, in particular, regarding the relative
signs of positions and velocities of the two oscillators. These differences, however, compensate each other when
calculating the products that define the net power transfer, given by (2), and the resulting value of  ( )W t1 2 is
virtually the same.Note that, in spite of the differences between the eigenvaluesU1 andU2, their eigenvalues ρ1
and ρ2 aremutually very similar. This reinforces the notion that the value of E1 2

tot is a good indicator of the
dynamical regime of energy exchange between the two oscillators. A similar situation ismetwhen comparing the
evolution from the initial conditionsU3 (saddle point) andU4 (minimum).

The crossover between the two regimes shown infigure 3 can be characterized by considering initial
conditions of the form  = + -[ ( ) ]zU U U1U 1 4 , which linearly interpolates between the initial conditions
that lead tomaximal andminimal energy exchange. The prefactor zU is chosen in such away thatU corresponds
to an initial total energyE0=1. Figure 4 shows that, for ò=0.55, the evolution of W1 2 is qualitatively similar
to the case ò=1, for which two stages with different decay rates are clearly discerned. For ò=0.45, on the other
hand, wefind a situation similar to ò=0, with an initial stage of negative W1 2, followed by thefinal decay
where >W 01 2 (cf, respectively, leftmost and rightmost panel offigure 3). The two regimes aremediated by
the appearance of an intervening time interval where <W 01 2 , which hints at an oscillation in the power
transfer (ò=0.51). For ò=0.5, the lower end of the interval attains the initial time t=0.Note that, over all this
crossover region, the typical absolute values of the power transfer W1 2 are orders ofmagnitude lower than for
the cases ò=0 and 1, shown infigure 3.

A clear distinction between the two regimes characterized bymaximal andminimal total energy transfer is
preserved as long as the limits of high quality factor andweak coupling hold.When the coupling constant j
grows, however, the incipient oscillations seen in figure 4 for ò≈0.5 increasingly dominate the time
evolution of the power transfer over wide intervals of the parameters. Figure 5 shows W1 2 as a function of
time for the same parameters as in figure 3 but with amuch larger coupling constant, j=0.1. As for smaller j,
maximal andminimal values of E1 2

tot are determined by how the time intervals where W1 2 is positive or
negative partially compensate each other. Now, however, those intervals have greatly increased in number,
and the qualitative distinction between the dynamical regimes identified for weak coupling blurs out. In this
situation, according to (21), the frequency ν of the oscillations in W1 2 grows because, as j becomes larger, the
difference between the frequenciesΩa,b increases; cf(13) and (15). At the same time, superimposed fast,
small-amplitude oscillations of frequency W = W + W( ) 2a b0 –disregarded in the approximation of (21)–
become clearly visible.
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4. Summary anddiscussion

Wehave here revisited the classicalmechanical problemof two harmonic oscillators subjected to damping, and
coupled through linear forces, with emphasis on the dynamics of their exchange of energy. Our aimhas been to
provide a reference set of results withwhich theoretical and experimental observations on nonlinear oscillators
can be compared. In fact, in the interpretation of recent experiments onmicro- and nanomechanical oscillators
–which are driven by anharmonic restoring forces–much emphasis has been put on the role of nonlinear
mechanisms in energy exchange and dissipation.However, it is not always clear whether a given dynamical
featuremust necessarily be ascribed to nonlinearity or could also be observed in a purely linear system, under
appropriate conditions.

Although the equations ofmotion for two coupled linearmechanical oscillators can be fully solved by
exploiting their equivalence to a fourth-order algebraic problem, practical analytical expressions are limited to
certain approximations. Here, we have focused on the conditionsmetwhenworkingwithmicro- and
nanomechanical oscillators, in particular, on the limit of high quality factors. Under the action of an external
harmonic force, stationary oscillations with the same frequency as the force are readily characterized. It turns out
that, in spite of the oscillatory nature of the system, the net power transfer between the oscillators is constant in
time, and energy alwaysflows from the oscillator subjected to the external force toward the other oscillator.

In ringdown solutions, no external excitation is applied, andmotion is left to die out by damping.We have
shown that, when the coupling is weak, the long-time net power transfer during ringdown always occurs from
the oscillatorwith the smaller damping coefficient toward the other. Energy thus flows towards the oscillator

Figure 4.Power transfer W1 2 as a function of time, for the interpolating initial condition  = + -[ ( ) ]zU U U1U 1 4 and four
values of ò. All other parameters are as infigure 3.

Figure 5.Power transfer W1 2 as a function of time, for the same parameters as infigure 3, except that j=0.1.
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where it is dissipated faster. Plausibly, this behavior is related to non-equilibrium thermodynamical principles
such as those of extremization of entropy production [25, 26], when extended to non-stationary states.

For shorter times, on the other hand, energy exchange between the oscillators exhibits twowell
differentiated regimes, depending on the initial conditions. The total energy transferred along thewhole
ringdown process, toward the oscillatorwith faster dissipation, can be used to discern between the two regimes.
With initial conditions forwhich this total energy ismaximal (leftmost panel of figure 3), the direction of power
transfer is the same at all times. In this regime, in turn, the time decay of the power transfer exhibits two
separated stageswith different decay rates, fast for short times and slow for long times. This separation is
associatedwith the relative dominance of the two decaymodes comprised in the solution; cf(16) and (17). In the
initial condition, the faster decaymode is dominant but, as time elapses and the corresponding amplitude dies
out, the slowermode takes over and controls the final stage. Note that, in this regime, the initial direction of
power transfer is the same as in the stationarymotion under the action of an external harmonic force. Therefore,
in an experiment where ringdown starts from such stationarymotionwhen the external force is suddenly turned
off, we expect to observe the two stageswith different decay rates as time elapses.

The second regimeof energy exchange is characterized by the initial conditions forwhich the total energy
transferred along thewhole ringdownprocess isminimal (rightmost panel offigure 3). In this case, thedirection of
the initial power transfer is the opposite to that observed for long times. Therefore, a sign change occurs at an
intermediate time. Awell-defined rate of exponential decay, consequently, can only beobserved at thefinal stage.
This long-time decay rate coincides inboth regimes. The time behavior of thepower transfer for other initial
conditions depends onhowclose they are to either of the extremal caseswhich characterize the twodistinct
regimesdescribed above. The crossover between the two regimes occurs for intermediate initial conditions
(figure 4), forwhich the power transfer can changedirectionmore than once. This oscillatory behavior is enhanced
as the coupling strength between the oscillators grows. In fact, stronger interactions promote the separation
between the oscillation frequencies involved in themotion,which in turn controls the oscillations of thepower
transfer; cf(13), (15), and (21). Numerical results show that, for sufficiently strong coupling, the power transfer is
dominatedby these oscillations, and the contrast between the two regimes blurs out (figure 5).

In a recent set of ringdown experiments on silica barmicromechanical oscillators [13], and graphene drum
nanomechanical oscillators [12], unusual regimes of energy dissipationwere revealed, and explained in terms of
the internal coupling of two oscillationmodes. It is worthwhilementioning that, although the discussion of
these results was based on the energy exchange between themodes, the quantities accessible to experimental
measurement were the oscillation amplitudes –typically, of one of the twomodes. In one of the regimes,
reported for both kinds of oscillator, themeasured amplitude remained virtually constant for a sizable time
interval (from10 to 100ms, depending on the experiment) after the external forcingwas turned off. Onlywhen
this interval had elapsed, did the amplitude begin to decay, as expected due to damping. In another regime,
observed in the graphene oscillator only, the amplitude exhibited a transition in the decay rate, with fast decay
during the initial stage and a crossover to slower decay for longer times.Mathematicalmodels were proposed in
the formof equations ofmotion for two coupled oscillators –representing the oscillationmodes–and the two
regimes of energy dissipationwere observed in their numerical solution. In both cases, the discussion
emphasized the role of nonlinearmechanisms in controlling these phenomena.

On the light of the results of the present contribution, the regime inwhich the amplitude remains initially
constant and thendecays cannot be explained in termsof purely linear oscillations. In a linear combinationof two
decayingmodes, in fact, it is not possible to have dominance of the slowermode for short times, andof the faster
mode for long times.Obviously, if the slowermode is initially dominant, it cannever be taken over by a faster
decay.On the other hand, the regimewhere the amplitude decay changes from fast to slow can clearly occur in a
systemof two coupled linear oscillators. Indeed,wehave found such behavior for the initial conditions leading to
maximal total energy exchange, as shown in the leftmost panel offigure 3. Althoughwecannotdiscard that, in the
experiments, nonlinear forces have a substantial effect on theoverall dynamics, explaining the specific observation
of crossover from fast to slowdecaymaynot need to resort to nonlinearity.Amoredetailed, quantitative
comparisonbetween experiments andmodels shouldbenecessary to decide on this issue.
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