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Abstract

Nonlinear mechanisms are frequently invoked to explain unexpected observations during processes
of energy exchange in mechanical systems. However, whether the same phenomena could be observed
in a purely linear system is seldom considered. In this paper, we revisit the problem of two linearly
coupled, damped, harmonic oscillators, with emphasis on the dynamics of their mutual exchange of
energy. A novel criterion is established to discern between two well-differentiated regimes of energy
exchange under ringdown conditions, when all external excitations are turned off and the oscillatory
motion is left to decay by dissipation. The two regimes are induced by different sets of initial
conditions, and correspond to extremal values of the total net energy transferred during ringdown.
Although the problem is in principle fully solvable, its algebraic involvedness requires in practice to
resort to approximated expressions for oscillation frequencies and decay rates. We explicitly provide
such approximations in the limit of high quality factors and weak coupling. This limit is relevant to
current experiments on micro- and nanomechanical oscillators, whose physical behavior is usually
explained by extensive allusion to energy exchange. Our results should help to discern between
observations that are genuinely due to nonlinear effects, and those that can be explained in terms of
linear mechanisms only.

1. Introduction

The dynamics of energy exchange between different degrees of freedom in a mechanical system is a key
ingredient of our physical understanding on how the system works, but it is also essential to the design and
operation of all kinds of highly relevant technological devices. Controlled processes of energy extraction,
harvesting, conversion, and delivery —whose importance escalates in a world where overexploited power sources
call for increasingly sophisticated alternatives—are based on the transfer of energy from a natural supply, through
some machinery that makes it usable and, ultimately, back to the environment [ 1, 2]. Careful engineering of
energy dissipation is also critical to many applications. Rapid switching between different dynamical regimes, for
instance, requires fast damping mechanisms [3, 4]. On the other hand, devices such as pacemakers and certain
kinds of sensors base their functioning on the maintenance of oscillatory motion for long periods at low power
consumption, which demands small dissipation rates [5-7]. In the laboratory, observation of energy dissipation
in a mechanical system is a standard tool to disclose the ingredients that shape its behavior, in particular, the
occurrence of nonlinearity [8—11].

In the last two decades, much emphasis has been put on the study of nonlinear effects in the energy exchange
of mechanical systems, including how to exploit those effects to get specific dynamical regimes during
dissipation [3]. Very recent ringdown experiments on micro- and nanomechanical oscillators —where an initial
external forcing is suddenly turned off, and oscillations are left to die out by damping—have disclosed the
occurrence of one or more transitions between time intervals where oscillation amplitudes decay at different
rates [12, 13]. This kind of behavior has been ascribed to nonlinearity both in the intrinsic dynamics of the
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oscillators and in the coupling between their various oscillation modes. In fact, micro- and nanomechanical
oscillators are well-known instances of nonlinear systems [14]. Models including anharmonic restoring forces,
as well as nonlinear coupling, have successfully reproduced their many dynamical regimes [12, 13, 15, 16].

What it is not so clear, however, is to which extent one must always invoke nonlinearity to explain a given
empirical observation on a nonlinear mechanical system. Indeed, the fact that the system involves anharmonic
forces does not automatically mean that nonlinearity reveals itself in all the dynamical features, or that such
features could never be present in a purely linear system. To clarify this point in connection with the experiments
on micro- and nanomechanical oscillators mentioned above, in this paper we revisit the classical problem of two
coupled linear damped mechanical oscillators [17], with emphasis on their mutual exchange of energy.
Coupled-oscillator models, in fact, yield a standard description for modal interaction in vibrating solid bodies,
ranging from the beams of building structures to the components of microscopic machines [18, 19]. Our main
aim is to characterize as completely as possible the different regimes associated with energy exchange between
the two oscillators, thus providing a reference set of results with which empirical observations can be contrasted.

After presenting the equations of motion for our system, stationary and ringdown solutions are numerically
and analytically studied in sections 2 and 3, with emphasis in the dynamics of energy exchange. Section 4 is
devoted to a summary of the results, and to a discussion in connection with experimental observations.

2. Equations of motion and stationary oscillations

We consider two harmonic oscillators with coordinates x; (t) and x, (#) and masses 11, and m,, coupled through a
bilinear interaction potential Vi,; = —Jx;2%. An external harmonic force of amplitude F and frequency 2 is
applied to oscillator 1. For the rescaled coordinates u; = x; and u, = /1, /m, %, the equations of motion,
normalized by the respective masses, are

i+ ity + wiwm = ju, + f cosQt,

tiy + Yoty + w%uz :jul, (1)

withy; , > 0 the damping coefficients per mass unit, w , the natural frequencies, j = J/./mm;,and
f = F/m,. The net instantaneous power transferred from oscillator 1 to oscillator 2 due to their interaction is
given by the difference between the work per time unit performed by the respective coupling forces:

Wit =Tk — Xix) = jm, (i — thu). (2)

Our main results in the following sections concern this quantity, both during forced stationary oscillations
(f = 0) and during ringdown (f= 0).

Naturally, being equivalent to a set of four linear first-order differential equations, the equations of motion
(1) can formally be given a full solution, in terms of eigenvalues and eigenvectors of the related fourth-order
algebraic problem [20]. This result, in turn, can be replaced into (2) to explicitly compute Wj _,,. In practice,
however, the general solution can hardly be cast in a workable form, mainly due to the involved expression of the
eigenvalues, which are the roots of a fourth-degree polynomial. Therefore, our strategy is to work within
approximations that allow for more compact expressions and that, at the same time, are relevant to the
experimental conditions with micro- and nanomechanical oscillators. Similarly, we do not switch to the
standard eigenvector representation of a linear problem such as (1), but preserve the description in term of the
original coordinates u, , and their velocities, which are expected to be directly observable quantities in the
experiments.

Under the action of the external harmonic forcing f cos §2t, and after a transient whose length is controlled
by the damping coefficients 7, , (see section 3), the system asymptotically attains a stationary state where the two
oscillators perform synchronized motion with the same frequency as the external force. Namely,
up(t) = Ap cos(§2t + ¢, ,) = Relay exp(i€2t)], with a; , = Ay, exp(i¢, ,). Without generality loss, we
assume Ay, > Oandf, 2 > 0. Thisform of u; , (f) isasolution to (1) if

we—f o 3)
L1L2 — ]'2 L1L2 - ]‘2
with Ly, = wi, — Q2 + iy, €
Itis customary to characterize the resonant response of an oscillating system to harmonic external forcing of
frequency €2 by specifying the oscillation amplitudes and phases as functions of 2 [21]. A more comprehensive
description —absorbing all the parameters into non-dimensional rescaled quantities—is obtained in the present
case in terms of the rescaled detunings
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Figure 1. The rescaled oscillation amplitudes cv; (upper panels) and a, (lower panels), given by (5), as functions of the detunings ¢ , in
(4), for three values of the coupling parameter A. The scales for all the panels are the same as indicated in the lower-left plot.

2 Qz
ba= 2 )
1,22
The rescaled oscillation amplitudes read
_ Vo3 + 1 _ 1
g=—~A=—""— m=—"T- >-~h=—, (5)
A il f A
with
)
A=A +1T=60)+ G+ 0, A=—11 ©)

NN

Note that, except for the proportionality a; o |j|~!, the positive non-dimensional parameter A captures all the
information about the coupling strength between the oscillators. These results, moreover, are independent of
the sign of j.

In figure 1, we show plots of the rescaled amplitudes o , as functions of the detunings 6, , for three values of
the coupling parameter A. For small A, as expected for ordinary resonance under the action of harmonic forcing,
the amplitude of oscillator 1 is maximal when its own detuning 6, is close to zero. A small downward indentation
in ov; appears however around 6, = 0, where oscillator 2 is best tuned to resonantly receive the energy
transferred from the external force through oscillator 1. Correspondingly, o, displays resonance ridges around
theaxes 8 = 0and 6, = 0, and attains its maximum when the two oscillators are perfectly tuned to the force
(6; = 6, = 0). As coupling becomes stronger and A increases, the indentation in «v; grows deeper, indicating
that energy transfer to oscillator 2 is more efficient. At the same time, both for a; and a,, the points of maximal
amplitude shift from the axes toward larger detunings. For A = 1, specifically, the maximum of o, becomes a
saddle point, and two lateral maxima appear in the quadrants where 0, , have equal signs. The shift of resonance
ridges to nonzero detuning as A grows is associated with a change in the oscillation frequencies, induced by
linear coupling (see section 3).

Equations (5) and (6) readily show that, as illustrated by figure 1, the width of the resonance ridges is always
of order unity in the rescaled detunings 8, ,, irrespectively of the value of the coupling parameter A. In contrast,
as advanced in the preceding paragraph, the position of the resonance ridges is strongly dependent on A, with a
qualitative change of behaviorat A & 1. For A <« 1, (5) reduces to

1 1

— @= ,
o+ 1 V@ + D@+ 1)

which clearly represent the resonance ridges along the axes §; = 0and §, = 0, witha cuspin o, for 6; = 6, = 0.
For A > 1, on the other hand, the ridges occur along the hyperbola §, = A/6;. On this curve, the amplitudes are

o =~

™)

3
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A . _ o
3 5 ) ~ 5 .
S+ A 8+ A

®
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For the stationary motion considered here, the oscillation phases ¢, , are defined up to an arbitrary additive
constant. The only relevant quantity associated to them is therefore the phase difference ¢; — ¢, given through

6, sgn(j . sgn(j
cos(dy — ¢ = D g — gy = BN ©)
Vo +1 Vo +1
Note that whether one of the phases is ahead or behind the other depends on the sign of the interaction
constant, sgn(j).
The phase difference appears in the expression for the net power transfer W, _,, of (2):
) . . A1AQ)
Wiz = jm Ay Qsin(ey — ) = |jlm——=——=——. (10)

&+ 1

Remarkably, in spite of the oscillatory dynamics of the system, Wj _, is constant in time. Moreover, it is always
positive, indicating that a sustained energy flux occurs from oscillator 1 —where energy is injected by the external
force—to oscillator 2. Using the rescaling for the amplitudes introduced in (5), the corresponding non-
dimensional expression for the power transfer turns out to be equal to 3. Therefore, the dependence of the
power transfer on the detunings 6, , is qualitatively well illustrated by the lower row of figure 1.

3. Ringdown dynamics

3.1. Approximations for the eigenvalues

In the absence of external forcing, f = 01in (1), and for moderate values of the damping coefficients 7, ,, the
motion of our system consists of damped oscillations, with decaying, asymptotically vanishing amplitudes. The
solutions u; »(¥) can be explicitly written down as linear combinations of the exponentials exp( )\i »t), where the
two pairs of complex-conjugate numbers )\ff, p = —Hyp T i€ are the eigenvalues of the Jacobian

0 0 1 0
0 0 0 1
J= _ w12 ] - o | (1 1)

jo-wi 0 —m
Their real parts are always negative (x,;, > 0) and control the exponential decay of the amplitudes. Their
imaginary parts, in turn, are given by the ‘non-normal’ oscillation frequencies 2, , (which do not coincide with
the normal-mode frequencies of the undamped system [17]). Without generality loss, we choose €2, ;, > 0. The
solutions exp()\i »t) also describe, in the case with external forcing considered in the preceding section, the
transient motion toward stationary oscillations.

In principle, being the roots of a fourth-degree polynomial, the eigenvalues A, can be written out explicitly.
Practical approximate expressions, however, can only be obtained in suitable limits. In the following, we focus
on thelimity; , <« wy ,. Indeed, in systems where energy exchange between oscillating modes has a significant
dynamical role, it is expected that the times associated with energy dissipation (of order 7;%) are much longer
than the typical oscillation periods (of order wy ;). This limit is relevant to applications to micro- and
nanomechanical oscillators, on which we focus in this paper. The quality factor of such devices —given by the
ratio between the frequency and the damping coefficient, Q = w /y—can in fact reach values from 10* to 10
[12, 15, 22]. In experiments with macroscopic oscillators —ranging from pendulums, to vibrating strings, to
cantilevers—typical quality factors are Q ~ 10® to 10° [23, 24], so that the limit still holds.

In externally forced linear oscillators, the quality factor is an inverse measure of the width of the resonance
peak relative to the frequency of the external force: the larger the value of Q, the narrower the resonance
frequency band. In connection with this feature, the assumption of high quality factors in our two-oscillator
system brings about a further simplification. In fact, sizable dynamical effects of the interaction between the two
oscillators are only expected when their natural frequencies are not too far from each other, so that their mutual
resonance peaks overlap with each other. This condition requires |w) — w,| < ; ,- Combined with the
assumption of high Q, v; , € w1 ,, it makes it possible to restrict the analysis to the case of identical natural
frequencies, w; = w, = w, as we do hereafter.

From the viewpoint of the mathematical procedure, it turns out that the limit of weak damping, v, , — 0,
cannot be taken irrespectively of the value of the rescaled coupling constant j. In fact, as for the stationary
oscillations analyzed in section 2, the behavior of the system depends on how the interaction forces compare
with damping forces —cf the non-dimensional parameter A in (6). Therefore, it is necessary to consider as two
separate cases the limitsy; , — 0andj — 0, even when the condition of high Q, v; , < w, mustalways hold. In

4
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Figure 2. Left: decay rates (given by the absolute value of the real part of Jacobian eigenvalues) for w; = w, = w = 1,j = 0.1, as
functions of y;, with 7, = 3, /2. Full lines: exact vales; dashed line: weak-damping approximation, given by (13). Right: decay rates
forw = land~y; = 27,/3 = 0.01, as functions of j. Full lines: exact values; dashed lines: weak-coupling approximation, given by (15).

both cases, our approach is the same: we find the exact eigenvalues of the Jacobian for eithery; , = Oorj = Oas
the roots of the corresponding fourth-order polynomial and, then, we obtain approximate solutions to the first
significant order, as perturbations of those exact roots.

3.1.1. Weak damping
For~y; , = 0, the eigenvalues of 7 in (11) are

Aopmp = 0) = HiJw? £ 5. (12)

As expected, these imaginary roots describe undamped, purely oscillating solutions. Note, however, that this
requires that coupling is not too large, i.e. j < w’.

The first significant correction to this result adds a real part to the eigenvalues, without changing their
imaginary parts, namely:

Aibz—%ii w2 £ ] (13)

This correction is the same for the two pairs of complex-conjugate eigenvalues and does not depend on the
coupling constant j. To the next order, the correction is proportional to 'y]z ,/w <K 9, and only affects the
imaginary parts of )\ai’ »- The leftmost panel of figure 2 compares the approximated decay rates given by (13)
(dashed line) with the exact values (full lines) for selected parameters.

For weak damping, thus, the oscillation amplitude decays at a uniform rate, independent of the coupling

strength, within a typical time scale of order (v, + 7,)!. Oscillations, in turn, are generally given by the
combination of two harmonic motions of different frequencies.

3.1.2. Weak coupling
In contrast with the previous case, for j = 0 the eigenvalues of 7 have both real and imaginary parts:

. 1 . 1 1 .
)\ib(] =0) = 7571)2 + i |w?— Z'yiz ~ *E’Yl,z + iw. (14)

Not unexpectedly, each complex-conjugate pair involves the damping coefficient of only one of the two
oscillators.
The first significant correction in the limit of weak coupling affects both the decay rates and the frequencies:

5 2
Ny =22y L g L2 (15)
2 V1,28 ,W 4g1)2w
with g = —g, = 7, — - Note that the new terms are quadratic in the coupling constant. Moreover, the relative

correction to the imaginary part is of order 712 ,/w? < 1lascompared to that of the real part. A comparison of
the approximated and exact decay rates for selected values of the parameters is shown in the rightmost panel of
figure 2.
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3.2. Explicit ringdown solution

Once the eigenvalues )\ai)b = —,;, £ 1€, ;, have been obtained —either exactly, or within any suitable
approximation—we can explicitly write down the general solution to the first of equations (1) as
w () = AgeHal cos(Q,t + ¢,) + {b}, (16)

where {b} stands for a term with the same form as the preceding one, except that all subindices are b instead of a.
For the second of equations (1), the solution is

(1) = j'Age ' [Cy cos(Qat + @) + Sasin(Qat + )] + {b}, (17)
with
Cap = wi — Loy + My (o — N> Sap = Qappty, — M- (18)

The amplitudes A, , and the phases ¢, , are arbitrary constants, whose values become determined when a
suitable set of initial conditions is specified. Fixing the coordinates 1, , (0) and the velocities 1 ,(0) at time t = 0,
amplitudes and phases can be obtained from the following set of equations:

1 (0) = Agcos g, + {b},
ju,(0) = Aa(C,cos ¢, + Sysing,) + {b},
~i(0) = Ag(j1, c0s 6, + Qusing,) + (b},
—ji2(0) = Aq[j1,(Cacos §, + Sysin )
+ Q,(C,sin ¢, — S, cos ¢,)] + {b}. (19)

This system is linear in the products A, ; cos ¢, , and A, sin ¢, ,, which can therefore be immediately found to
later compute A, , and ¢, 5.

Equations (16) to (19) complete the solution to the present problem. From now on, we focus the attention on
the exchange of energy between the two oscillators. The net instantaneous power transfer from oscillator 1 to
oscillator 2, W _.,, is given by (2). This quantity has an explicit simplified form in the relevant limit of weak
damping and coupling, v, ,, j'/? < w5, already discussed in section 3.1. In this limit, as shown by (13) and
(15), the frequencies €2, , differ from each other by a small quantity. Assuming, without generality loss, that
Q, > O, they can be written as

Qup = Qo + % (20)

where Qy = (Q, + Q)/2and v = Q, — ), K Q, withv > 0. Because of a partial compensation of the
oscillations in the power transferred by the interaction forces, Jx; X and Jx;%, the dominant oscillating
contributions to W, _,, have frequency v

(M Qo) Wiy & S A e 2l + S A e 2t + A ApeHat i
X [(Ss + Sp)cos(vt + P) — (C, — Cp)sin(wt + P)], 21

with® = ¢, — ¢,. Thelong-time behavior of W] _,, is controlled by the term in (21) with the slowest
exponential decay. Assuming, without generality loss, that p1, < p, the asymptotic power transfer is

(M Q)" Wi (t — 00) = S, A7 e 2t 22)

whose sign is determined by that of S,.. Using (13) and (15), it can readily be shown that, within the
approximations considered in section 3.1, the sign of S, is always the same as that of the difference gy = v, — 1.
For long times, therefore, the net flux of energy always occurs from the oscillator with the smaller damping
coefficient toward that with the larger damping coefficient. Power is thus transferred by coupling to the oscillator
with higher capacity to dissipate energy.

The total energy transferred from oscillator 1 to oscillator 2 along the whole ringdown process,
E, = fooo Wi _,dt, is given by

2 2
(m Q) 1, ~ ALy S
zuﬂ 2:u’h

(Sq + Sp)sin(®y — @) — (C; — Cp)cos(Py — D)

V (/’l’a + ILLb)Z + 1/2

with sin ®y = (u, + ,ub)/ (4, + ) + v*, cos Py = 1// (u, + 1y)* + V2. Inthe following, E°, is used
to discern between different ways in which energy is exchanged during the ringdown dynamics.

+ ALA (23)

6
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3.3. Different regimes of energy exchange

Different dynamical regimes of energy exchange during ringdown can be characterized by the extremal
(maximal or minimal) values of E*',. For a given set of parameters, such regimes would ultimately be
determined by the initial conditions, as explained in the following.

Expansion of (23) straightforwardly shows that, within the approximations considered in section 3.2, the
total energy transferred during ringdown is a homogeneous quadratic function of the products A, cos ¢, ,, and
Aqp sin ¢, ;. Namely, E[*, isalinear combination of terms given by the multiplication of two of those products.
Via (19), in turn, we can express the products as linear combinations of the initial conditions. Consequently,
E[®, is also a quadratic function of the initial conditions. In other words, introducing the vector of initial
conditions U = (14(0), u,(0), t4(0), t1,(0)), there exists a matrix Q such that E/*", = UTQU. The elements of
Q depend on the system parameters only. Extremization of E,'*, with respect to the initial conditions thus
amounts to solving the equation Vy(UTQU) = 0. This calculation, however, cannot be done on the
unrestricted set of all possible initial conditions: otherwise, we would obtain trivial solutions with [U| — oo and
|U| — 0, for which E[°', reaches arbitrarily large and small values, respectively.

A reasonable constraint to perform the extremization is to require that all the initial conditions correspond
to the same initial value of the total energy,

mlwlz

2
Ep= %&(O)Z + %fe(oﬁ + (00 + %xz(mz — Jx1(0)x(0)

= %[al(O)z + 1,(0)? + wiw(0)® 4+ Wi (0)2] — i 1 (0)430). o1

We note that this also is a homogeneous quadratic function of U. Namely, there is a matrix £ such that

Ey = U'EU. Asin the case of Q, the elements of £ depend on the system parameters only. The extremization of
E, on the manifold where the initial energy is a prescribed value E, results from the equation

WVWlUTQU + p(Ey, — UTEU)] = 0,where pisa Lagrange multiplier. This problem turns out to be equivalent to
solving the eigenvalue equation

(E7'QU = pU. (25)

In other words, the eigenvectors resulting from (25) give the initial conditions for which E*, adopts its

extremal values, with the constraint that the initial energy E, is fixed.

Note that Ey does not appear in (25). Therefore, the corresponding eigenvectors and eigenvalues can first be
found as functions of the system parameters only. Then, the eigenvectors can be rescaled by a suitable factor, in
such a way that the identity E, = U'EU is fulfilled for the desired value of the initial energy. The respective
eigenvalues —which are not affected by the eigenvector rescaling—give the ratio between the total energy
transferred during ringdown and the initial energy: p = E,*, /E.

While the matrix that defines the initial total energy can be immediately written down, as

wi —j 00
g="1l-j wi 0 0f (26)

2f0 o 10

0 0 01

generally, the matrix Q cannot be given a compact expression. However, under the conditions of high quality
factors and weak coupling considered in section 3.1.2, it approaches the simple form

0 0 0 1
o__mj [o 0o —10 @7
n+m7l0 -1 00
1 0 0
whenj — 0. In the same limit, the matrix £ becomes diagonal,
w2 0 00
&0 — mio w00 , (28)
210 0 10
0 0 01
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Figure 3. Main plots: power transfer W] _,, as a function of time, obtained from numerical resolution of (1) forw; = 1,w, = 1.001,

7 = 0.001 5,7, = 0.03,j = 0.001, with unitary initial energy, E, = 1, for initial conditions U; and Uy, respectively corresponding to
maximal (left) and minimal (right) total energy transfer E|°,. Dashed lines indicate negative values of W; _.,. Insets: Positive
envelopes of the coordinates ; and u, as functions of time, for the same cases as in the respective main plots.

and the eigenvalue problem (25) can be readily solved. The resulting eigenvectors and eigenvalues are

U? = UO(l) 1) —Ww, w)) p? = 1o
U(Z) = UO(_I) ]-7 —Ww, _(A)), p(z) = 1o

U(3) = UO(l) 1) W, _LU), pg = —1

Ug UO(_I) l) W, w)) /02 = —T (29)

with vy = /Eo/2w?m; and 1, = 2j/(7, + 7,)w. We see that UYand UY on one side, and Uj and UY on the
other, form pairs of degenerate eigenvectors. Moreover, ifj > 0, the initial conditions given by U} and U9
correspond to a positive extremum of the total energy transfer during ringdown: E[*, = 2jE,/(7; + ~,)w. For
UJand U}, the extremum of E;*', has the same modulus and opposite sign. Ifj < 0, these relations are
interchanged. In the following, we use this limit case as a reference situation for the numerical characterization
of the dynamics of energy exchange between the two oscillators.

3.3.1. Numerical results

We have explored the problem of extremization of E,**, numerically, for selected values of the parameters. In all
cases, without generality loss, we have chosen 7, > ;. According to our discussion around (22), such choice
implies that, for sufficiently long times, the energy always flows from oscillator 1 to oscillator

2,i.e. Wi_,(t — o00) > 0.

Within the approximation of large quality factor and weak coupling, but for finite values of j, numerical
solution of the eigenvalue problem (25) shows that the degeneracy of the eigenvectors in (29) breaks down.
Specifically, forj > 0, the eigenvector U, (=U}) corresponds to a maximum of E*,, while U, (=UY) is a saddle
point. Namely, the respective eigenvalues verify p; > p,. As for the other two eigenvectors, U, (=UY9)
corresponds to a minimum of the total energy transfer, while U; (=UY) is another saddle point, with p; > p,.

Forj < 0therelations are inverted, with U, and U, respectively corresponding to the minimum and the

maximum of E*,.

To study the dynamics of energy exchange during ringdown, we have performed numerical integration of
the ringdown version of (1) —namely, with f = 0-using a standard fourth-order Runge-Kutta scheme. In order
to obtain more generic results, we relaxed the approximation w; = w, used in our analytical derivations,
although the condition |w; — wy| < 7 ,, relevant to the limit of high quality factor (see section 3.1), was
maintained. We have explored a variety of parameters compatible with a high quality factor and weak coupling,
verifying that initial conditions corresponding to the extremal values of E,*!, indeed characterize different
regimes of energy exchange.

As an illustration, the main plots in figure 3 show the net instantaneous power transferred from oscillator 1
to oscillator 2, Wj _,,, as a function of time, for w; = 1,w, = 1.001,y; = 0.001 5,7, = 0.03,and;j = 0.001. We
have used dashed lines to indicate negative values of W, _,. In all cases, the initial energy, given by (24), has been
fixed at Ey = 1. For these parameters, using m; = 1, the eigenvectors and eigenvalues are as follows:
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U, = (0.67, 0.71, —0.74, 0.71), o = 0.059 6,

U, = (-0.74, 0.70, —0.67, —0.71), p, = 0.058 8,

U; = (0.74, 0.70, 0.67, —0.71), p3 = —0.067 6,

U, = (—-0.67, 0.71, 0.74, 0.71), py = —0.068 6, (30)

cf (29). In the leftmost panel, we used the initial condition Uy, for which E, attains its maximum. We see that

W, _,(¢) is always positive, with a monotonous decay as time elapses. Clearly, the evolution of W] _,,(¢) in this
regime is divided into two stages. In the first one, the dynamics is dominated by the largest decay rate, 2, ~ 7,.
In the second, when the component decaying at rate 21, has died out, dominance is overtaken by the smallest
decayrate, 241, ~ ~;, which controls the final approach to rest. This separation results into two well defined
slopes in different zones of the logarithmic plot.

The rightmost panel of figure 3 shows the power transferred as a function of time for the same parameters,
but with the initial condition U, which corresponds to the minimum of E,"**,. For this initial condition,

W, _»(¢) is initially negative, so that energy flows from oscillator 2 to oscillator 1. Eventually, as expected from
(22), this sign is reversed and the final decay of W, _,, () occurs from the positive side. It is the balance between
stages with opposite signs for the instantaneous energy exchange that explains the minimal value of the total
energy transferred between the oscillators. As a matter of fact, as it results from the eigenvalues reported in (30),
in this case E*, < 0.

The insets in the two panels of figure 3 show the oscillation amplitudes of the two oscillators —as given by the
(positive) envelopes of the coordinates w1, and u,—as functions of time. We see that the amplitude of oscillator 1
decays at a practically constant rate, 11, ~ +, /2, which is controlled by its own damping coefficient. In turn, the
amplitude of oscillator 2 ‘copies’ the time behavior of W, _,,, with a clear change in its decay rate for the initial
condition given by Uy, and nonmonotonic evolution for U,. Note that the long-time amplitude decay rates are
the same in all cases.

When the initial condition is taken as given by the eigenvector U, —which, as mentioned before, correspond
to a saddle point of E°,~the evolution of W] _,,(¢) is practically identical to that obtained from U,. Comparing
(30), it is clear that U; and U, represent quite different initial conditions, in particular, regarding the relative
signs of positions and velocities of the two oscillators. These differences, however, compensate each other when
calculating the products that define the net power transfer, given by (2), and the resulting value of W _,,(¢) is
virtually the same. Note that, in spite of the differences between the eigenvalues U; and U,, their eigenvalues p;
and p, are mutually very similar. This reinforces the notion that the value of E', is a good indicator of the
dynamical regime of energy exchange between the two oscillators. A similar situation is met when comparing the
evolution from the initial conditions U; (saddle point) and U, (minimum).

The crossover between the two regimes shown in figure 3 can be characterized by considering initial
conditions of the form U = zy[eU; + (1 — ¢)Uy], which linearly interpolates between the initial conditions
thatlead to maximal and minimal energy exchange. The prefactor zy; is chosen in such a way that U corresponds
to an initial total energy E, = 1. Figure 4 shows that, for e = 0.55, the evolution of W] _,, is qualitatively similar
to the case € = 1, for which two stages with different decay rates are clearly discerned. For ¢ = 0.45, on the other
hand, we find a situation similar to € = 0, with an initial stage of negative W, _,,, followed by the final decay
where W _,, > 0 (cf, respectively, leftmost and rightmost panel of figure 3). The two regimes are mediated by
the appearance of an intervening time interval where W, _,, < 0, which hints at an oscillation in the power
transfer (¢ = 0.51). For e = 0.5, the lower end of the interval attains the initial time ¢t = 0. Note that, over all this
crossover region, the typical absolute values of the power transfer W, ., are orders of magnitude lower than for
the cases ¢ = 0 and 1, shown in figure 3.

A clear distinction between the two regimes characterized by maximal and minimal total energy transfer is
preserved as long as the limits of high quality factor and weak coupling hold. When the coupling constant j
grows, however, the incipient oscillations seen in figure 4 for € /~ 0.5 increasingly dominate the time
evolution of the power transfer over wide intervals of the parameters. Figure 5 shows W, _,; as a function of
time for the same parameters as in figure 3 but with a much larger coupling constant, j = 0.1. As for smaller j,
maximal and minimal values of E|*, are determined by how the time intervals where W; ., is positive or
negative partially compensate each other. Now, however, those intervals have greatly increased in number,
and the qualitative distinction between the dynamical regimes identified for weak coupling blurs out. In this
situation, according to (21), the frequency v of the oscillations in W, _,, grows because, as jbecomes larger, the
difference between the frequencies €2, ; increases; cf (13) and (15). At the same time, superimposed fast,
small-amplitude oscillations of frequency 2y = (2, + €2;) /2 —disregarded in the approximation of (21)—
become clearly visible.
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Figure 4. Power transfer W _,, as a function of time, for the interpolating initial condition U = zy[eU; + (1 — ¢)U,] and four
values of e. All other parameters are as in figure 3.
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Figure 5. Power transfer W; _,, as a function of time, for the same parameters as in figure 3, except thatj = 0.1.

4. Summary and discussion

We have here revisited the classical mechanical problem of two harmonic oscillators subjected to damping, and
coupled through linear forces, with emphasis on the dynamics of their exchange of energy. Our aim has been to
provide a reference set of results with which theoretical and experimental observations on nonlinear oscillators
can be compared. In fact, in the interpretation of recent experiments on micro- and nanomechanical oscillators
—which are driven by anharmonic restoring forces—much emphasis has been put on the role of nonlinear
mechanisms in energy exchange and dissipation. However, it is not always clear whether a given dynamical
feature must necessarily be ascribed to nonlinearity or could also be observed in a purely linear system, under
appropriate conditions.

Although the equations of motion for two coupled linear mechanical oscillators can be fully solved by
exploiting their equivalence to a fourth-order algebraic problem, practical analytical expressions are limited to
certain approximations. Here, we have focused on the conditions met when working with micro- and
nanomechanical oscillators, in particular, on the limit of high quality factors. Under the action of an external
harmonic force, stationary oscillations with the same frequency as the force are readily characterized. It turns out
that, in spite of the oscillatory nature of the system, the net power transfer between the oscillators is constant in
time, and energy always flows from the oscillator subjected to the external force toward the other oscillator.

In ringdown solutions, no external excitation is applied, and motion is left to die out by damping. We have
shown that, when the coupling is weak, the long-time net power transfer during ringdown always occurs from
the oscillator with the smaller damping coefficient toward the other. Energy thus flows towards the oscillator
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where it is dissipated faster. Plausibly, this behavior is related to non-equilibrium thermodynamical principles
such as those of extremization of entropy production [25, 26], when extended to non-stationary states.

For shorter times, on the other hand, energy exchange between the oscillators exhibits two well
differentiated regimes, depending on the initial conditions. The total energy transferred along the whole
ringdown process, toward the oscillator with faster dissipation, can be used to discern between the two regimes.
With initial conditions for which this total energy is maximal (leftmost panel of figure 3), the direction of power
transfer is the same at all times. In this regime, in turn, the time decay of the power transfer exhibits two
separated stages with different decay rates, fast for short times and slow for long times. This separation is
associated with the relative dominance of the two decay modes comprised in the solution; cf (16) and (17). In the
initial condition, the faster decay mode is dominant but, as time elapses and the corresponding amplitude dies
out, the slower mode takes over and controls the final stage. Note that, in this regime, the initial direction of
power transfer is the same as in the stationary motion under the action of an external harmonic force. Therefore,
in an experiment where ringdown starts from such stationary motion when the external force is suddenly turned
off, we expect to observe the two stages with different decay rates as time elapses.

The second regime of energy exchange is characterized by the initial conditions for which the total energy
transferred along the whole ringdown process is minimal (rightmost panel of figure 3). In this case, the direction of
the initial power transfer is the opposite to that observed for long times. Therefore, a sign change occurs at an
intermediate time. A well-defined rate of exponential decay, consequently, can only be observed at the final stage.
This long-time decay rate coincides in both regimes. The time behavior of the power transfer for other initial
conditions depends on how close they are to either of the extremal cases which characterize the two distinct
regimes described above. The crossover between the two regimes occurs for intermediate initial conditions
(figure 4), for which the power transfer can change direction more than once. This oscillatory behavior is enhanced
as the coupling strength between the oscillators grows. In fact, stronger interactions promote the separation
between the oscillation frequencies involved in the motion, which in turn controls the oscillations of the power
transfer; cf (13), (15), and (21). Numerical results show that, for sufficiently strong coupling, the power transfer is
dominated by these oscillations, and the contrast between the two regimes blurs out (figure 5).

In arecent set of ringdown experiments on silica bar micromechanical oscillators [13], and graphene drum
nanomechanical oscillators [12], unusual regimes of energy dissipation were revealed, and explained in terms of
the internal coupling of two oscillation modes. It is worthwhile mentioning that, although the discussion of
these results was based on the energy exchange between the modes, the quantities accessible to experimental
measurement were the oscillation amplitudes —typically, of one of the two modes. In one of the regimes,
reported for both kinds of oscillator, the measured amplitude remained virtually constant for a sizable time
interval (from 10 to 100 ms, depending on the experiment) after the external forcing was turned off. Only when
this interval had elapsed, did the amplitude begin to decay, as expected due to damping. In another regime,
observed in the graphene oscillator only, the amplitude exhibited a transition in the decay rate, with fast decay
during the initial stage and a crossover to slower decay for longer times. Mathematical models were proposed in
the form of equations of motion for two coupled oscillators —representing the oscillation modes—and the two
regimes of energy dissipation were observed in their numerical solution. In both cases, the discussion
emphasized the role of nonlinear mechanisms in controlling these phenomena.

On the light of the results of the present contribution, the regime in which the amplitude remains initially
constant and then decays cannot be explained in terms of purely linear oscillations. In a linear combination of two
decaying modes, in fact, it is not possible to have dominance of the slower mode for short times, and of the faster
mode for long times. Obviously, if the slower mode is initially dominant, it can never be taken over by a faster
decay. On the other hand, the regime where the amplitude decay changes from fast to slow can clearly occurina
system of two coupled linear oscillators. Indeed, we have found such behavior for the initial conditions leading to
maximal total energy exchange, as shown in the leftmost panel of figure 3. Although we cannot discard that, in the
experiments, nonlinear forces have a substantial effect on the overall dynamics, explaining the specific observation
of crossover from fast to slow decay may not need to resort to nonlinearity. A more detailed, quantitative
comparison between experiments and models should be necessary to decide on this issue.

Acknowledgments

The author thanks Daniel Lépez and Changyao Chen for collaboration and enlightening discussions on the
dynamics of micromechanical oscillators.

ORCID iDs

Damién H Zanette © https:/orcid.org/0000-0003-0681-0592

11


https://orcid.org/0000-0003-0681-0592
https://orcid.org/0000-0003-0681-0592
https://orcid.org/0000-0003-0681-0592
https://orcid.org/0000-0003-0681-0592

10P Publishing J. Phys. Commun. 2 (2018) 095015 D H Zanette

References

[1] Dincer 12018 Comprehensive Energy Systems (Cambridge, MA: Elsevier)
[2] WangH, Jasim A and Chen X 2018 Energy harvesting technologies in roadway and bridge for different applications—A comprehensive
review Appl. Energy 212 1083-94
[3] Vakakis A, Kerschen G, McFarland D, Gendelman O and Lee Y 2008 Nonlinear Targeted Energy Transfer in Mechanical and Structural
Systems (Dordrecht: Springer)
[4] Okamoto H, Mahboob I, Onomitsu K and Yamaguchi H 2014 Rapid switching in high-Q mechanical resonators Appl. Phys. Lett. 105
083114
[5] vanBeekJ and Puers R 2012 A review of MEMS oscillators for frequency reference and timing applications J. Micromech. Microeng. 22
013001
[6] Abbott B et al (LIGO Scientic Collaboration and Virgo Collaboration) 2016 Observation of gravitational waves from a binary black hole
merger Phys. Rev. Lett. 116 061102
[7] Reinhardt C, Miiller T, Bourassa A and Sankey ] 2016 Ultralow-Noise SiN trampoline resonators for sensing and optomechanics Phys.
Rev. X 6021001
[8] Schneider B, Singh V, Venstra W, Meerwaldt H and Steele G 2014 Observation of decoherence in a carbon nanotube mechanical
resonator Nat. Comm. 55819
[9] Chen C, Zanette D, Guest J, Czaplewski D and Lopez D 2016 Self-sustained micromechanical oscillator with linear feedback Phys. Rev.
Lett. 117 017203
[10] Polunin P, YangY, Dykman M, Kenny T and Shaw S 2016 Characterization of MEMS resonator nonlinearities using the ringdown
response J. MEMS 25 297-303
[11] Bhupathi P, Groszkowski P, DeFeo M, Ware M, Wilhelm F and Plourde B 2016 Transient dynamics of a superconducting nonlinear
oscillator Phys. Rev. Applied 5024002
[12] Giittinger ], Noury A, Weber P, Eriksson A, Lagoin C, Moser ], Eichler C, Wallra A, Isacsson A and Bachtold A 2017 Energy-dependent
path of dissipation in nanomechanical resonators Nat. Nanotech. 12 631-6
[13] Chen C, Zanette D, Czaplewski D, Shaw D and Lépez D 2017 Direct observation of coherent energy transfer in nonlinear
micromechanical oscillators Nat. Comm. 8 15523
[14] Lifshitz R and Cross M 2009 Nonlinear dynamics of nanomechanical and micromechanical resonators Reviews of Nonlinear Dynamics
and Complexity vol 1 ed H Schuster (Weinheim: Wiley-VCH Verlag)
[15] Antonio D, Zanette D and Lépez D 2012 Frequency stabilization in nonlinear micromechanical oscillators Nat. Comm. 3 806
[16] Shoshani O, Shaw S and Dykman M 2017 Anomalous decay of nanomechanical modes going through nonlinear resonance Sci. Rep. 7
18091
[17] Politzer D 2015 The plucked string: an example of non-normal dynamics Am. J. Phys. 83 395-402
[18] Nayfeh A and Balachandran A 1989 Modal interactions in dynamical and structural systems Appl. Mech. Rev. 42 S175-201
[19] Nayfeh A and Mook D 1995 Nonlinear Oscillations (Hoboken, NJ: Wiley)
[20] Lomen D and Mark ] 1986 Ordinary Dierential equations with Linear Algebra (Upper Saddle River, NJ: Prentice-Hall)
[21] José] and Saletan E 2013 Classical Dynamics: A Contemporary Approach (Cambridge: Cambridge University Press)
[22] PengH, ChangC, Aloni S, Yuzvinsky T and Zettl A 2006 Ultrahigh frequency nanotube resonators Phys. Rev. Lett. 97 087203
[23] Shaw A, Hill T, Neild S and Friswell M 2016 Periodic responses of a structure with 3:1 internal resonance Mech. Syst. Signal Process. 81
19-34
[24] Perkins E 2017 Effects of noise on the frequency response of the monostable Duffing oscillator Phys. Lett. A 381 1009—13
[25] Prigogine I 1968 Introduction to Thermodynamics of Irreversible Processes (Hoboken, NJ: Wiley)
[26] Martyushev L and Seleznev V 2006 Maximum entropy production principle in physics, chemistry and biology Phys. Rep. 426 1-45

12


https://doi.org/10.1016/j.apenergy.2017.12.125
https://doi.org/10.1016/j.apenergy.2017.12.125
https://doi.org/10.1016/j.apenergy.2017.12.125
https://doi.org/10.1063/1.4894417
https://doi.org/10.1063/1.4894417
https://doi.org/10.1088/0960-1317/22/1/013001
https://doi.org/10.1088/0960-1317/22/1/013001
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevX.6.021001
https://doi.org/10.1038/ncomms6819
https://doi.org/10.1103/PhysRevLett.117.017203
https://doi.org/10.1109/JMEMS.2016.2529296
https://doi.org/10.1109/JMEMS.2016.2529296
https://doi.org/10.1109/JMEMS.2016.2529296
https://doi.org/10.1103/PhysRevApplied.5.024002
https://doi.org/10.1038/nnano.2017.86
https://doi.org/10.1038/nnano.2017.86
https://doi.org/10.1038/nnano.2017.86
https://doi.org/10.1038/ncomms15523
https://doi.org/10.1038/ncomms1813
https://doi.org/10.1038/s41598-017-17184-6
https://doi.org/10.1038/s41598-017-17184-6
https://doi.org/10.1119/1.4902310
https://doi.org/10.1119/1.4902310
https://doi.org/10.1119/1.4902310
https://doi.org/10.1115/1.3152389
https://doi.org/10.1115/1.3152389
https://doi.org/10.1115/1.3152389
https://doi.org/10.1103/PhysRevLett.97.087203
https://doi.org/10.1016/j.ymssp.2016.03.008
https://doi.org/10.1016/j.ymssp.2016.03.008
https://doi.org/10.1016/j.ymssp.2016.03.008
https://doi.org/10.1016/j.ymssp.2016.03.008
https://doi.org/10.1016/j.physleta.2017.01.037
https://doi.org/10.1016/j.physleta.2017.01.037
https://doi.org/10.1016/j.physleta.2017.01.037
https://doi.org/10.1016/j.physrep.2005.12.001
https://doi.org/10.1016/j.physrep.2005.12.001
https://doi.org/10.1016/j.physrep.2005.12.001

	1. Introduction
	2. Equations of motion and stationary oscillations
	3. Ringdown dynamics
	3.1. Approximations for the eigenvalues
	3.1.1. Weak damping
	3.1.2. Weak coupling

	3.2. Explicit ringdown solution
	3.3. Different regimes of energy exchange
	3.3.1. Numerical results


	4. Summary and discussion
	Acknowledgments
	References



