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Abstract. Flat systems are a generalization of linear systems, but the techniques used for
controlling flat systems are much different than many of the existing techniques for linear
systems. In this paper we present the flatness-based control of blood glucose regulation in
human system. A non-linear model, the Bergman Minimal Model, is used to represent the
dynamics of blood regulation in humans, and because of the flatness property, the system
variables can be expressed as functions of the flat output and their time derivatives and a
control law is developed.

1. Introduction

In healthy people, blood glucose level is regulated by segregation of insulin in pancreas beta cells.
Insulin is a hormone that activates glucose uptake in insulin sensitive cells. In Diabetes Mellitus
Type I or advanced stages of Type II, the pancreas cannot segregate enough insulin to maintain blood
glucose in normal level and this situation leads to hyperglycaemia, a condition given when blood
glucose concentration overcomes 135 mg/dl. Diabetes Mellitus (DM) has been defined by World
Health Organization (WHO) [1] as a chronic disease, which occurs when the pancreas does not
produce enough insulin, or when the body cannot effectively use the insulin it produces. This leads to
an increased concentration of glucose in the blood (hyperglycaemia).

Type 1 diabetes (T1DM), previously known as insulin-dependent or childhood-onset diabetes, is
characterized by a lack of insulin production. Type 2 diabetes, formerly called non-insulin-dependent
or adult-onset diabetes, is caused by the body’s ineffective use of insulin. It often results from excess
body weight and physical inactivity. Gestational diabetes is hyperglycaemia that is first recognized
during pregnancy.

Traditional treatment consists in the administration of several doses of insulin day by day, in order to
keep a normal blood glucose level. This therapeutic treatment, cannot avoid undetected peaks of blood
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glucose. Also, the risk of hypoglycaemia, a situation where the patient can faint vanish or even go into
a coma, is always present. Neither can this treatment prevent the progressive damage to the artery
walls due to the effects of undetected peaks of blood glucose leading to ulterior complications such as
coronary diseases, retinopathy, etc. The results of the Diabetes Control and Complications Trial
(DCCT) [2] solidified the importance of continuous infusion of exogenous insulin based on
mechanical pumps to the prevention of micro vascular complications of diabetes as the most effective
tool to prevent complications in insulin-dependent Diabetes Mellitus [3].

Drawbacks of this approach are the skills required to operate the pump effectively and the rigid
lifestyle that diabetic patients have to follow. These problems have shown the need of new
developments, transparent to the user. A mechanical insulin pump, a glucose sensor and an algorithm
of control conform a useful tool to sort the mentioned problems. In this work a model based control
algorithm that can be integrated into an intelligent system that no requires patient doesnt attention is
presented.

2. Flatness of dynamical systems

A dynamical system is said to be flat if it is possible to find a set of variables, called the flat outputs,
such that the system is (non-differentially) algebraic over the differential field generated by the set of
flat outputs. Flatness was defined by Fliess et al. [4] and the word flat is used due to the fact that the
linearizing outputs play an analogous roll as the plane coordinates in the context of the Frobenius
theorem in differential geometry [5]. If the system has states x € R™ and inputs u € R™, then the
system is flat if it is possible to find outputs y € R™, r = (11, ...,1,»)" € N™ , of the form y =
h(x,u, 1, ..., u(r)) such that

x=¢1,3,..,.y") (1
u= a(y,}'/, ...,y(”l)) @)

Flat systems are a generalization of linear systems in the sense that all linear, controllable systems are
flat, but the techniques used for controlling flat systems are much different than many of the existing
techniques for linear systems. Flatness is particularly well tuned for allowing one to solve the inverse
dynamics problems and one builds off of that fundamental solution in using the structure of flatness to
solve more general control problems. Consider a nonlinear system

X = f(x,u) 3)

where x € R™ is a vector of state variables, and u € R™ the input, f(0,0) =0, and the rank of df/ du
is equal to m. The system (1) is differentially (differentially independent, means that they are not
related by any differential equation) flat if there exist a number m of real, analytic, scalar functions
that depend on x, u and a finite number r of derivatives of u,

y; = h(x,u, ...u(’")) i=1,..,m 4)
so that the inverse of system (1), taking u as inputand y = (y4,..., ) as output, does not have

dynamics. This is, the state variables x and the input variables u can be expressed as A (n-dimensional)
and B (m-dimensional) real and analytic functions of y

x=Ay,9,9, .., y7) (5)
u=B»57,..,y"") (6)
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where the output y is called the flat or linearized output and r is an integer. The flat outputs have the
following properties:

a. The components of y can be calculated from the state x, the inputs «, and a finite number of time
derivatives of the later.
b. The components of y are differentially independent, i.e. they are not related by any differential
equation.
c.  The state variables x, the input variables u, and the time derivatives and functions of them can be
calculated from the flat outputs y and a finite number of their time derivatives.

In [6] the concept of an affine flat input to a nonlinear system with a given output function is
introduced. This approach can be seen as dual to the search for a flat output of a control system with a
given input.
Definition.
1. The control system is said to be flat if there exists an output y = A(x) such that the resulting SISO
system
x=fx)+g(xu
{ y = (%) @

has relative degree n. In that case, y is called a flat output of (3) defined by the output function A(x).
2. The observed system (3) is said to be flat if there exists an input vector field y (x) such that the
resulting SISO system

x=f(x)+y@u
{ v = h(x) ®)

has relative degree n. In that case u is called a flat input for (3) with input vector field y(x) . Dynamics
of the glucose/insulin system is represented by Bergman’s Minimal Model (BMM), a mathematical
model [7] used to determinate the sensitivity of insulin action and metabolism of glucose in
Intravenous Glucose Tolerance Test (IVGTT). The Bergman Minimal Model is given by the
following equations

X1 = —Pyx; —x(x1 + Gp) + D(8), 9)

.X:Z = —szz + P3.X'3, (10)
u(t

x:3 = _n(X3 + Ib) + % (11)

Details of the model are:
x; = blood glucose concentration over basal value.
X, = remote compartment.
x3 = blood insulin concentration over basal value.
G, = basal blood glucose concentration.
I, = basal blood insulin concentration.
u(t) = infusion of external insulin.
n = transference rate.
t = time.
V = plasmatic volume.
P,= le? min’l, P2=3.33e'2 mU.L'lmin'z, and P; =1 3 SminT are patient’s dependent
parameters [13].
D(t) = Perturbation due to meals.
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. A flat output for the system is y = x;. Substituting the flat output in (9), if D(z) is considered a
unknown perturbation, results

y=—Piy—x;(y +Gp), (12)
.. . . _ =Pyy-y . _ _p ~Py-y
now, it is possible to obtain x, = v and x, = —P, e + P;x5. In the same way
1 ((Pv — V(4G — (Pov — )3 Py —7
= & {( Y — N+ Gp) : (Pry y)erP2 1Y y}’ (13)
Ps (v +Gp) y+Gy
—nPy—3y) —nPy—y)y nP(Piy—y 1
i, _nPy—y)  —nhy y)zy_ 2(Pry y)_nlb +lue as
Py (y+Gy) Pz (y+Gp) y+Gy 4

Isolating the control u(t) from (14), the endogenous nonlinear control u, (15) is obtained. A
supervisor control ug (16) in closed loop is added to u, in order to improve robustness.

1
u, = (f@.3.9) (15)
B abs(5* G — Gp)
us_—S*G—Gb (16)

== *Glucose

Exogenous insulin

“““““““““
------------
~~~~~~~~~~~~~

a5

Tirme (min)

Figure 1: Blood glucose, infused insulin and perturbations at 0 and 100 minutes.

3. Results

Simulations were performed over a Matlab Simulink model. In Figure 1, a disturbance D = 1.5 *
exp(—0.05 = t),is added to (9) in t=0 min. and t= 100 min. to simulate a postprandial period of 200
minutes. In figure 2, similar experiences were performed over a period of 1400 minutes,
approximately
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Figure 2: Blood glucose and infused insulin.

T
"""" “Insulin
{\ —— Rameta insulin

Figure 3: Blood insulin and instertitial insulin.

one day with several ingestions of carbohydrates. Two important results have been obtained:

a. Hypoglycemia, a mayor risk in glucose control, is not present. Figure 2 shows the carbohydrates

ingestion, blood glucose along a day. Figure 3 show blood insulin and interstitial insulin
concentration respectively. It is important to note that most of the time, interstitial insulin is
below zero. This is a important indicator of lack of hypoglycemia. In others nonlinear control, for

instance, based on feedback linearization (see [6],[7],[8],[9]) blood glucose is regulated but the
risk of over insulin in blood is always present.

State observers are not need. In space state control techniques, it is assumed that all states are
available. But blood glucose is the only measurable output and it is necessary to develop state
observers to estimate the value of the rest of the state variables [10 ]. For this purpose, nonlinear
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observers must be developed. This can be avoided by the use of flatness control and taken blood
glucose as the flat output.

As a future work, the same strategy must be adaptive and include a parameters estimation algorithm.
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