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ABSTRACT 
 

The form in which the national product affects the level of unemployment has 
become one of the most relevant macroeconomic subjects. A simple form of measuring 
the relation between the increase (decrease) of the national product and the decrease 
(increase) of the unemplyment rate is explained by the so called ``Okun Law'', according 
to which it is not expected, except under very special conditions, that each point of 
increase of the product results in a point of increase of the employment and, 
consequently, a fall of one point in the unemployment rate. The relation between growth 
and unemployment is much more complex and can be resumed in the following equation 

),(1 tttt cguu −ρ−=− −  
 

where ut is the unemployment rate, gt the percentage growth of the product and ct 
represents the percentage growth of the product that it is needed to maintain the 
unemployment level of the previous period. One of our objetives is to estimate ct . 
 

In the econometric formulation of this equation, this work takes into consideration 
that, if we include a deterministic trend within the explicative variables, the resulting 
model will necessarilly be very restrictive in the sense that, any impulse no matter how 
intense it was, will not have effects in the long run, because everything will be captured 
by the given trend. The necessary flexibility is introduced by allowing the trend to evolve 
in time as a stochastic process, which in turn is equivalent to establishing the “stylized 
facts” associated with these time series. 

 
Our approach is therefore focused on the intruduction of a stochastic trend in the 

regression model, seeking to take into account the structural changes that occurred during 
the most recent years in the Argentinian economy. From the statistical point of view, the 
key way for modeling a stochastic trend is the state space form. This methodology allows 
the unknown parameters to be estimated via the prediction error decomposition and the 
forecastings to be computed extending the Kalman filter. Moreover, a smoothing 
algorithm based on the Kalman approach can be used to provide an optimal estimator of 
the trend at each point of the sample period. 
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1. INTRODUCTION 
 

Since the product is determined by the action of production factors, every increase of 
the production requires, in principle, an increase in these factors, particularly the labour. 
Product movements affects, in principle, the unemployment rate. But the relationship 
between these two magnitudes is not as simple as to expect that each point of increase in 
the product implies a point of increase in the employment and, simultaneously, a drop of 
a point in the unemployment rate. In the United States of America (USA), Arthur Okun 
showed that when the economy is leaving a recession, the national product grows in a 
bigger proportion than the employment, and when it is entering a recession, the 
production decreases in a bigger proportion than the fall of the employment. 

 
The conclusions of this work gave rise to what is actually known as the “Okun Law”. 

It is, in fact, a simple hypothesis of statistical regularity about the way in which the 
changes in the national product affect the level of employment and the rate of 
unemployment. In Okun's original work, the production grew about three per cent for 
each one per cent in the growing of the employment. 

 
A common practice in many companies consists in maintaining the employees in 

their posts even when their services are not fully used. This is one of the economic 
factors that can explain the relation between the fall or growth in the product and the 
level of unemployment. That underuse of human resources is due to the simple fact that it 
is costly for the firms to contract new workers and even more to capacitate them for 
specific jobs. Therefore, when the demand of the goods produced by the firm decreases 
temporarily, the companies do not dismiss or suspend immediately the workers. This 
practice, which is usually called “employment stocked”, constitutes a sort of hidden 
unemployment: even when keeping their jobs, the workers do not contribute with 
plenitude to the production. Consequently, we can say that in recessions not all the 
workers really “work”. 

 
Besides the interpretations the economic theory could give to explain the Okun Law, 

what it really does is basically to show the relation between the growth of the national 
product and the changes in the unemployment rate. The empirical evidence in different 
countries showed an inverse relation between these two variables, and in this work our 
objective is to estimate this relation in Argentina for the period 1980-2002. 
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2. THE OKUN RELATION 
 

The following equation resumes the relation specified by the Okun Law and is the 
basis for our empirical work, aimed to use this formulation in the Argentinian case with 
data starting in 1980 

 ),(1 tttt cguu −ρ−=− −  (1) 

where ut is the unemployment rate and gt the percentage growth of the product. 
 
The component ct in the equation represents the percentage growth of the product 

that it is needed to maintain the unemployment level of the previous period. This growth, 
necessary to avoid an increase of unemployment, is basically imputed to the increment in 
the labour force and to the productivity of this factor. Since the unemployment rate is 
given as the ratio between the amount of unemployed and the total of the labour force, an 
increment in this later, of one per cent say, implies that the product should grow at least 
one per cent if we want to keep the same unemployment rate as that of the former period. 
Similarly, the rate of growth of the product should be equal to the productivity of the 
labour in order that the unemployment rate remains stable (1). 

 
In the case of the USA, for example, the sum of the growth rate of the active 

population and the labour productivity is, since 1960, equal to three per cent. In the 
increment of the active population, the increasing women participation in the labour 
market plays an important role. The women participation rate was in this country, during 
the 60’s, equal to 40%, increasing up to 60% three decades later. Since the men 
participation rate had a slight decrease during this period, the observed increment in the 
global participation rate, which goes from less than 60% to more than 67%, is entirely 
due to the women advance in the global labour supply. In this country, during the 1950’s 
one out of three women was in the labour force, while actually the participation is two 
out of three. 

 
Some authors (see, for example, Blanchard, 1996, page 362) call the sum of the 

growth rates of the productivity and the labour force, “normal” growth rate of the 
product, introducing it in the formulation of the Okun Law as a constant (three per cent in 
the case of USA). In the case of Argentina, the great variability of both the labour force 
and the labour productivity during a period which contains a hyperinflationary crisis, a 
rapid stabilization and a recession, encourage us to treat this rate as variable, leaving the 
econometric model to determine its value. In equation (1) this “normal” growth rate is 
represented by ct. 

                                                 
(1)  A long run vision of the economy shows without any ambiguity that the increse in the 
productivity is translated in a process which creates globally more employment than that it destroys 
it. This is the fundamental reason upon which the economic thought is place itself on the antipodes 
of the general belief, still well spreds out over the populations, that the growth in productivity as 
well as the technological advance of any king appear as the cause of unemployment. From the 
empirical point of view, no stable relation between productivity and unemployment has been 
probed valid in the short run [see, for example, Krugman (1994)]. 
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Let us analyze the parameter ρ  in equation (1). This parameter represents the excess 

in the growth of the product above the “normal” growth which is transferred to a decrease 
in the unemployment rate. For example, if its value is 0.5, this means that for each 
percentage point of economic growth above the normal, the unemployment rate will 
decreases half per cent. For the USA case mentioned before, if we assume the “normal” 
growth at about three per cent, a value of 0.5 for ρ  means that it is needed an increment 

of about five per cent in the product to diminish one point the unemployment rate. 
 
It is expected that 10 <ρ< , basically for two reasons. Firstly, the firms do not 

adjust the employment one-to-one with the deviations of the observed growth in relation 
with the growth considered as normal. In general, this relation is less than one not only in 
periods of apogee but also during recession periods. A possible explanation for this is that 
the training of new workers results costly for the firm, therefore it is sometimes 
preferable to keep the actual team of workers, paying them for the extra time that they 
could be working or “stocking up” employment according to the moment of the business 
cycle and at least in the short run. Moreover, not all the employment depends directly 
upon the sales of the firm. 

 
Secondly, an increase in the employment does not lead to a one-to-one decrease in 

the unemployment, because the rate of labour participation normally shows a constant 
growth. Not every new job is allocated to an unemployed. Some of these new workers 
come from the populations which was out of the labour force before or out of the 
economically active population; they are probably people who had abandoned in the past 
the search for a job but, in front of new and good perspectives in the labour market, they 
decide to start looking for a job again. 

 
To finish this general comment about Okun Law, let us say that, in the econometric 

formulation of equation (1), we take into consideration that, if we include a deterministic 
trend within the explicative variables, the resulting model will necessarily be very 
restrictive, in the sense that any impulse of any intensity will not have effects in the long 
run, because everything will return to the given trend. The necessary flexibility is 
introduced by allowing the trend to evolve in time as a stochastic process, which in turn 
is equivalent to establishing the “stylized facts” associated with these time series. For 
such facts to be useful they should (i) be consistent with the stochastic properties of the 
data, and (ii) present meaningful information. However, many stylized facts reported in 
the literature do not fulfill these criteria. Particular, if the information is based on 
mechanically detrended series it can easily give a spurious impression of cyclical 
behaviour. The analysis based on autoregressive-integrated-moving average (ARIMA) 
models can also be misleading if such models are chosen primarily on grounds of 
parsimony (for a treatment of these ideas see Harvey and Jaeger, 1993). 

 
Our approach is therefore focused in the introduction of a stochastic trend in the 

regression model, taking into account the structural changes that occurred during the 
most recent years in the Argentinian economy. From the statistical point of view, the key 
way for modeling a stochastic trend is the use of a structural time series model written in 
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the state space form. This allows the unknown parameters to be estimated via the 
prediction error decomposition and the forecasting to be computed extending the Kalman 
filter. Moreover, a smoothing algorithm based on the Kalman approach can be used to 
provide an optimal estimator of the trend at each point of the sample period. 
 

3. STRUCTURAL TIME SERIES MODELS 
 

Let us consider a model of the form 

  ,,,1, nty tttttt K=ε+′+γ+µ= äz  (2) 
 

where tµ  is the trend, tγ  is the seasonality, tε  is an irregular component serially 

independent, normally distributed with mean zero and constant variance, i. e. 

),0(~ 2
εσε NIDt , zt is a p × 1 vector of observed explanatory variables some of them 

could be lagged values of the dependent variable as well as lagged values of exogenous 

variables and tä  es a p × 1 vector of unknown parameters. If the vector tä  does not 

depend on the time, then 1−= tt ää . Models of the form (2) are called structural time 

series models. 
 

A stochastic formulation of the trend allows the level tµ  and the slope tβ  to evolve 

over time. Then 

 
,),0(~,

,),0(~,
2

1

2
11

ζ−

η−−

σζζ+β=β
σηη+β+µ=µ

NID

NID

tttt

ttttt
 (3) 

where the errors tε , tη  and tζ  are mutually independent at all time moments. 

A stochastic formulation of the seasonality with period s is given by 
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where [x] represents the integer part of x and tj,γ  is generated by 
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where sjj /2π=λ  is the frequency in radians, tj,ω  and 
*

,tjω  are white noise 

mutually uncorrelated errors with zero mean and common variance 2
ωσ  for j = 1, ..., [s/2] 

and t = 1, ..., n. For s even [s/2] = s/2, while for s odd [s/2] = (s − 1)/2. For s even, the 
component for j = s/2 becomes 

 γ γ λ ωj t j t j j t j s, , ,cos , / .= + =−1 2  (6) 
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The extent to which the level, tµ , the slope, tβ , and the seasonality, tγ , change 

over time is governed by the relative hyperparameters 
22 / εηη σσ=q , 

22 / εζζ σσ=q  and 

22 / εωω σσ=q . 

When 0=ζq , we have that β==β=β − L1tt . Now, if β  is different from 

zero, the trend is a random walk plus drift: ttt η+β+µ=µ −1 . In such a case, with 

0µ=α  and combining these expressions in the corresponding first equation of (3), we 

easily verify that 

 .,,1,
1

ntt
t

i
it K=η+β+α=µ ∑

=

 (7) 

Here, the behaviour of tµ  is governed by two nonstationary components: a linear 

deterministic trend and the stochastic trend ∑η i . 

When 0=ζq  and if 0=β , solving for tµ  with 0µ=α  

 .,,1,
1
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=
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This trend is usually known as “local level”. Notice that the successive tη  shocks 

have permanent effects on the { }tµ  sequence in that there is no decay factor on past 

values of it −η . Hence, tµ  is a stochastic trend. 

Returning to the general trend presented in (3) we have firstly, solving for tβ , 
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Then, using this solution we can write tµ  as 
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Here, each element of the { }tµ  sequence contains a deterministic trend and a 

stochastic trend. It can be observed that the stochastic part of the coefficients on time 

depends on the past realizations of the { }tζ  sequence. These coefficients can be positive 

for some values of t and negative for others. 
 

In the limit case when the hyperparameters ηq  and ζq  are both zero, the trend is 

deterministic and has the form tβ+α  with 0µ=α . 

The statistical treatment of the structural time series models (2) is based on the state 
space form (SSF), the Kalman filter and the associated smoother. 
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3.1. THE STATE SPACE FORM 

 
All linear time series models have a state space representation. This representation 

relates the disturbance vector { }tå  to the observation vector { }ty  via a Markov process 

{ }tá . A convenient expression of the state space form is  
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for t = 1, ..., n, where yt is a r × 1 vector of observations and tá  is the m × 1 

unobservable vector called state vector. The matrices Zt, Tt, Rt, Ht, and Qt have 
dimensions r × m, m × m, m × k , r × r and k  × k  respectively, and their unknown 
elements, if any, are place in the hyperparameter vector ø  which can be estimated by 

maximum likelihood. The error terms tå  and *
tç  are assumed serially independent and 

independent among them at all time moments. The matrices Zt and Tt may depend upon 
y1, y2, ..., yt−1. The first equation of (11) is usually called the measurement equation and 
the second one, the transition equation. 

 

The initial state vector 0á  is assumed to be N(a0, P0) independently of nåå ,,1 K  

and **
1 ,, nçç K , where a0 and P0 are known. If tá  is nonstationary then 0á  is thought 

of having a diffuse prior, that is the variance matrix P0 is equal to Iθ , where θ  is a 
scalar which tends to infinity; see Harvey (1989, subsection 3.3.4) and Abril (1999, 
section 3.3). 
 

3.2. KALMAN FILTER 
 

The object of the Kalman filter is to update our knowledge of the system each time a 
new observation yt is brought in. Once the model has been put in the state space form, the 
way is opened for the application of an important number of algorithms. In the centre of 
these is the Kalman filter. This filter is a recursive procedure for computing the optimal 
estimator of the state vector at time t, based on the information available up to this time t. 
This information consists of the observations up to and including yt. 

 
The Kalman filter enables the estimate of the state vector to be continually updated 

as new observations become available. At first sight, the value of such a procedure in 
economic applications would appear to be limited. New observations tend to appear at 
rather less frequent intervals and the emphasis is on making predictions of future 
observations based on a given sample. The state vector dos not always have an economic 
interpretation and, in cases where it does, it is more appropriate to estimate its value at a 
particular point in time using all the information in the sample, not just a part of it. These 
two problems are known as prediction and smoothing respectively. It turns out that the 
Kalman filter provides the basis for the solution of both of them. 
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Another reason for the central role of the Kalman filter is that when the disturbances 
and the initial state vectors are normally distributed, it enables the likelihood function to 
be calculated via what is known as the prediction error decomposition. This opens the 
way for the estimation of any unknown parameters in the model. It also provides the basis 
for statistical testing and model specification. 

 
The derivation of the Kalman filter given below rests on the assumption that the 

disturbances and the initial state vector are normally distributed. A standard result on the 
multivariate normal distribution is then used to show how it is possible to calculate 

recursively the distribution of tá  conditional on the information set at time t, for all t 

from 1 to n. These conditional distributions are themselves normal and hence are 
completely specified by their means and variance matrices. It is these quantities which 
the Kalman filter computes. 

 
In the Gaussian state space model, the Kalman filter evaluates the minimum mean 

squared error estimator of the state vector 1+tá  using the set of observations Yt = {y1, ..., 

yt}, denoted )( 11 ttt E Ya ++ = á , and the corresponding variance matrix 

)( 11 ttt Var YP ++ = á , for t = 1, ..., n. The Kalman filter is given by 
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where 111 −−− −= tttt ZKTL , with the initialization K0 = 0. 

 
The derivation of the Kalman recursions can be found in Anderson and Moore 

(1979), Harvey (1989) and Abril (1999). The limiting case IP θ=0 , where ∞→θ , 

can be handled using a relatively straightforward modification of the Kalman filter as 
proposed by Ansley and Kohn (1985, 1990) and developed further by Koopman (1997). 
Other treatments of the limiting case are given by de Jong (1991) and Snyder and Saligari 
(1996). The one-step ahead prediction error of the observation vector is 

)( 1−−= tttt E Yyyv  with variance matrix )()( 1 tttt VarVar vYyF == − . The 

output of the Kalman filter is used to compute the log-likelihood function );( øyl  in 

terms of the one-step ahead prediction, conditional on the hyperparameter vector ø , as 

given, apart from a constant, by 
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Numerical maximization of );( øyl  with respect to the hyperparameter vector ø , 

yields the maximum likelihood estimator ø~ . 
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Once the hyperparameters have been estimated, the filter is used for obtaining one-
step ahead prediction errors, which enable to calculate diagnostic statistics for normality, 
serial correlation and goodness-of-fit. 

 
When the normality assumption is dropped, there is no longer any guarantee that the 

Kalman filter will give the conditional mean of the state vector. However, it is still an 
optimal estimator in the sense that it minimizes the mean square error within the class of 
all linear estimators. 

 
3.3. SMOOTHING 

 
The work of de Jong (1988, 1989), Kohn and Ansley (1989) and Koopman (1993) 

leads to a smoothing algorithm from which different estimators can be computed based 
on the full sample Yn. Smoothing takes the form of a backwards recursion, giving 
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where rn = 0 and Nn = 0. The recursions require memory space for storing the 
Kalman output vt, Ft and Kt, for t = 1, ..., n. The matrices Mt and Nt−1 constitute the 
estimated variances of ut and rt−1, respectively. The series {ut} will be referred to as 
smoothing errors. As we will see later, the smoothing quantities ut and rt play a pivotal 
role in the construction of diagnostic tests for outliers and structural breaks. The smoother 
can be used to compute the smoothed estimator of the disturbance vector of the transition 

equation )(ˆ *
nt

*
t E Yçç = , that is  

 ,1,,nt,QRNRQ)(Var,rRQ tt1ttt
*
t1ttt

*
t K=′=′= −− çç  (15) 

where rt−1 satisfies (14); see Koopman (1993) and Abril (1999, section 3.4). The 

smoothed estimator of the state vector )(ˆ
ntt E Yáá =  is constructed via the simple 

forward recursion 

 ,1n,,1t,ˆRˆTˆ *
tt1ttt −=+= − Kçáá  (16) 

together with nnnnnn vFZPa 1ˆ −′+=á . The starting value is *
000 ˆˆ çá += a  with 

00
*
0ˆ rP=ç . A more elaborate algorithm for computing the smoothed state vector, 

including the evaluation of its covariance matrix, is given by de Jong (1988, 1989) and 
Kohn and Ansley (1989). Finally, the output of the smoother can also be used to compute 
the exact score for hyperparameters; see Koopman and Shephard (1992). 

 
Finally, the results of the smoother can also be used to maximize the function 

);( øyl  defined in (13), with respect to the elements of the hyperparameter vector ø . 

 
The smoother is used to estimate unobserved components such as the trend and the 

seasonality, and for calculating diagnostic statistics useful to detect outliers and structural 
breaks. 
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3.4. OUTLIERS AND STRUCTURAL BREAKS 
 

An outlier is an observation, which is not consistent with a model which is thought to 
be appropriate for the overwhelming majority of the observations. It can be captured by a 
dummy explanatory variable in the measurement equation [equation (2)], known as an 
impulse intervention variable, which takes the value one at the time of the outlier and 
zero elsewhere. 

 
A structural break occurs when the level of the series shifts up or down, usually 

because of some specific event. It is modelled by a step intervention variable in the 
measurement equation [equation (2)] which is zero before the event and one on the event 
and after. Alternatively, it can be modelled by a dummy explanatory variable in the 
corresponding transition equation [equation (3)] which takes the value one at the time of 
the structural break in the level and zero elsewhere. 

 
A structural break in the slope can be modelled by a staircase intervention in the 

measurement equation [equation (2)] which is a trend variable taking the values, 1, 2, 3, 
..., starting in the period of the break. Alternatively, it can be modelled by a dummy 
explanatory variable in the corresponding transition equation [equation (3)] which takes 
the value one at the time of the structural break in the slope and zero elsewhere. 

The concept of outliers and structural breaks apply quite generally. However, it is 
helpful for what follows to note that the level and slope breaks can be viewed in terms of 
impulse interventions applied to the level and slope equations of the model defined in (2), 
(3), (4) and (5). The structural framework also suggests that it may sometimes be mo re 
natural to think of an outlier as an unusually large value for the irregular disturbance. 
This leads to the notion of a level shift arising from an unusually large value of the level 
disturbance while a slope break can be thought of as a large disturbance to the slope 
component. Thus interventions can be seen as fixed or random effects, however, the 
random effects approach is more flexible. For example, introducing an outlier 
intervention at τ=t  is equivalent to regarding the irregular variance at this point as 

being infinity. By using a large finite variance, we can ensure that the observation τy  is 

downweighted without being removed altogether. 
 
Viewing intervention effects as random is consistent with the representation of a 

stochastic trend in the equations (2), (3), (4) and (5). In this model the level and slope 
components are subject to random shocks at each point in time. When such movements 
are abnormally large, increasing the variance of the relevant disturbance or including an 
intervention variable may be appropriate. 

 
Suppose that we want to test for an outlier at time τ=t . It can be shown (see, for 

example, Abril, 1997; de Jong, 1989; and de Jong and Penzer, 1997a) that the smoothing 
errors, ut, and their unconditional variances, Mt, at τ=t , constitute the basic elements 
for the construction of the tests. In fact, the standardization of the ut’s, called the 
standardized smoothing errors, constitute the test statistics for testing for an outlier at any 
point in the sample. Fortunately, the Kalman algorithm gives the values of these 
standardized smoothing errors for all time periods so only one pass is needed to produce 
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them. These are valid tests for cases in which the outliers are produced by both a fixed 
effect model as well as a random effect model. The STAMP (Koopman, Harvey, Doornik 
and Shephard, 1995) package computes routinely the values of these statistics. They are 
known there with the name irregular auxiliary residuals. This terminology was 
introduced by Harvey and Koopman (1992). 

 
For the detection of structural breaks, de Jong and Penzer (1997a) showed that all 

that is required is to have the model set up in state space form in such a way that the level 
shift can be introduced by a pulse intervention somewhere in the transition equation. As 
observed earlier, a structural time series model with a level or trend component is of such 
a form. Given such a setup, the Kalman filter and smoother produces directly the test 
statistic as the element of rt in the position corresponding to the pulse intervention. Its 
variance is automatically available from Nt in (14). The standardization then leads to the 
level auxiliary residuals which constitute the values of the tests used for detecting shifts 
in the level of a series. 

 
As in the case of the level, the test statistics for changes in the slope are obtained 

from the appropriate component of rt computed by the Kalman filter and smoother. Its 
variance is automatically available from Nt. The standardization then leads to the slope 
auxiliary residuals which constitute the values of the tests used for detecting changes in 
the slope of a series. 

 
The auxiliary residuals are smoothed estimations of the irregular, level and slope 

disturbances. Although they are serially correlated and correlated among them, they play 
an important role in the sense that they split up portions of information which usually is 
mixed up in the innovations residuals. In particular, they are useful for detecting and 
distinguishing between outliers and structural changes. In order to make the relevant 
tests, it is possible to show that the statistics follow approximately a normal distribution 
(see, for example, Abril, 1997; and Koopman, Harvey, Doornik and Shephard, 1995). 
 

3.5. STATE SPACE REPRESENTATION OF THE STRUCTURAL MODEL 
 

The structural model defined in equations (2), (3), (4) and (5) has a state space 

representation like that given in (11). In this case, and assuming that the vector tä  does 

not depend on the time, yt is 1 × 1, the 1 × (2[s/2] + 2 + p) order matrix Zt results to be 

 ( ) ,01 tt zZ ′′′= 01  (17) 

where tz′  was defined in (2), 1 is a column vector of order [s/2] with all its elements 

equal to 1 and 0 is a column vector of order [s/2] with all its elements equal to 0. The 1 × 

1 matrix Ht turns out to be equal to 2
εσ . The state vector tá  of order (2[s/2] + 2 + p) is  

 [ ] [ ]( ) ,*
,2/

*
,1,2/,1

′′γγγγβµ= ttsttstttt äá LL  (18) 

where ää =t  for all t. The (2[s/2] + 2 + p) × (2[s/2] + 2 + p) order matrix Tt  and 

the (2[s/2] + 2 + p) × (2[s/2] + 2) order matrix Rt are given by 
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where 

 ,
10

11








=A  (20) 

 
the matrix B is diagonal of order [s/2] × [s/2] with diagonal elements equal to 

jλcos , sjj /2π=λ , j = 1, ..., [s/2], the matrix C is diagonal of order [s/2] × [s/2] 

with diagonal elements equal to jλsin , sjj /2π=λ , j = 1, ..., [s/2], 0 represents a 

vector or a matrix with all its elements equal to zero and Ix represents a x-order identity 

matrix. Finally, the (2[s/2] + 2) × 1 order column vector *
tç  and the (2[s/2] + 2) × (2[s/2] 

+ 2) order diagonal matrix Qt are 
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Starting values for the Kalman filter are computed from the first (2[s/2] + 2 + p) 

observations and the likelihood function is then evaluated in terms of the prediction 
errors from (2[s/2] + 2 + p) + 1 to n. By including the parameters ä  in the state vector, 
they are effectively concentrated out of the likelihood function. As a result the likelihood 
function only needs to be maximized numerically with respect to the relative 

hyperparameters 
22 / εηη σσ=q , 

22 / εζζ σσ=q  and 22 / εωω σσ=q . Estimation of the 

hyperparameters can be carried out by maximum likelihood either in the time domain or 
the frequency domain. Once this has been done, estimates of the trend, seasonal and 
irregular components as well as the coefficients of the explanatory variables are obtained 
from a smoothing algorithm. These calculations can be carried out very rapidly on a PC 
using the STAMP package (see Koopman, Harvey, Doornik and Shephard, 1995). 
 

4. UNEMPLOYMENT AND GROWTH 
 

Our basic data are the unemployment rate and the Gross National Product (GNP) of 
Argentina from 1980 to 2002, inclusive. The data were taken from the “Economic 
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Report” published by the Ministry of Economy and Public Work and Services of 
Argentina (2002). It has to be noted that the unemployment rate is estimated twice a year, 
they usually corresponds to the months of May and October, but for some years the first 
estimation corresponds to April and the second to November. On the other hand, the GNP 
is calculated at the end of every quarter of each year. Therefore and in order that the 
measurement periods of the data coincide, we adjusted the GNP in such a way that it 
agrees with the measurement period of the unemployment rate. The last data available 
corresponds to May 2002. Figure 1 shows the unemployment rate for the period 1980-
2002 and Figure 2 shows the GNP centred at the moment of measurement of the 
unemployment rate for the same period. 

 
According to equation (1), the dependent variable, which will be denoted as yt, is 

equal to the first difference of the unemployment rate and the explanatory variable is the 
growth of the economy which will be denoted as gt. The growth is defined as the 
percentage change in the GNP. Figure 3 shows the first differences of the unemployment 
for the considered period and Figure 4 shows the growth of the economy for the same 
period. 

 
Initially, we estimated the basic structural model given in equations (2), (3), (4) and 

(5) written in the state space form given in (11) with the dependent variable yt equals to 
the first differences of the unemployment rate and the explanatory variable equals to the 
growth of the economy denoted by gt. 

 

 
Figure 1: Unemployment rate. Bi-annual values from 1980 to 2002 
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Figure 2: Gross National Product of Argentina. Bi-annual values, at prices of 1993, from 

1980 to 2002 
 

As a result of this preliminary estimation we detected that 0=ζq  and 0=β , 

leaving the trend to be equal to the first equation of (3) with 0=βt  for all t. A trend of 

this kind is known as local level. We found out as well, based on the tests presented in the 
previous section, an outliers in the first period of 1995, and that there exist two level 
shift, the first of them in the second period of 1991 and the second one, in the second 
period of 1995. 

 

 
Figure 3: First differences of the unemployment rate. 1980-2002 
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Introducing interventions for the level, one in the second period of 1991 and another 
in the second period of 1995, an irregular intervention in the first period of 1995, and 
deleting the slope of the trend, we made the final estimation with 44 observations, and we 
obtained 

 ,~2925.3~161449.0~
/// nttnttntt Dgy ε++γ+−µ=  (22) 

where t = 1980-2, ..., 2002-1, noting that 1980-2 means the second half of 1980 and so 

on, n = 2002-1; nt /
~µ , nt /

~γ  and nt /
~ε  are the smoothed estimates of the trend, the 

seasonality and the irregular component at time t and based on the n observations. 
Moreover, as we will see later, 

 ,
161449.0

~
~ / nt

tc
µ

=  (23) 

where tc~  is the estimated “normal” growth rate of the product and their values are given 

in Table 1. Dt is equal to one when t = 1995-1 and zero otherwise, and 

 
years.  theof half second for the,80375.0

years,  theof halffirst  for the,80375.0~
/

−=
=γ nt  (24) 

 

 
Figure 4: Growth rate of the GNP of Argentina. 1980-2002 

 
It has to be noted that, except the seasonality, all the estimations of (22) are highly 
significant. Figure 5 shows the components of (22) with the original series of first 
differences of the unemployment rate for the period under consideration as the dependent 
variable, i. e. it shows the estimates of the trend, the trend plus the explanatory variables, 
the seasonality and the irregular component. 
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Figure 5: First differences of the unemployment rate. Original series [full line of (a) and 

(b)], estimated trend [dotted line of (a)], estimated trend plus explanatory variables 
[dotted line of (b)], estimated irregular component (c) and estimated seasonality (d) 

 
 

Values of relevant statistics for measuring the goodness of fit are: the coefficient of 

determination 8763.02 =DR ; the values of the statistics NBS = 0.4901 of Bowman and 

Shenton (1975) and NDH = 0.2382 of Doornik and Hansen (1994) for testing the 
normality of the residuals of the adjusted model; the value of the Durbin-Watson statistic 
d = 2.196 for testing serial correlation in the residuals of the adjusted model and the value 
of the Box-Ljung statistic Q(8, 6) = 4.798 for testing the hypothesis that the residuals are 
white noise. 

 

The interpretation of 2
DR  is similar to that of the coefficient of determination in a 

usual regression, but its calculation, which can be seen in Koopman, Harvey, Doornik 
and Shephard (1995), is somehow different from this last one. We observe that the value 

of 2
DR  is high, which means an adequate fit. The statistics NBS and NDH have a 2χ  with 

two degrees of freedom and their values lead us to accept the hypothesis of normality of 
the residuals of the fitted model. The Durbin-Watson d statistic directs us to accept the 
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hypothesis of lack of serial correlation of these residuals. The statistic Q(8, 6) is based on 

the first eight residuals autocorrelations and has a 2χ  distribution with six degrees of 

freedom, its value leads us to accept the hypothesis that the residuals are white noise. 
 
In Figure 6 we can see the residuals of the fitted model with its 95% confidence 

band, the correlogram also with its 95% confidence band, the periodogram, the estimated 
spectral density and the frequency distribution of these residuals. With the arguments 
given above and the observation of this figure we can conclude that the fitting is highly 
satisfactory. 

 
Similar analyses were made with the residual of the irregular component and with 

the residuals of the trend. In both cases we accept the null hypothesis of normality. These 
can be seen graphically in Figure 7, where it is observed, on the upper part, the irregular 
auxiliary residuals with the 95% confidence band and its frequency distribution, and on 
the lower part, the level (trend) auxiliary residuals with the 95% confidence band and its 
frequency distribution. 

 
 
 

 
 

Figure 6 : Residuals of the adjusted model in (22). Residuals with 95% confidence band (a), 
correlogram of the residuals with 95% confidence band (b), periodrogram (full line) and spectral 

density (dotted line) of the residuals (c) and frequency distribution of the residuals (d) 
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In order to determine the ability of the fitted model (22) to perform predictions, the 
last four observations were predicted and some tests were carry out. The value of Chow's 
statistics within the sample period turn out to be 1.4660, which is significantly lower than 
the value of the F(4, 38) distribution, pointing out that the model is well specified for 
prediction purposes. On the other hand, for testing the constancy of the mean of the 
process yt over the prediction period, the CUSUM was calculated, giving a value of 
1.7773, which is within the acceptance region of the hypothesis of stable mean and it is 
based on a t distribution with 38 degrees of freedom. All of these can be seen in Figure 8, 
where it is observed the series yt, the prediction of its last four values together with the 
95% confidence bands for the predictions and for the prediction residuals, and the 
corresponding CUSUM for the predictions with its 90% confidence band. Clearly, we see 
that the performance of the model seems to be satisfactory for making predictions. 

 
 

 
 

Figure 7: Auxiliary residuals. Irregular auxiliary residuals with 95% confidence band (a), 
frequency distribution of the irregular auxiliary residuals (b), level auxiliary residuals 

with 95% confidence band (c) and frequency distribution of the level auxiliary residuals  
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Figure 8: First differences of the unemployment rate (full line) with predicted values 
(dotted line) (a), predicted values (dotted line) with 95% confidence band (b), prediction 

residuals with 95% confidence band (c) and CUSUM with 90% confidence band (d) 
 
 
With a simple transformation of (22) we obtain 
 

 ,2925.3~)~(161449.0 // nttntttt Dcgy ε++γ+−−=  (25) 

 

where the estimated “normal” growth rate of the product, tc~ , was defined in (23) and 

their values are given in Table 1. The other components were defined above. 
 

The variable ct plays a similar role as the trend in a basic structural model without 
slope. It can change in time and it can capture the structural breaks that happen in the 
economy. The other variables, such as the seasonality and the interventions, are included 
to give the model a higher generality and to let it to have the usual time series 
econometric model structure. 
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Figure 9: Estimated “normal” growth rate of the GNP of Argentina.  

1980-2002 
 

From the analysis of the results, specially from Figure 9 and Table 1, we observe 
clearly that we can distinguish three periods in the last twenty two years of Argentinian 
economy. The first period goes from 1980 to the initial part of 1991 and the distinctive 
feature of it was a high rate of inflation with an hyperinflationary peak during 1989. 
There, the natural rate of growth of the product was running from 2.53% to 0.49%, with 
an average of 1.30%. This together with the estimated value of the coefficient ρ , which 

is 161449.0~ =ρ , means that in this first period, the GNP should had to grow 7.50% in 

average in order to obtain one point of decrease in the unemployment rate. The end of 
this first period is coincidental with the beginning of the application of the stabilization 
plan of 1991. 

 
On the other hand, the second period goes from the final part of 1991 to the initial 

part of 1995. The main characteristic of this period was a fast stabilization of the 
inflationary problem and an implementation of an important privatization scheme. The 
GNP had a tremendous increase as well as the unemployment. The natural rate of growth 
of the product was running from 8.60% to 9.71%, with an average of 9.19%. This means 
that in this second period, the GNP should had to grow at the impressive value of 
15.35%, in average, in order to obtain one point of decrease in the unemployment rate. 
Clearly, for any country this is a very ambitious task, and even more for the Argentinian 
economy. The end of this second period coincided with the Mexican crisis which affected 
all the Latin American economies. Moreover, we detected an outlier in 1995-1 when this 
crisis, called the “tequila effect”, was at a maximum. 

 
Finally, the last period goes from the last part of 1995 to the initial part of 2002. It 

has two subperiods, one up to the final part of 1998 and the second up to the end of the 
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period under study. In the first subperiod there was an increasing GNP with a slowly 
decreasing unemployment rate. Even more, the natural rate of growth of the product was 
negative in this subperiod (−0.42 in average), meaning that any increase in the GNP 
would result in a decrease of the unemployment rate, as it happened. The main 
characteristics of the second subperiod were an important recession with very stable 
prices and increasing unemployment. The natural rate of growth of the product for this 
subperiod had a positive slope, and it was running from 0.48% to 3.85%, with an average 
of 2.41%. This means that in this  second subperiod, the GNP should had to grow at the 
value of 8.60%, in average, in order to obtain one point of decrease in the unemployment 
rate. 

 
t 

tc~  t 
tc~  t 

tc~  

1980-2 2,53 1991-2 8,60 1995-2 -0,75 

1981-1 2,36 1992-1 8,71 1996-1 -0,39 

1981-2 2,13 1992-2 8,95 1996-2 -0,22 

1982-1 1,74 1993-1 9,24 1997-1 -0,54 

1982-2 1,51 1993-2 9,22 1997-2 -0,50 

1983-1 1,44 1994-1 9,38 1998-1 -0,14 

1983-2 1,30 1994-2 9,71 1998-2 0,48 

1984-1 1,39 1995-1 9,71 1999-1 1,15 

1984-2 1,56   1999-2 1,67 

1985-1 1,51   2000-1 2,22 

1985-2 1,44   2000-2 2,68 

1986-1 1,42   2001-1 3,25 

1986-2 1,38   2001-2 3,72 

1987-1 1,26   2002-1 3,85 

1987-2 1,30     

1988-1 0,98    

1988-2 0,76    

1989-1 0,67    

1989-2 0,45    

1990-1 0,50    

1990-2 0,49    

1991-1 0,55    

 
Table 1: Estimated “normal” growth rate of the GNP of Argentina.1980-2002 
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5. CONCLUDING REMARKS 
 

Four points can be noted as conclusions of the work of measuring the Okun 
Relation for Argentina in the period considered. 

 
Country Estimated Coefficient (1981-1994) 

United State 0.47 
Germany 0.42 
United Kingdom 0.49 
Japan 0.23 

 

Table 2: Estimated value of the coefficient ρ  for different countries 

 
1. The estimated coefficient ρ  has the expected positive sign, indicating an inverse 

effect of the growth (actually, of the positive deviation of the growth in relation to 
the so called “normal” growth) on the unemployment. The estimated value of this 
coefficient (0.16) tells us that a growth which exceeds a one per cent the value of the 

rate tc~  of our equation, is translated in a descent of the unemployment of 0.16 

points. This value is somehow lower in comparison with the corresponding to more 
developed countries for a period of time similar to the one considered in this work. 
In fact, for the period 1981-1994, the values given in Table 2 were obtained. 
The value of the coefficient ρ  partly depends on decisions of the firms related, in 

particular, with the form in which they adjust the number of employees as an answer 
to the temporary deviations of the product. This type of decisions depends in turn on 
factors of different kinds and amplitudes, such as the form of the internal 
organization of the companies and the legal framework related with the contracting 
and dismissal of employees. This explain why the value of this coefficient differs 
from one country to another, as can be seen in the given Table 2. The relatively low 
value observed in Japan, for example, has been interpreted as a consequence of the 
higher labour security that the workers have there. In the USA, on the contrary, the 
legal and institutional restrictions that the companies face in order to adjust the 
employment are very much lesser. In the case of Argentina, the estimated value of 
the coefficient seems to be an indirect indicator of the high inflexibility existing in 
the labour market. 

 
2. The rate of growth which was called “normal” in our work responds, as we have 

seen, to the sum of the increments of the labour productivity and of the labour force. 

In our estimation, the value of this component ( tc~  in the equation) shows two 

structural changes. Clearly, the first one appears in the second part of the year 1991. 

From this moment onwards, the value of tc~  is substantially higher, passing from 

1.30 to 9.19, in average. Without considering these actual values, the structural 
change can be taken as a clear evidence of the impressive turn over produced in the 
Argentinian economy as a result of the stabilization plan implemented in 1991. The 
substantive increment of the labour productivity and of the labour force explain the 
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observed deep change in Argentina. This second period ended in the first part of the 
year 1995, with the second structural change appearing in the second part of this 
year. The end of the second period coincided with the Mexican crisis which affected 

all the Latin American economies. The value of tc~  in the third period is 

substantially lower, passing from 9.19 to 1.18, in average. One of the possible 

reasons for this important decrease in tc~  is the almost permanent reduction in the 

labour productivity after the impact of the Mexican crisis. 
 
3. The estimations in our model allow us to detect an outlier in the first half of 1995 

coinciding with the maximum shock of the Mexican crisis which was called the 
“tequila effect”. This outlier appears as a consequence of the 1995’s recession, after 
a constant growth during the period 1991-94. 

 
4. During the period that goes from 1991 up to 1995, the macroeconomic stability in 

Argentina coincides with a significant increase of the rate of unemployment and, 
simultaneously, with a high growth only detained, in part, during the crisis of the 
“tequila effect” previously mentioned. Relating all of this with the high value of our 
estimation of ct, we can defend the hypothesis of a significant rise of the natural rate 
of unemployment as a result of the structural changes observed in the Argentinian 
economy in this period. 
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