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ABSTRACT 

In this work a general method is developed for handling outliers, structural shifts 

and heavy-tailed distributions in linear state space time series models. The basic tool we 

use for dealing with outliers and structural shifts is to model observation or state error 

densities by a mixture of densities, one component of which is a Gaussian density with a 

large variance. The other component can be a Gaussian density, a non-Gaussian density 

such as Student’s t or it can itself be a Gaussian mixture. The underlying idea is to 

estimate the state vector by its posterior mode using linearisation, iteration and the 

Kalman filter and smoother. 
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1. INTRODUCTION 
 

We begin with the linear Gaussian state space model. Although our main concern is 

with non-Gaussian models, the linear Gaussian model provides the basis from which all 

our methods will be developed. The model can be formulated in a variety of ways; we 

shall take the form 

   (1) 
),,0(~,
),,0(~,

1 ttttttt

tttttt

QNRT
HNZy

ηη+α=α
εε+α=

−

for  where  is a ,,...,1 nt = ty 1×p  vector of observations, tα  is an unobserved  

state vector,  is a selection matrix composed of g columns of the identity matrix , 

which need not be adjacent, and the variance matrices  and  are nonsingular. The 

disturbance vectors ε  and  are serially independent and independent of each other. 

Matrices , ,  and T  are assumed known apart for possible dependence on a 

parameter vector  which in classical inference is assumed fixed and unknown and in 

Bayesian inference is assumed to be random. The first line of (1) is called the observation 

equation and the second line, the state equation of the state space model. Matrices  and 

 are permitted to depend on . The initial state 
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 independently of ), 00 Pa(N nεε ,...,1  and nηη ,...,1
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, where  and  are first assumed 

known; later, we consider how to proceed in the absence of knowledge of a  and  and 

particularly in the diffuse case when . 

0a 0P

0 0P

 Let Y  denote the set  together with any information prior to time 

. Starting at  and building up the distributions of 

1−t 11 ,..., −tyy

1=t 1=t tα  and  recursively, it can 

be shown that the conditional densities 

ty

)1t )|(,|( 1 tttt ypYyp α,..., =αα −  and 

 )1−tY,1−α t,...,| 1α(α tp )1−|( αα= tp t

t t

, thus establishing the truly Markovian nature of 

the model. Since in model (1) all distributions are Gaussian, conditional distributions are 

also Gaussian. Assume that α  given Y  is  and that 1− ),( tt PaN tα  given Y  is 

. The object of the Kalman filter is to calculate  and  given 

t

), |ttP( |ttaN 1| , +tt P 1+tP| , tt ata
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tt Pa ,  recursively. On the other hand, the Kalman smoother has the purpose of 

calculating recursively )(ˆ ntt YE α=α , )ˆ( ttVar α−α  and Cov )ˆ,ˆ( ttss α−αα−α  for 

ts < . Both procedures jointly are known as the Kalman filter and smoother (KFS). 

In this work a general method is developed for handling outliers, structural shifts 

and heavy-tailed distributions in linear state space time series models. The basic tool we 

use for dealing with outliers and structural shifts is to model observation or state error 

densities by a mixture of densities, one component of which is a Gaussian density with a 

large variance. The other component can be a Gaussian density, a non-Gaussian density 

such as Student’s t or it can itself be a Gaussian mixture. The underlying idea is to 

estimate the state vector by its posterior mode using linearisation, iteration and the 

Kalman filter and smoother. 

Gaussian mixtures have been employed by many authors for filtering aspects of 

state space treatment of non-Gaussian data, notably Harrison and Stevens (1971, 1976), 

Sorenson and Alspach (1971), Alspach and Sorenson (1972), Guttman and Peña (1988, 

1989) and Durbin and Cordero (1994). A comprehensive treatment of both filtering and 

smoothing using Gaussian mixtures has been given by Kitagawa (1994) but his 

techniques are onerous computationally. However, none of these authors but Durbin and 

Cordero estimated the posterior mode. In this work we present techniques for posterior 

mode estimation (PME) for these problems. 

In section 2 we present a general method for handling outliers, structural shifts, 

heavy-tailed distributions and non-Gaussian observations in linear state space time series 

models. The method is based on the idea of estimating the state vector by its posterior 

mode. More details about it can be seen in Abril (2001). 

We give in section 3 an introduction to the basic technique by considering outliers 

and level shifts for a simple special case, the local level (LL) model. In section 4 the 

treatment is extended to cover general Gaussian mixtures for the general linear state 

space model. 

In many areas of applications, observed distributions tend to have heavier tails than 

the normal distribution. In section 5, posterior mode estimation of the state vector is 

considered for two different models for heavy-tailed distributions, the Gaussian mixture 
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and Student’s t. These distributions can be used without or with the addition of an extra 

Gaussian component to handle large structural shifts or large outliers. Theory for this 

option is given in section 6. 

Approximate maximum likelihood estimation of hyperparameters is considered in 

section 7. 

 

 

2. POSTERIOR MODE ESTIMATE 
 

Let  be the stacked vector α ),...,( 1 ′α′α′ n  and let )|( nYp α  be the conditional 

density of α  given Y . The posterior mode estimate (PME) of n α  is defined to be the 

value  of α̂ α  that maximises )| nY(p α . When the model is linear and Gaussian, 

. When the observations are non-Gaussian, however,  is 

generally difficult or impossible to compute and to use the mode instead is a natural 

alternative. More than that, it can be argued that in the non-Gaussian case the PME is 

preferable to  since it is the value of 

)| nY(αˆ E=α )|( nYE α

)nY|α(E α  which is the most probable given the 

data. In this respect it can be thought of analogous to the maximum likelihood (ML) 

estimate of a fixed parameter vector. The tth subvector of α̂  is called the smoothed value 

of  and is denoted by α . tα tˆ

Let  be the stacked vector (tA ),...,1 ′α′α′ t , nt ,...,1= . Then α̂

tA

 is the PME of  

and for filtering, the PME of  given Y  is the value of  that maximises the 

conditional density of , 

nA

tA

)1

1−t

nt ,...,1|( −tt YAp = . The tth subvector of this is denoted by . ta

In all cases we shall consider, the PME α̂  is the solution of the equations 

 .,...,1,0
)|(log

nt
Yp

t

n ==
α∂
α∂

 

Since, however, )(log),(log)|(log nnn YpYpYp −α=α , it is more easily obtained from 

the joint density as the solution of the equations 

 .,...,1,0
),(log

nt
Yp

t

n ==
α∂
α∂

 (2) 
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Similarly, at the filtering stage the PME of  given Y  is the solution of the equations tA 1−t

 .,,1,0
)|(log 1 ts

YAp

s

tt K==
α∂

∂ −  (3) 

 

 

3. OUTLIERS AND LEVEL SHIFTS FOR THE LL MODEL 
 

In this section we consider filtering and smoothing for the LL model in the presence 

of outliers and level shifts. We begin by considering outliers, that is, observations which 

differ from their immediately preceding and immediately succeeding observations by 

amounts which are so large that the observations are regarded as anomalous. Let us write 

the LL model in the form 

  (4) 
.,,1,

,

1 nt
y

ttt

ttt

K=η+α=α
ε+α=

−

Our first objective is to construct a model for the tε ’s which allows for the presence 

of outliers in the data, so that when PME of the state vector tα  are obtained, the effect of 

the outliers are effectively smoothed out. To achieve this objective we assume that the  

has the Gaussian mixture density 

tε

 ),()()1()( 21 ttt hhh εβ+εβ−=ε  (5) 

where  and , and where ),0()( 2
1 σ=ε Nh t ),0()( 22

2 σλ=ε Nh t β  is small, say 0.01 and 

 is large, say 10. Here, β  can be thought of as the prior probability of an outlier and  

can be regarded as indicating the magnitude of the deviation of an outlier from its mean 

relative to that of an ordinary observation. Thus the density (5) can be regarded as a 

genuine model for observations containing outliers and not just a device for detecting 

them and eliminating its effects. However, experience shows that the results obtained are 

relatively insensitive to the values of 

λ λ

β  and λ  within reasonable limits. In fact it is not 

normally worth while treating β  and λ  as parameters to be estimated from the data since 

the number of anomalous observations available for their estimation is, by definition, 

small. It is usually preferable to assign prior values such as 0.01 and 10, or if there is 
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doubt, to proceed by trial and error. In the work of Durbin and Cordero (1994) the values 

0.01 and 10 worked very well. 

Let us leave aside for the moment the initialisation question by assuming that α is 

fixed and known. The initialisation problem considers how to start the filter at the 

beginning of the series when nothing is known about the distribution of α  and the 

object of the filtering is to update our knowledge of the system each time a new 

observation  is brought in. Taking 

0

,0

ty tη  to be N(0, ) and 2
ησ )′,,( 1 αα=α nK  as before, 

the log joint density of α  and Y  is, ignoring constants, n

 .)(log)(
2

1),(log
11

2
12 ∑∑

==
−

η

α−+α−α
σ

−=α
n

t
tt

n

t
ttn yhYp  

Thus the PME of α  is the solution of the equations 
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,0)()()(
1

)(
1

21log

22212

112

=α−







ε

σλ
β

+ε
σ
β−

ε
+

α+α−α
σ

=
α∂

∂
+−

η

tttt
t

ttt
t

yhh
h

p

 (6) 

for 1,,1 −= nt K  with ttt y α−=ε  and with the first term replaced by  

for 

)( 1
2

nn α−ασ −
−
η

nt = . 

We solve these equations by linearising them, putting the linearised equations in the 

same form as the equations for the analogous Gaussian model and then using the KFS. 

We use a general linearisation technique from the Taylor expansion method which is not 

a specific one to the particular model (5). 

We note first that the analogous Gaussian model is (4) with  so the 

equations analogous to (6) for the Gaussian case are 

),0(~ 2
εσε Nt

 ( ) ( ) ,0121log
2112

=α−
σ

+α+α−α
σ

=
α∂

∂

ε
+−

η
ttttt

t

yp  (7) 

with an analogous modification when nt = . Suppose that tα~  is a trial value of α . 

Putting 

t

ttt y α−=ε ~~  and comparing (6) and (7) suggests taking 
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 .)~()~(
1

)~(
1

~
1

222122 







ε

σλ
β

+ε
σ
β−

ε
=

σε
tt

t

hh
h

 (8) 

Replacing the corresponding term in tε  in (6) by this gives a linear set of equations with 

the same form as (7) and which can therefore be solved by the KFS. Taking the solution 

as a new trial value of , the process is repeated until suitable convergence is achieved. α

At this point a word of caution is appropriate. There is evidence that with models of 

this kind it is possible for densities to be multimodal. In consequence, care is needed in 

choosing the initial trial value α~  of α . It is inappropriate to start with completely 

arbitrary values such as 0~ =α t  for all t as is sometimes possible when maximising a 

well-behaved function with a single maximum. The two-filter smoother considered by 

Abril (2001) for exponential family observations seems to be very suitable for the 

purpose. 

Let us now consider why this technique is effective in neutralising the effect on the 

solution of equations (6) of a large outlier at time t. If 0=β , so the model is Gaussian, 

then the contribution of the second term of (6) is which, since )(2σ−
tty α− tty α−  is 

large, will have a distorting influence on the estimation of τα  for τ  near t.  If, however, 

we are using the mixture model (5), then the contribution of )1h ( tε  is approximately 

zero relative to that of  so that the second term of (6) reduces approximately to 

 which is much smaller; indeed, with 

)(2 th ε

)(22
tty α−σλ −− 10=λ  the contribution of the 

outlier is reduced to about 1% of its Gaussian value. 

Now suppose that there are no outliers but that there are abrupt changes of α ; we 

call these level shifts. These occur when 

t

tη  is large. In order to deal with them we use a 

similar mixture model to the one used for outliers, taking for the density of , tη

 ),()()1()( 21 ttt qqq ηδ+ηδ−=η  

where , , ),0()( 2
1 ησ=η Nq t ),0()( 22

2 ησκ=ε Nq t δ  is small and κ  is large. Assume 

that ε . The log density of ),0(~ 2
εσNt α  and Y  is now n
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−α−α=α
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t
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n

t
ttn yqYp  

On differentiating and equating to zero we obtain the PME α̂  as the solution of the 

equations 
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with 1−α−α=η ttt . There is a slightly different form for t = n which we need not 

specify. 

If a level shift occurs at time t, then as in the outlier case, )(1 tq η  is nearly zero so 

; if no level shift occurs then q)()( 2 tt qq η≈η )()( 1 tt q η≈η . In order to understand how 

the model handles large level shifts, suppose that these approximate equalities are 

equalities and suppose also that a large level shift occurs at time t and nowhere else. The 

three equations involving  are then, after multiplying by  and eliminating small 

quantities, 

tα 2
ησ
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 (10) 

We see that when 1−α−α tt  is O( κ ) then 1
2

−
− α−ακ tt  is O( 1−κ ) which is small, so 

an anomalously large value of 1−αα t−t  has relatively little distorting effect on the 

solution of the equations. In fact, equation (9) effectively break up into two sets, one 

involving  only and the other involving 11 ,, −αα tK nt αα ,,K  only, and the solution is 

relatively unaffected by the large value of 1−α−α tt . On the other hand, the equations 
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we would get if we used the Gaussian model would have in place of (10) the same set but 

with  and  equal to unity. It can be seen that the effect of a large value of 0=δ κ

1−α− t

τ

α t  will spill over into neighbouring equations and thus distort the estimates of 

 when  is near to t. τα

tη

m≤

Another way of understanding why the mixture model is better than the Gaussian 

model in dealing with structural shifts is to recognise that it is a more realistic model 

when shifts are present and can therefore be expected to fit the data better. When both 

outliers and structural shifts are present, mixtures models can be used simultaneously for 

both observation and state errors and they can be dealt with straightforwardly by the 

linearisation and KFS techniques used above. 

 

 

4. GAUSSIAN MIXTURES FOR MODELLING THE ERRORS 

IN THE GENERAL LINEAR STATE SPACE MODEL 
 

In this section we extend the results of the previous section by developing methods 

for dealing with outliers and structural shifts for the general state space model 

  (11) 
,,,1,

,

1 ntRT
Zy

ttttt

tttt

K=η+α=α
ε+α=

−

by means of Gaussian mixtures. However, the modelling of the distributions of  and 

 by Gaussian mixtures has much wider application than to outliers and structural shifts 

alone. These mixtures can in fact be used to model arbitrary types of departure from 

normality. For this reason we shall present a general theory here, giving the application to 

outliers and structural shifts as a special case. We assume that  is an m × g selection 

matrix with 

tε

tR

g so  where  is positive definite. For 

simplicity we assume to begin with that 

tttttt RQRRQR ′=′ −− 11)(

0

tQ

α  is fixed and known, relaxing this assumption 

later. 

We consider the general case where tε  has the mixture density 
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  (12) 1,0,)()(
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=β≥βεβ=ε ∑∑
==

k
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tititt hh

and  has the mixture density tη

  (13) ,1,0,)()(
11

=κ≥κηκ=η ∑∑
==

l

i
ii

l

i
tititt qq

where ),0()( ittit HNh =ε  and ),0()( ittit QNq =η . The log joint density of α  and Y  is n

  ,)(log)(log),(log
11
∑∑
==

ε+η=α
n

t
tt

n

t
ttn hqYp

with )( 1−α−α′=η ttttt TR  and tttt Zy α−=ε . To obtain the PME  of α  we 

differentiate with respect to  and equate to zero giving 

α̂

tα

 )()( 111
1
1111

1
ttttttttttttt TRQRTTRQR α−α′′+α−α′− +++

−
+++−

−  

 ,0)(1 =α−′+ −
ttttt ZyHZ  (14) 

for 1,,1 −= nt K , together with 

 ,0)()( 1
1

1 =α−′+α−α′− −
−

−
nnnnnnnnnnn ZyHZTRQR  

where 
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−− ηκ
η

=
l

i
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1
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11 ∑
=

−− εβ
ε
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k

i
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for . nt ,,1 K=

We solve equations (14) by linearising and iterating as before, starting with a trial 

value α~  of . Let α

 ∑
=

−− ηκ
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=
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i
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t Qq

q
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where )~~(~
1−α−α′=η ttttt TR  and tttt Zy α−=ε ~~  with ( ) α=′α′α′ ~~,,~

1 nK . Substituting 

1~ −
tQ  for 1−

tQ 1 and ~ −
tH  for 1−

tH  in (14) gives the linear equations 

 )(~)(~
111

1
1111

1
ttttttttttttt TRQRTTRQR α−α′′+α−α′− +++

−
+++−

−  

 ,0)(~ 1 =α−′+ −
ttttt ZyHZ  (17) 

for 1,,1 −= nt K , together with 

 .0)(~)(~ 1
1

1 =α−′+α−α′− −
−

−
nnnnnnnnnnn ZyHZTRQR  

Comparing these equations with the corresponding equations for the analogous Gaussian 

version of (11) for when  and ),0(~ tt HNε ),0(~ tt QNη  we see that the two sets have 

the same form. Equation (17) can therefore be solved by the KFS to obtain a new trial 

value and the process is repeated until convergence. The assumption that 0α  is fixed and 

known is dropped at the filtering stage, using the initialisation procedures considered by 

Abril (1999). 

 

 

5. HEAVY-TAILED DISTRIBUTIONS 
 

In many areas of applications of time series analysis, particularly with economic 

data, observed distributions tend to have heavier tails than those of the normal 

distribution, even when no outliers or structural shifts are present. In this section we shall 

consider the fitting of linear state space models to data of this kind, initially in the 

absence of outliers and structural shifts. We shall employ two models, the Gaussian 

mixture and Student’s t. 

We begin by considering univariate series where the observational error  has a 

heavy-tailed distribution and the state error 

tε

tη  is Gaussian. The first form of heavy-tailed 

distribution we take has density 

 ,10),()()1()( 21 <β<εβ+εβ−=ε ttt hhh  
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where  and , ),0()( 2
1 σ=ε Nh t ),0()( 22

2 σλ=ε Nh t 1>λ . The variance of ε  is 

. This is a three-parameter model, as compare with the Gaussian 

model which is a one-parameter model. If sufficient data are available to estimate all 

three parameters, it is the set  that should be estimated rather than  

since  is relatively independent of 

t

,, β

[ ] 22 )1( σ−λβ+

2
εσ

2 1=σε

22 ,, λβεσ
22 λσ

β  and . If not enough data are available to 

estimate both 

2λ

β  and λ  as well as , then one of them could be fixed a priori and the 

other estimated; for example, we could pre-assign 

2 2
εσ

λ  arbitrarily, say in the range 2 to 4 

and then estimate σ  and  by the approximate maximum likelihood (ML) methods to 

be discussed later. Several values of 

2
ε β

λ  could be tried and the value chosen which gives 

the highest likelihood. Similar considerations apply to state densities. Since the models 

are Gaussian mixtures, they can be handled by the theory given in section 4 above. 

The second heavy-tailed distribution we consider is Student’s t with  degrees of 

freedom, the density of which we write as 

ν

 ,2,

)2(
1

1)()(
2

1

2

2
2

>ν













σ−ν

ε
+

σ
ν

=ε
+ν

ε

ε
t

t
ch  (18) 

where  is a constant. We write this in this form so that Var  for all , thus 

keeping the estimation of  and 

)(νc 2)( εσ=ε t ν

2
εσ ν  relatively independent in the estimation process. 

The contribution of ttZh tty α∂α−log∂  to )( tnYp α∂α∂ ),(log  is 

 [ ].)()2(
)()1(

)2(
)(

1

)(
)2(
1

22

2

22
ttt

tttt

ttt

tttt

Zy
ZyZ

Zy

ZyZ
α−+σ−ν

α−′+ν
=













σ−ν

α−
+

α−′

σ−ν
+ν

ε

ε

ε

 (19) 

Suppose that in the iterative estimation of the PME α̂  of α , we have a trial value tα~  of 

. We linearise (19) by putting tα

 .
)()2(

)1(
~
1

222
ttt Zy α−+σ−ν

+ν
=

σ εε

 (20) 

Substituting in (19) we have 
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 ,)(~
1)(log

2 tttt
t

ttt ZyZ
Zyh

α−′
σ

=
α∂

α−∂

ε

 

which has the same form as if )( th ε  were )~,0( 2
εσN . We can therefore use the KFS as in 

the last section to solve the linearised equation 0),(log =α∂α∂ tnYp

t

 and hence 

obtained a better trail value of . Analogous considerations apply when the t distribution 

is used to model independent components of the state error 

α

η . A similar approach could 

be employed based on the multivariate t density when the components of tη  cannot be 

treated as independent. The value of ν  in (18) can be regarded as an unknown parameter 

to be estimated in the ML process or it can be assigned arbitrarily on the basis of 

experience or trial and error. 

Throughout this section we have been concerned with distributions which are non-

Gaussian but are symmetric and homogeneous through time. We did so because, apart 

from exponential family distributions, these are the most important for time series 

analysis. However, the techniques we have used do not in fact require symmetry. 

Consider for simplicity the case where  is univariate and where the distribution of the 

observation error ε  has density 

ty

t )( th ε  which possesses derivative 

ttttt dhdh εε=ε )()(& . Then the contribution of tttt Zyh α∂α−∂ )(log  to the left hand 

side of the equation 0),(log =α∂α tnYp∂  is 

 .)(
)(

)( tttt
ttt

ttt
ttttt ZyZ

Zy
Zyh

ZZyh α−′
α−
α−

=′α−
&

&  

Given a trial value tα~  of , this can be linearised and put in Gaussian form by taking tα

 
)~(

~
~ 2

tttt

ttt

Zyh
Zy

α−

α−
=σε &

 

and hence treated by the KFS, exactly as for Student's t, irrespective of whether the 

distribution is symmetric. However, in order to avoid singularity it may be necessary to 

replace ttt Zy α− ~  by an arbitrary small positive number ε  where ε<α− ttt Zy ~ . 

Similar considerations apply to state error densities. 
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6.  OUTLIERS AND STRUCTURAL SHIFTS WHEN THE STATE 

OR OBSERVATION ERRORS ARE NON-GAUSSIAN 
 

Suppose that we have decided to treat state or observation errors as heavy-tailed or 

otherwise non-Gaussian but that we also wish to allow for exceptionally large outliers or 

structural shifts. The question is how this cases can be treated. If the heavy-tailed 

distributions have been modelled by Gaussian mixtures there is no difficulty in principle. 

Taking the case of univariate observations for which the basic model chosen for the 

observation errors is , this is augmented by adding a 

 component giving the overall density 

),0(),0()1( 22
11

2
1 σλβ+σβ− NN

),0( 22
2 σλN

  [ ] ,),0(),0(),0()1()1( 22
22

22
11

2
12 σλβ+σλβ+σβ−β− NNN

where 2β  would normally be pre-assigned at say 0.01 and 2λ  would normally be pre-

assigned at say . The parameters 102 =λ 1β  and λ  may be pre-assigned or estimated 

from data. The theory of section 4 may then be applied in routine fashion. 

2
1

Other non-Gaussian densities can be handled in the following way. Suppose for 

example that the density of  is chosen to be tε

 ),()()1()( 21 ttt hhh εβ+εβ−=ε  

where  is the Student density (18), )(1 th ε )(2 th ε  is  and ),0( 22
εσλN β  and  are 

small and large pre-assigned values respectively. Here, 

2λ

)(1 th ε  is intended to represent 

the bulk of the distribution of the tε ´s and )(2 th ε  is intended solely to deal with a small 

number of very large outliers. The contribution of tαtty ∂tZ αh −∂ )(log  to 

tαnYp ∂α ),(∂ log  is 
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where tttt Zy α−=ε  and, analogously to (20) 
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Now put tttt Zy α−=ε ~~  where tα~  is a trial value of tα  and let 
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as in (8). Then (21) becomes 

 ,)(1
2 tttt ZyZ α−′

σε

 

which is the standard Gaussian form so the KFS can be used to obtain a better trial value 

of  as before. We note the similarity between (22) and (8). α

Although this section has been included for the sake of completeness, it should be 

recognised that if heavy-tailed densities have been adopted for the state and observation 

errors, these may in many cases provide adequate handling of structural shifts and 

outliers where these are not too extreme; certainly their performance in this respect can 

be expected to be better than that of the Gaussian density. 

 

 

7. APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION 

OF HYPERPARAMETERS 
 

As in Abril (2001), exact ML estimation of the hyperparameter vector ψ  is not 

feasible so we employ approximate methods. Our first approximate form of the 

likelihood for this case as for the exponential family case is given by formula (10) of 

Abril (2001) where v tttt Zy α−= ˆ  and )( tt vVarF =  are the values produced in the final 

pass of the Kalman filter after the final smoothed value α̂  of α  has been computed. This 

is maximised numerically as proposed by Abril (1999, 2001). 
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Analogous to (16) of Abril (2001), our second approximate form is 

 ,),ˆ()2( 212/ ψαπ= n
nm YpVL  (23) 

where, using (14) of Abril (2001), 

 ∏
=

−=
n

t
ttt FHQV

1

21212121  

and where ),( ψα nYp  is the joint density of α  and Y  given n ψ  with tQ  and tH  given 

by (15) and (16) above. 

Our third approximate form applies only to Gaussian mixtures and arises from the 

fact that in principle it is possible to update a Gaussian mixture exactly as each new 

observation comes in and in this way construct an exact likelihood. The problem is that 

the number of components increases exponentially with time and therefore rapidly 

becomes unmanageable. For example, consider the simple case in which the state error 

density is a single Gaussian and the observation error density is a mixture of two 

Gaussian components. Then  has two components, )( 1yp )( 12 yyp  has four 

components, )( 23 Yyp  has eight components, and so on until )( 1−nn Yyp  has  

components. The situation would be worse with a mixture for the state error density and 

with more components in the observation error density. It follows that calculation of the 

exact likelihood by exact updating is not feasible. However, an approximation to this 

approach can be obtained in the following way. Suppressing dependence on  and 

assuming that 

n2

ψ

)( 11 −−α tt Yp  is a single Gaussian, obtain )( tt Yp α  as a mixture using 

standard Kalman filtering formulae and collapse it into a single Gaussian by replacing it 

by the single Gaussian with the same mean vector and variance matrix. From this, obtain 

)( 1 tt Yyp +  as a mixture and take the product for t = 0 to 1−n  as the approximate 

likelihood. This approach has the advantage that only filtering is required, so state 

iteration to obtain a smoothed value of α  is not needed to compute the approximate 

likelihood for a particular value of ψ . Numerical maximisation with respect to ψ  can 

then be carried out in a routine way. Because this method is so economical 

computationally, it should either be used as the sole method or to provide a starting value 

for one of the other two methods. Details of the collapsing process are as follows. 
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Write the observational and state mixture as 

 ∑
∑

−− ααδ=αα

αβ=α

j
ttjjtt

i
ttiitt

pp

ypyp

.)()(

,)()(

11
 (24) 

Let )( ttij Yp α  and )( 1−ttij Yyp  be the densities given by the standard Kalman filtering 

for )( tt Yp α  and )( 1−tt Yyp  assuming that )()( ttitt ypyp α=α , 

)()( 11 −− αα=αα ttjtt pp  and that )( 11 −−α tt Yp  is a single Gaussian. Then Durbin and 

Cordero (1994) show that 
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To collapse the mixture (25) into a single Gaussian, suppose that )( ttij Yp α  is 

),( ijtijt VN µ  where ijtµ  and V  are given by the Kalman filter and let ijt )t( tt YE α=µ  

and )( tt Yαt Var=V . Compute 
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and take )( tt Yp α  to be . This completes the collapsing ready for the next 

updating step. To compute the approximate likelihood we also need 

),( tt VN µ

 ∑ −− δβ=
ji

ttijjitt YypYyp
,

11 .)()(  

The third approximate form for the likelihood is then 
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tt YypL  

with appropriate initialisation as before. 
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8. CONCLUSIONS 
 

This paper presents a methodology for the treatment outliers, structural shifts, 

heavy-tailed distributions and non-Gaussian time series observations, particularly when 

they come from linear state space time series models. The methodology is developed that 

can be used by applied researchers for dealing with real time series data without them 

having to be time series specialists. The idea underlying the techniques is to put 

everything in state space form and then, linearised it to obtain an approximation to the 

Gaussian case in order to apply the KFS, estimating the state vector by its posterior 

mode. The PME is clearly a reasonable estimate because it maximises the corresponding 

density and is analogous to the maximum likelihood estimate. 
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