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Abstract. A positive operator A and a closed subspace S of a Hilbert space H are called

compatible if there exists a projector Q onto S such that AQ = Q∗A. Compatibility is shown to

depend on the existence of certain decompositions of H and the ranges of A and A1/2. It also

depends on a certain angle between A(S) and the orthogonal of S.

1. Introduction. Consider the set Q of all (bounded linear) projectors on a Hilbert

space H. Sometimes the elements of Q are named oblique projectors in order to empha-

size that they are not necessarily orthogonal. Since the early years of matrix and operator

theories, projectors have played a relevant role in many studies on spectral theory, ap-

proximation, optimization, orthogonal decompositions, least square methods, and so on.

Very recently, several applications of oblique projectors to signal processing [10], [13], [36];

sampling [11], [57]; wavelets [3], [56]; information theory [57]; integral equations [51], [52];

statistics [54]; least square approximation [28], [29], [60] and parallel computing [17] have

been found. For these multiple manifestations, many results on projectors are rediscov-

ered once and again by different specialists. It seems that a short survey on several old

and new results on oblique projectors may be helpful for the interested reader.
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For each closed subspace S of H let QS denote the set of all projectors with range

S. For each (bounded linear semidefinite) positive operator A on H consider the set

P(A,S) = {Q ∈ QS : AQ = Q∗A}, i.e., all Q with range S which are Hermitian with

respect to the sesquilinear form 〈ξ, η〉A = 〈Aξ, η〉. Of course, P(A,S) can be empty (see

examples below); we say that A,S are compatible if P(A,S) is not empty. This condi-

tion can be read in terms of different space decompositions, range inclusions and angles

between certain closed subspaces of H. It is known [19] that, if A and S are compatible

then a distinguished element PA,S of P(A,S) exists which has optimal properties. We

show explicit formulas for PA,S which are computationally useful.

Many results on oblique projectors can be found in the papers by Afriat [1], Davis

[22], Ljance [43], Mizel and Rao [45], Halmos [33], Greville [32], Gerisch [30], Pták [49].

Projectors which are Hermitian with respect to a positive matrix have been studied by

Mitra and Rao [44] and Baksalary and Kala [9]. More recently, Hassi and Nordstrom [35]

studied projectors which are Hermitian with respect to a self-adjoint operator but with

emphasis on the case in which P(A,S) is a singleton. In [47], Pasternak-Winiarski studied

the analyticity of the map A → PA,S , where A runs over the set of positive invertible

operators. The map (A,S) → PA,S is studied by Andruchow, Corach and Stojanoff [6],

for positive invertible A. For general selfadjoint A, several results on P(A,S) can be

found in [19] and the present paper can be seen as its continuation. Additional results

by the authors are contained in [20] and [21]. The latter makes a link between oblique

projectors and abstract splines in the sense of Atteia [8]. It is natural that this type of least

square approximation results appears in this context, because PA,S is a kind of orthogonal

projector for an appropriate inner product. In particular, oblique projectors, mainly in the

finite-dimensional setting, appear frequently under the form of ”scaled projectors”, i.e.,

projectors which are Hermitian with respect to a positive diagonal matrix. The reader is

referred to the papers by Stewart [53], O’Leary [46], Hanke and Neumann [34], Gonzaga

and Lara [31], Wei [60], Forsgren [28], Vavasis [14], among many others, for results on

and applications of scaled projectors. A relationship between scaled and A-Hermitian

projectors, also in the infinite-dimensional setting, can be found in [7].

The contents of the paper are the following. Section 2 begins with some preliminaries

and a short survey of known results on P(A,S) and PA,S , taken from [19], [20] and [21].

Then, we prove several characterizations of compatibility in terms of decompositions of

H and of the ranges of A and A1/2, of certain range inclusions and also of the angle

between the closure of A(S) with the orthogonal complement of S. Most of these results

are new and the proof of the remainder has been greatly simplified. We collect in Section

3 several formulas for PA,S using results from Greville [32], Kerzman and Stein [38], [39],

Ljance [43], Pták [49] and Buckholtz [16].

Acknowledgements. The first author thanks the Abdus Salam International Centre for

Theoretical Physics for its kind hospitality.

2. Oblique projectors. In what follows H denotes a Hilbert space with inner product

〈 , 〉, L(H) is the algebra of bounded linear operators on H, GL(H) denotes the group

of invertible operators on H, L(H)+ the cone of positive operators, GL(H)+ = GL(H)∩
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L(H)+ and Q = {Q ∈ L(H) : Q2 = Q} the set of oblique projectors. For an operator W

its image is denoted by R(W ) and its nullspace by N(W ). Recall that if H,K are two

Hilbert spaces and C ∈ L(H,K) has closed range, then there exists a unique C† ∈ L(K,H)

such that CC†C = C, C†CC† = C† and CC†, C†C are Hermitian; C† is called the

Moore-Penrose inverse of C (see [23] and [12] for details).

The following result by R. G. Douglas will be frequently used in this paper. Given

Hilbert spaces H, K, G and operators A ∈ L(H,G), B ∈ L(K,G) then the following

conditions are equivalent:

i) the equation AX = B has a solution in L(K,H);

ii) R(B) ⊆ R(A);

iii) there exists λ > 0 such that BB∗ ≤ λAA∗.

In this case, there exists a unique D ∈ L(K,H) such that AD = B and R(D) ⊆ R(A∗);
moreover, ‖D‖2 = inf{λ > 0 : BB∗ ≤ λAA∗}. We shall call D the reduced solution of

AX = B. The reader is referred to [26] and [27] for the proof of the Douglas theorem and

related results. Let us remark that if R(A) is closed then the reduced solution of AX = B

is A†B: this follows quite easily from the properties of the Moore-Penrose pseudoinverse.

For a fixed closed subspace S of H, operators in H are represented as 2 × 2 matrices

according to the decomposition H = S ⊕ S⊥; more precisely, for each B ∈ L(H) the

identity

B = PBP + PB(I − P ) + (I − P )BP + (I − P )B(I − P )

where P is the orthogonal projector onto S, can be matricially rephrased as B =(
b11 b12

b21 b22

)
, where b11 = PBP |S ∈ L(S), b12 = PB(I − P )|S⊥ ∈ L(S⊥,S), b21 =

(I − P )BP |S ∈ L(S,S⊥) and b22 = (I − P )B(I − P )|S⊥ ∈ L(S⊥). In particular,

P =

(
1 0

0 0

)
, any projector Q onto S has the form Q =

(
1 e

0 0

)
for some e ∈ L(S⊥,S)

and any A ∈ L(H)+ can be expressed as A =

(
a b

b∗ c

)
, where a ∈ L(S)+, b ∈ L(S⊥,S),

c ∈ L(S⊥)+ and |〈bη, ξ〉|2 ≤ 〈aξ, ξ〉〈cη, η〉 for every ξ ∈ S, η ∈ S⊥ [50]. As a consequence

(see [4]) it follows that the image of the positive square root of a contains the image of

b : R(a1/2) ⊇ R(b).

Given a closed subspace S let QS be the subset of Q of all projectors with range (i.e.

image) S. Of course Q is the disjoint union of all QS . On the other hand, any positive

(bounded linear) operator A on H defines a (Hermitian semidefinite) positive sesquilinear

form

〈 , 〉A : H×H → C , 〈ξ, η〉A = 〈Aξ, η〉, ξ, η ∈ H.

A (bounded linear) operator T on H is called A-Hermitian if 〈Tξ, η〉A = 〈ξ, Tη〉A for

all ξ, η ∈ H, i.e. if AT = T ∗A. We shall not study the existence of an A-adjoint of an

operator (see [41] and [25] for this type of problems). However, the following result shows

that this existence is not irrelevant, even in the case of projectors.
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Lemma 2.1. Given Q ∈ Q and A ∈ L(H)+, there exists W ∈ L(H) such that AQ = W ∗A
(i.e. Q admits an A-adjoint) if and only if

(1) R(A) = R(A) ∩N(Q∗)⊕R(A) ∩R(Q∗).

Proof. If ξ ∈ R(A) then ξ = Aη, for some η ∈ H. Since Q∗ decomposes H as the

direct sum R(Q∗) ⊕ N(Q∗) there exists w ∈ H such that ξ = Aη = Q∗w + z, where

z ∈ N(Q∗). But Q∗ξ = Q∗Aη = Q∗w ∈ R(A), because R(Q∗A) = R(AW ) ⊆ R(A). Then

Q∗ξ = Q∗w ∈ R(A)∩R(Q∗). Also z = Aη−Q∗w ∈ R(A)∩N(Q∗), because Q∗w ∈ R(A).

This proves decomposition (1).

If formula (1) holds, then R(Q∗A) = Q∗(R(A) ∩ R(Q∗)) = R(A) ∩ R(Q∗), so that

R(Q∗A) ⊆ R(A). By the Douglas theorem there exists a solution W of the equation

AX = Q∗A.

Denote by QA the set of all A-Hermitian projectors on H and P(A,S) = QS ∩ QA.

In [19] it is remarked that every Q ∈ Q belongs to some P(A,S). Thus, Q = ∪P(A,S)

where S runs over the class of all closed subspaces on H and A over a class of positive

operators A. The sets P(A,S) are the object of our study.

We follow the terminology proposed by Ben-Israel and Greville [12]: the operator

Q : ξ 7→ Qξ which performs the projection is named projector, while Qξ is the projection

of ξ (under Q).

In what follows S denotes a closed subspace of H and A denotes a positive operator

on H. Define

S⊥A := {ξ ∈ H : 〈ξ, η〉A = 0 ∀ η ∈ S}.
The identities S⊥A = A−1(S⊥) = (AS)⊥ will be used without further mention. Observe

that, if A is invertible, then 〈 , 〉A is an inner product which is equivalent to 〈 , 〉; so

that the subspace S admits a closed A-complement in (H, 〈 , 〉A), namely S⊥A ; thus,

H = S ⊕S⊥A . However, if A is not invertible, such a complement may not exist. In fact,

S ∩S⊥A may be non-trivial and S+S⊥A may be a proper non-closed subspace of H (see

below).

The next theorem collects several well-known facts on projectors which are due to

many mathematicians: Afriat [1], Greville [32], Pták [49], Chung [18], Buckholtz [16].

Indeed, the use of projectors is so extended that many results appear once again in

papers in functional analysis, statistics, matrix analysis, signal processing, and so on.

Theorem 2.2. If S and N are closed subspaces of a Hilbert space H then the following

properties are equivalent:

1. H = S ⊕N ,

2. there exists Q ∈ Q such that R(Q) = S, and N(Q) = N ,

3. PS − PN ∈ GL(H),

4. ‖PS + PN − I‖ < 1,

5. PS⊥ |N is injective and PS⊥(N ) = S⊥.

In that case PSPN⊥ has a closed range,

‖PSPN ‖ = ‖PNPS‖ < 1 , PS + PN − PNPS ∈ GL(H) , PN⊥PS − I ∈ GL(H)
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and the projector onto S with nullspace N is

PS//N = (PSPN⊥)† = (I − PN⊥PS)−1PN
= (I − PSPN )−1PS(I − PSPN )

= (I − PNPS)−1(I − PN )

= PS(PS + PN − PNPS)−1.

In particular, ‖PS//N ‖ = (I − ‖PNPS‖2)−1/2.

Remark 2.3. There is a formula, due to Kerzman and Stein [38], [39], which expresses,

given a projector Q, the unique orthogonal projector P such that R(P ) = R(Q). Some

of the expressions of PS//N given above follow from Kerzman-Stein’s formula.

Definition 2.4. Let S be a closed subspace of H and let A ∈ L(H)+. We say that the

pair (A,S) is compatible if the set P(A,S) is not empty.

The following result, due to M. G. Krein [40], will be used, implicitly or explicitly,

several times.

Lemma 2.5 (Krein). Let Q be a projector with R(Q) = S. Then Q is A-Hermitian if and

only if N(Q) ⊆ A−1(S⊥). In particular, Q ∈ P(A,S) if and only if N(Q) ⊆ A−1(S⊥),

so that (A,S) is compatible if and only if H = S +A−1(S⊥).

Proof. Suppose that AQ = Q∗A and consider ξ such that ξ ∈ N(Q), then 〈Aξ,Qθ〉
= 〈Q∗Aξ, θ〉 = 〈AQξ, θ〉 = 0, for all θ ∈ H. Therefore Aξ ∈ R(Q)⊥, or, equivalently,

ξ ∈ A−1(R(Q)⊥). Conversely, suppose that N(Q) ⊆ A−1(R(Q)⊥) and consider ξ, η ∈ H.

Decompose ξ = ν + ρ and η = ν ′ + ρ′, where Qρ = ρ, Qρ′ = ρ′ and Qν = Qν ′ = 0. Then

〈AQξ, η〉 = 〈AQρ, ν ′ + ρ′〉 = 〈Aρ, ρ′〉 and 〈Q∗Aξ, η〉 = 〈Aρ,Q(ν ′ + ρ′)〉 = 〈Aρ, ρ′〉. Thus

AQ = Q∗A.

Observe that two projectors Q1, Q2 on H such that R(Q1) = R(Q2) and N(Q1) ⊆
N(Q2) are equal: every ξ ∈ H can be written as ξ = ρ+ ν with ρ ∈ R(Q1), ν ∈ N(Q1);

then Q1ξ = ρ and Q2ξ = ρ+Q2ν = ρ because ν ∈ N(Q1) ⊆ N(Q2). Using this remark,

we prove the next result.

Corollary 2.6. The set P(A,S) is parametrized by the set of all direct complements of

S contained in A−1(S⊥).

Remark 2.7. If S ∩N(A) = {0} the pair (A,S) is compatible if and only if A(S)⊕S⊥ is

closed. Indeed ifM,N are closed subspaces, thenM+N is closed if and only ifM⊥+N⊥
is closed (see theorem 4.8 of [37]); if (A,S) is compatible then S ⊕A(S)⊥ = H, a fortiori

S+A(S)⊥ is closed. Then S⊥+A(S) is closed. Moreover S⊥∩A(S) = (S+A(S)⊥)⊥ = {0}.
Conversely, if S⊥ ⊕ A(S) is closed, then S⊥ + A(S) = S⊥ +A(S) = (S ∩ A(S)⊥)⊥ =

(S∩N(A))⊥ = H. Again, if H = S⊥+A(S) then S+A(S)⊥ is closed and (S+A(S)⊥)⊥ =

S⊥ ∩A(S) = {0}.

The following remarks may be helpful to understand the meaning of compatibility.

With the 2 × 2 matrix representation mentioned above, if Q is a projector onto S then
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Q ∈ P(A,S) if and only if
(
a b

b∗ c

)(
1 e

0 0

)
=

(
1 0

x∗ 0

)(
a b

b∗ c

)
.

It is easy to see that the four equations reduce to a single one, namely, ax = b. By Douglas

theorem, ax = b has a solution if and only if R(b) ⊆ R(a) and, in this case, there is a

unique d ∈ L(S⊥,S) such that ad = b and R(d) ⊆ R(a).

As we saw, if A =

(
a b

b∗ c

)
∈ L(H)+ then R(a1/2) ⊇ R(b). In general, R(a) ⊆

R(a1/2) ⊆ R(a). Then, there is no much place for a, b to satisfy R(b) ⊆ R(a1/2) and not

satisfy R(b) ⊆ R(a). In fact, given S, the set ΥS = {B ∈ L(H)+ : (B,S) is compatible} is

everywhere dense in L(H)+. Moreover, GL(H)+ is dense in L(H)+ and GL(H)+ ⊆ ΥS .

Indeed, from the comments above, if A ∈ GL(H)+, then a ∈ GL(S)+, so that the

equation ax = b has the unique solution x = a−1b. Then P(A,S) = {PA,S}, where

PA,S =

(
1 a−1b

0 0

)
.

The following result, which contains another parametrization of P(A,S), in terms of

the set of solutions in L(S⊥,S) of the equation ax = b, follows from the remarks above.

Theorem 2.8. The pair (A,S) is compatible if and only if R(b) ⊆ R(a). In this case

P(A,S) = {P + PV (I − P ) : V ∈ L(S⊥,S), PAPV = PA|S⊥}

=

{(
1 x

0 0

)
: ax = b

}
.

We summarize the conditions which are equivalent to compatibility in the next statement:

Theorem 2.9. Given a closed subspace S of H and a positive operator A on H, the

following conditions are equivalent:

1. P(A,S) is non-empty;

2. S + S⊥A = H;

3. there exists a closed subspace W ⊆ S⊥A such that S ⊕W = H;

4. for the representation A =

(
a b

b∗ c

)
of A under the decomposition H = S ⊕ S⊥,

we have R(b) ⊆ R(a).

Example 2.10. If A ∈ L(H)+ has a dense non-closed image in H, then

B =

(
A A1/2

A1/2 I

)

belongs to L(H⊕H)+ because B = TT ∗ for T : H → H⊕H defined by Tξ = (A1/2ξ, ξ).

On the other hand, R(A1/2) properly contains R(A), so that B and H ⊕ {0} are not

compatible. In the same order of ideas, let C =

(
A 0

0 0

)
∈ L(H⊕H)+. Then (C,H⊕{0})

is a compatible pair and R(C) = R(A) is non-closed.
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Suppose that (A,S) is compatible. Define PA,S the unique member of P(A,S) deter-

mined by the reduced solution d of ae = b: PA,S =

(
1 d

0 0

)
. Then P(A,S) is an affine

manifold identified with {T ∈ L(H) : T |S = 0, T (S⊥) ⊆ N}. In particular, P(A,S)

has a unique element if and only if N = {0}. If N 6= {0}, then ‖PA,S‖ ≤ ‖Q‖ for all

Q ∈ P(A,S). For a proof of these facts, see [19].

Theorem 2.11. Let A and S be compatible. Denote by N = (AS)⊥ ∩ S = N(A) ∩ S.

Then N(PA,S) = (AS)⊥ 	N .

Proof. Both projectors have the same image, namely S. It suffices to show that N(PA,S)

⊆ (AS)⊥ 	 N . Recall that PA,S =

(
1 d

0 0

)
where A =

(
a b

b∗ c

)
and d is the reduced

solution of ax = b, i.e., ad = b and R(d) ⊆ R(a). If ξ = σ + σ⊥ ∈ N(PA,S) then

σ + dσ⊥ = 0 and ξ = −dσ⊥ + σ⊥. We must prove −ds⊥ + s⊥ ∈ W = (AS)⊥ 	 N .

First, let us show −dσ⊥ + σ⊥ ∈ (AS)⊥, or, equivalently, that A(−dσ⊥ + σ⊥) ∈ S⊥;

but (−dσ⊥ + σ⊥) =

(
a b

b∗ c

)(−dσ⊥
σ⊥

)
=

(
0

−b∗dσ⊥ + cσ⊥

)
∈ S⊥. Next, we must

show that −dσ⊥ + σ⊥ ∈ (S ∩N(A))⊥. By the definition of d, −dσ⊥ = lim aσn for some

sequence {σn} in S. Given σ ∈ S ∩ N(A), aσ = Aσ = 0, so that 〈−dσ⊥ + σ⊥, σ〉 =

〈−dσ⊥, σ〉 = lim〈aσn, σ〉 = lim〈σn, aσ〉 = 0. This finishes the proof.

Remark 2.12. Under additional hypotheses on A, other characterizations of compati-

bility and formulas for PA,S can be used. We mention a sample of these, taken from [19]

and [20]:

1. If R(PAP ) is closed (or, equivalently, if R(PA1/2) or A1/2(S) are closed), then

(A,S) is compatible. Indeed, if A =

(
a b

b∗ c

)
, the positivity of A implies that

R(b) ⊆ R(a1/2) (see, e.g., [4]). If R(PAP ) = R(a) is closed, then R(b) ⊆ R(a1/2) =

R(a) so that (A,S) is compatible, by Theorem 2.8. In this case,

(2) PA,S =

(
1 a†b
0 0

)
,

since a = PAP has closed range, and a†b is the reduced solution of ax = b. In

particular, if N = N(a) = N(A) ∩ S = {0} (i. e. R(a) = S), one gets

(3) PA,S = (PAP )†PA.

Otherwise, PA,S = PN + (PAP )†PA.
2. If A has closed range then the following conditions are equivalent:

(a) The pair (A,S) is compatible.

(b) R(PAP ) is closed.

(c) R(AP ) is closed.

(d) S⊥ +R(A) is closed.

3. If P,Q are orthogonal projectors with R(P ) = S, then (Q,S) is compatible if and

only if R(QP ) is closed. Moreover, if (Q,S) is compatible, then H = S+Q−1(S⊥) =
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S + (R(Q) ∩ S⊥) +N(Q) and, if N = N(Q) ∩ S and M = S 	N , then

(a) PQ,S = PN + PQ, M.

(b) M⊕ (N(Q) ⊥ (R(Q) ∩ S⊥)) = H, and PQ, M is the projector onto M given

by this decomposition.

(c) In the particular case that N(Q) ∩ S = {0} = R(Q) ∩ S⊥, then

S ⊕N(Q) = H
and PQ,S is the projector given by this decomposition, i.e., N(PQ,S) = N(Q).

(d) ‖PQ,S‖ = ‖PQ, M‖ = (1− ‖(I −Q)PM‖2)−1/2.

Remark 2.13. Consider the following conditions:

1. The pair (A,S) is compatible;

2. A(S) is closed in R(A);

3. A−1(A(S)) = S +N(A);

4. A1/2(S) is closed in R(A1/2);

5. S +N(A) is closed;

6. PR(A)(S) is closed, where PR(A) is the orthogonal projector onto R(A).

A precise description of the relationships among them is provided by the implications:

1 → 2 ↔ 3 → 4 → 5 ↔ 6. Moreover, (A,S) is compatible if and only if P
R(A)

(S) is

closed and (A,PR(A) (S)) is compatible.

The next result is a characterization of compatibility in terms of orthogonal decom-

positions of R(A) and R(A1/2).

Proposition 2.14. Given A ∈ L(H)+, the following conditions are equivalent:

1. The pair (A,S) is compatible.

2. R(A) = A(S)⊕ S⊥ ∩R(A).

3. R(A1/2) = A1/2(S)⊕A1/2(S)⊥ ∩R(A1/2).

4. If M = A1/2(S), then R(PMA1/2) ⊆ R(A1/2P ).

Proof. 1↔ 2: If (A,S) is compatible then H = S +A−1(S⊥) so that

R(A) = A(S) +A(A−1(S⊥)) = A(S) + S⊥ ∩R(A);

conversely, if R(A) = A(S)⊕S⊥∩R(A), then H = A−1(R(A)) = A−1(A(S))+A−1(S⊥∩
R(A)). But A−1(S⊥ ∩ R(A)) = A−1(S⊥) and A−1(A(S)) = S + N(A), so that H =

S +N(A) +A−1(S⊥) = S +A−1(S⊥), because N(A) ⊆ A−1(S⊥).

1↔ 3: similar to (1) ↔ (2).

3↔ 4: If y ∈ R(A1/2) then y = y1 + y2 for unique y1 ∈ A1/2(S) and y2 ∈ A1/2(S)⊥;

but, then, PM(y) = y1 ∈ A1/2(S) = R(A1/2P ). The converse is similar.

As a consequence of Proposition 2.14, it is easy to see that (A,S) is compatible if and

only if A1/2(S) is closed in R(A1/2) and

R(A1/2) = A1/2(S) ∩R(A1/2)⊕A1/2(S)⊥ ∩R(A1/2).

More generally, given a closed subspace S of H and W = A−1/2(A1/2(S)), then (A,W)

is compatible if and only if R(A1/2) = A1/2(S)∩R(A1/2)⊕A1/2(S)⊥ ∩R(A1/2): in fact,

if (A,W) is compatible then, by Proposition 2.14, R(A1/2) = A1/2(W) + A1/2(W)⊥ ∩
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R(A1/2). On one hand, A1/2(W) = A1/2(S)∩R(A1/2); on the other hand, since A1/2(S) ⊆
A1/2(W) ⊆ A1/2(S), we get A1/2(S)⊥ = A1/2(W)⊥. Thus,

R(A1/2) = A1/2(S) ∩R(A1/2) +A1/2(S)⊥ ∩R(A1/2),

and, of course, the sum is direct. The converse is similar.

A notion which is naturally related to oblique projectors is that of angle between

subspaces. We consider here two non-equivalent definitions of angles and we show a

characterization of the compatibility of (A,S) in terms of these angles. For excellent

treatments on angles in Hilbert spaces the reader is referred to the survey by Deutsch

[24] or the book by A. Ben-Israel and T. N. E. Greville [12]

Given two subspaces S, T , the cosine of the Friedrichs angle between them is defined

by

c(S, T ) = sup{|〈ξ, η〉| : ξ ∈ S ∩ (S ∩ T )⊥, ‖ξ‖ < 1, η ∈ T ∩ (S ∩ T )⊥, ‖η‖ < 1}.
It is well known (see Theorem 13 of [24]) that the following conditions are equivalent:

1. c(S, T ) < 1;

2. S + T is closed;

3. S⊥ + T ⊥ is closed;

4. c(S⊥, T ⊥) < 1.

The formulas ‖PSPT ‖ = c(S, T ) [24] and ‖PS//T ‖ = (1 − c(T ,S)2)−1/2 [49] relate this

notion with oblique projectors.

The minimal angle between S and T is the angle whose cosine is defined by

co(S, T ) = sup{|〈ξ, η〉| : ξ ∈ S, ‖ξ‖ < 1, η ∈ T , ‖η‖ < 1}.
Observe that c(S, T ) ≤ c0(S, T ) and c(S, T ) = c0(S, T ) when S ∩ T = {0}.
Theorem 2.15. Consider A ∈ L(H)+. Then (A,S) is compatible if and only if

c0(S⊥, A(S)) < 1.

Proof. If (A,S) is compatible then H = S + A−1(S⊥), so that S + A−1(S⊥) is closed.

By the remarks above and the identity A−1(S⊥) = (AS)⊥, we get c(S, A−1(S⊥)) < 1 or

equivalently, c(S⊥, A(S)) < 1. But S⊥∩A(S) = (S+A−1(S⊥))⊥ = H⊥ = {0}. Therefore,

c0(S⊥, A(S)) = c(S⊥, A(S)) < 1.

Conversely, if c0(S⊥, A(S)) < 1 then S⊥ ∩ A(S) = {0} and S⊥ + A(S) is closed;

therefore, S+A(S)⊥ is closed; also (S+A(S)⊥)⊥ = S⊥∩A(S) = {0}. Then S+A(S)⊥ =

H and (A,S) is compatible.

Remark 2.16.

1. If A has closed range then, by Remark 2.12, the pair (A,S) is compatible if and only

if R(AP ) is closed. Note that this is equivalent to the angle condition c(N(A),S)

< 1.

2. If P,Q are orthogonal projectors with R(P ) = S, define N = N(Q) ∩ S and

M = S 	N . Then, again by Remark 2.12,

‖PQ,S‖ = ‖PQ, M‖ = (1− ‖(1−Q)PM‖2)−1/2 = (1− c(N(Q),S)2)−1/2.
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3. Formulas for PA,S. This section is devoted to presenting several explicit formulas

for PA,S in terms of the orthogonal projectors onto S, W = A(S)⊥ 	 (S ∩ N(A)) and

W⊥. Afriat [1], Greville [32] and Pták [49] have proven this type of formulas, the first

two in finite dimensional settings. Some of these formulas seem to have been known

by V. E. Ljance [43]. Consider A ∈ L(H)+ and S a closed subspace of H such that

(A,S) is compatible. Denote N = S ∩ A(S)⊥ = S ∩N(A) and W = A(S)⊥ 	N . Then,

as shown in Theorem 3.5 of [22], W is the kernel of PA,S so that PA,S = PS//W , the

oblique projector onto S, along W . Afriat [1] and Greville [32] exhibited formulas for

an oblique projector Q in terms of the orthogonal projectors onto R(Q) and N(Q), by

using the Moore-Penrose pseudoinverse. However, in order to use the same method in

our infinite dimensional setting we need to know that the operator whose Moore-Penrose

pseudoinverse is considered has closed range [23]. This justifies the need of a proof for

the first part of the next result. The rest of the proof follows without change Greville’s

arguments.

Lemma 3.1.

1. (A,S) is compatible if and only if PW⊥PS has closed range.

2. If the pair (A,S) is compatible then

(a) PA,S = (PW⊥PS)
†
.

(b) PA,S = (I − PSPW)−1PS(I − PSPW).

(c) PA,S = (I − PWPS)−1(I − PW) = PS(PS + PW − PWPS)−1.

Proof. If (A,S) is compatible then H = S ⊕W by the remarks above. Observe first that

R(PW⊥PS) = W⊥: for this, it suffices to show the inclusion W⊥ ⊆ R(PW⊥PS), because

the converse is evident. If ξ ∈ W⊥, then ξ decomposes as ξ = σ + ω, σ ∈ S and ω ∈ W ,

so that ξ = PW⊥x = PW⊥σ ∈ PW⊥S = R(PW⊥PS).

Conversely, if PW⊥PS has closed range then (PW⊥PS)† is a bounded linear operator.

Greville’s arguments for matrices [32] can be used almost without changes to prove that

(PW⊥PS)† is an idempotent with range S and kernel W . Then H = S ⊕W = S +A(S)⊥

and (A,S) is compatible. The formulas of part 2 follow from the fact that PA,S = PS//W ,

using Theorem 2.2.

Corollary 3.2. If the pair (A,S) is compatible and N = {0} then PA,S = (PA(S)PS)† =

(I − PSPA(S)⊥)−1PS(I − PSPA(S)⊥) = (I − PA(S)⊥PS)−1(I − PA(S)⊥).

The shorted operator of A to S is A/S = sup{X ∈ L(H)† : X ≤ A and R(X) ⊆ S}.
In [48], Pekarev proved

A/S⊥ = A1/2PM⊥A
1/2,

where M = A1/2(S). Let us show a formula for PA,S in the spirit of Pekarev’s. The

relationship between the projectors in P(A,S) and A/S⊥ is given by the formula A/S⊥ =

AE, which holds for every projector E such that I−E ∈ P(A,S) (see [19]). In particular

A/S⊥ = A(I − PA,S) and, if A were invertible, we can compute

PA,S = A−1(A−A/S⊥) = A−1/2PMA
1/2.

In order to get a generalization of this formula, we consider firstly the injective case:
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Proposition 3.3. Let A ∈ L(H)+ injective such that (A,S) is compatible. Then

PA,S = A−1/2PMA
1/2

where M = A1/2(S).

Proof. Observe that in this case P(A,S) = {PA,S} because S ∩N(A) = {0}. Define Q =

A−1/2PMA1/2. Then Q is well defined because A−1/2 : R(A1/2)→ H and R(PMA1/2) ⊆
R(A1/2), by Theorem 2.14. It is easy to see that Q2 = Q and that N(Q) = A(S)⊥: in

fact, ξ ∈ N(Q) if and only if PMA1/2ξ = 0, i.e., A1/2ξ ∈ A1/2(S)⊥, or, what is the

same, ξ ∈ A−1/2(A−1/2(S⊥)) = A−1(S⊥). On the other hand, by the definition of Q,

R(Q) ⊆ A−1/2(M) = A−1/2(A1/2(S)) = A−1/2(A1/2(S)∩R(A1/2)) = A−1/2(A1/2(S)) =

S because, by Theorem 2.13, A1/2(S) is closed in R(A1/2); this proves that R(Q) ⊆ S.

Conversely, if σ ∈ S, then Qσ = A−1/2PMA1/2σ = σ. Then R(Q) = S and Q = PA,S .

We generalize this formula to any (not necessarily injective) A ∈ L(H)+. For B ∈
L(H)+ denote

B] = (B|R(B))
−1 : R(B)→ R(B) ⊆ H.

Observe that B] is a linear, not necessarily bounded operator. If R(B) is closed, then

B]PR(B) = B†.

Proposition 3.4. Consider A∈L(H)+ such that (A,S) is compatible. SetM=A1/2(S).

1. If S ⊆ R(A) then PA,S = (A1/2)]PMA1/2.

2. If S ∩N(A)={0} then PA,S=(PR(A)PS)†PA,P
R(A)

(S) =(PR(A)PS)†(A1/2)]PMA1/2.

Proof. Observe that P(A,S) = {PA,S} because S ∩N(A) = {0} in both cases.

1. If S ⊆ R(A) and Q = (A1/2)]PMA1/2 then Q is well defined because PM(R(A1/2))

⊆ R(A1/2), by Proposition 2.14. On one hand PM(R(A1/2)) ⊆M∩R(A1/2) = A1/2(S),

because, by Remark 2.13, A1/2(S) is closed in R(A1/2) thus, R(Q) ⊆ (A1/2)]A1/2(S) = S.

On the other hand, Qσ = σ, for all σ ∈ S, because S ⊆ R(A). Then R(Q) = S. It is easy

to see that N(Q) = A−1(S⊥); thus, Q = PA,S .

2. If S ∩ N(A) = {0} then the subspace S ′ = PR(A)(S) is closed because (A,S) is

compatible, S ′ ⊆ R(A) and (A,S ′) is compatible (see Proposition 2.13). Also A1/2(S ′) =

A1/2(S) = M, so that PA,S′ = (A1/2)]PMA1/2. Now, R(PR(A)PS) = S ′ is closed and

N(PR(A)PS) = S⊥: the proof is straightforward.

In the general case the set P(A,S) can be parametrized by means of the set of

complements L of N = S ∩N(A) in S. More precisely:

Proposition 3.5. Let Q ∈ Q and consider A ∈ L(H)+ such that (A,S) is compatible.

Let N = S ∩ N(A). Then Q ∈ P(A,S) if and only if there exists a (unique) closed

subspace L ⊆ S such that S = N ⊕L, L+N(Q) is closed, S +N(Q) = H and

Q = PA,L + PN//(L+N(Q)).

Proof. ⇐) Observe that N +L+N(Q) = S+N(Q) = H and L+N(Q) is closed so that

Q′ = PN//(L+N(Q)) is a well defined (oblique) projector. If Q = PA,L +Q′ then it is easy

to see that Q ∈ P(A,S).
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⇒) Consider Q ∈ P(A,S) and let W = PNQ; then R(W ) = N . From QPN = PN
we get that W 2 = W . Let T = Q −W ; T is A-selfadjoint because Q and W are both

A-selfadjoint; equality T 2 = T follows from QW = W = WQ. Therefore Q = T+W , with

T 2 = T and W 2 = W . Let L = S ∩N(W ). It follows easily that T = PA,L, S = L +N
and N(W ) = L+N(Q).

Let C ∈ L(H) such that R(C) = S is closed, and A ∈ L(H)+ with closed range. For-

mula (3) suggests the natural generalization, which is widely used in the finite dimensional

case:

(4) PA,S
?
= C(C∗AC)†C∗A.

In general, the formula is false for many reasons. For instance, (C∗AC)† is unbounded if

R(C∗AC) is not closed; or C(C∗AC)†C∗A may have range strictly contained in S. How-

ever, the wide range of applications of the right side of formula (4) makes it desirable to

establish its exact relationship with PA,S . In fact, projectors like C(C∗AC)†C∗A appear

explicitly in papers on scaled projections [53], [46], [34], [31], [60], [14], linear least squares

problems [28], [29], linear feasibility [28], [29], [17], signal processing [36], [10], [58] and

so on.

A first observation is that one needs to verify if R(C∗AC) is closed. An interesting

fact, which generalizes item 2 of Remark 2.12, is that R(C∗AC) is closed if and only if

(A,S) is compatible. Indeed, note that R(C∗AC) is closed if and only if R(A1/2CC∗A1/2)

is closed. Since R(C) = S is closed, there exist a, b > 0 such that aP ≤ CC∗ ≤ bP , so

that

aA1/2PA1/2 ≤ A1/2CC∗A1/2 ≤ bA1/2PA1/2.

This implies, by the Douglas theorem, the identity

R((A1/2CC∗A1/2)1/2) = R(A1/2P ) = A1/2(S),

which is closed if and only if (A,S) is compatible, by Remark 2.12.

Suppose now that (A,S) is compatible. If N = N(A) ∩ S, we shall see that

(5) PA,S = PN + C(C∗AC)†C∗A,

showing that formula (4) holds if and only if N(A) ∩ S = {0}.
Define Q = C(C∗AC)†C∗A. It is clear that Q2 = Q, R(Q) ⊆ R(C) = S and AQ =

Q∗A. Therefore, Q is an A-selfadjoint projector onto a subspace of S. Also, since C and

(C∗AC)† are injective on R(C∗),

N(Q) = N(C∗A) = A−1(N(C∗)) = A−1(S⊥).

The next step is to show that R(Q) = S 	N . Note that

R(C∗A) = C∗(R(A)) = C∗(R(A1/2)) = R(C∗A1/2).

Hence R(C∗A) = R((C∗AC)†C∗A1/2) and R(Q) = R(CC∗A1/2) = R(CC∗A). But

N(ACC∗) = N(CC∗) ⊥ (R(CC∗) ∩N(A)) = S⊥ ⊥ N ,
so that R(Q) = N(ACC∗)⊥ = S 	 N , as claimed. This fact clearly shows that Q ∈
P(A,S 	N ) = {PA,S	N } (since (S 	N )⊥A = S⊥A) and also proves formula (5).
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It is shown in [6] that for every projector Q onto a closed subspace S, there exists an

invertible positive A ∈ L(H) such that Q = PA,S . This can be rewritten as follows:

Proposition 3.6. Let S ∈ H be a closed subspace and C ∈ L(H) with R(C) = S. Let

A ∈ L(H)+ with closed range. Then

1. (A,S) is compatible if and only if R(C∗AC) is closed.

2. If N(A) ∩ S = N , then

PA,S = PN + C(C∗AC)†C∗A.

3. For every Q ∈ L(H) such that Q2 = Q and R(Q) = S, there exists an invertible

positive A ∈ L(H) such that

Q = C(C∗AC)−1C∗A.

Final comments and open problems. The structure of the set ∓S = {A ∈ L(H)+ :

(A,S) is compatible} is not completely known. We have observed that GL(H)+ is con-

tained in ∓S . Of course, if S is finite-dimensional, then ∓S = L(H)+.

The extension of compatibility questions to Hermitian operators instead of positive

operators is a much more difficult problem. The reader can find in [35], [19] and [44] some

results in this direction.

Compatibility is related to some problems arising from wavelet and frame theory. The

paper [7] deals with some problems in this area.

A difficult and very useful problem consists in determining conditions which ensure

the convergence of sequences like {PAn,S} and {PA,Sn}. A sample of this type of results

can be found in [21].

Given Q ∈ QS , it is known that χQ = {A ∈ L(H)+ : Q ∈ P(A,S)} is not empty

and the set χQ ∩GL(H)+ is characterized [6]. However, in general, the structure of χQ
is unknown and it would be interesting to have optimality criteria for choosing A ∈ χQ.
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