

International Review on Computers and Software (I.RE.CO.S.), Vol. 4, n. 6

Copyright © 2009 Praise Worthy Prize S.r.l. - All rights reserved

Scheduling Hard Real-Time Tasks in Multicore General Purpose/

Special Purpose Processors Systems-on-a-Chip: An Energy-Aware

Approach

Rodrigo Santos
1
, Jorge Santos

1
, Javier Orozco

1
, David Donari

1
, Leo Ordinez

1

Abstract – In this paper an energy-aware scheduling algorithm for heterogeneous multicore

general purpose/special purpose processors systems-on-a-chip is presented. The load consists in

chains of precedence-related tasks. A systematic search method to find an optimal set of reduced

frequencies that diminish the energy consumption is proposed. Evaluations were conducted by

means of extensive simulations.

Keywords: Real-Time, Multicore, Embedded Systems

I. Introduction

In the last years the computer industry trend has

changed from very fast uniprocessor systems working

over the Gigahertz domain to a set of assembled

processors working at a lower frequency. Multicore

systems are becoming more common in the industry as

performance and energy consumption placed a limit in

the development of new devices. The possibility of

having a set of tight connected processors with less

individual computational power but with a greater

assembled one, has produced a new trend in the design of

computers.

In heterogeneous single-chip multicore devices,

portions of the chip can be differentiated at a high level

of abstraction to implement more efficiently the required

applications within the restricted area of the chip [1]. In

the paper of reference, the author poses a set of questions

about this kind of systems, one of which is how to

schedule across multiple heterogeneous cores.

This paper intends to give one answer to that question

for the case of Systems-on-a-Chip, SoC's, composed of a

General Purpose Processor (GPP) and one or more

Special Purpose Processors (SPP) connected in a virtual

star topology with the GPP at its hub. This is the trend

presently followed by the industry, exemplified by the

Texas Instruments SMJ320C80 [2] (one GPP, four digital

signal processors, DSP's, and two controllers), the Texas

Instruments TMS320DM6443 [3] (one ARM926 RISC

processor, one DSP plus audio-video accelerators), the

Aplio/TRIO [4] (one ARM7TDMI ARM Thumb

Processor Core with two 16-bit Fixed-point Oak DSP

Core), and the IBM Cell Broadband Engine Architecture

[5] (one GPP and eight media processors). Although

some tasks may be completely executed in the GPP, most

of them will be mainly processed in some SPP acting as

accelerator of the GPP, which, in turn, acts as a master

processor distributing tasks to the SPPs. In this way,

chains of real-time precedence-related tasks, executed in

different processors, are formed.

In the last years, the industry has shifted from

maximizing performance to maximizing performance per

watt [5]. The energy consumption increases by a

multiplicative factor as the speed of a single processor is

increased, but only by an additive factor as processors

are added [6]. This is the rationale for using multiple

simple cores instead of single but complex processors [7]

and explains the actual multicore trend leading to the

kind of SoC's studied in this paper.

Since for a given architecture, additional savings can

be obtained by a proper handling of the available slack,

the subjects addressed in this paper are not only to

schedule sets of precedence-related real-time tasks to be

executed in multicore heterogeneous systems but also

how to save energy after a proper assignment meeting all

time-constraints has been made. In order to do it, a

schedulability test for each processor and the

computation of a suboptimal single frequency, selected

from a discrete set of available frequencies, are carried

out. However it must be borne in mind that since tasks

are related by precedence, frequencies in the processors

are also related and cannot be selected independently.

I.1. Contribution

This paper presents an energy-aware scheduling

algorithm for heterogeneous multicore SoC. The

mechanism proposed a necessary and sufficient

scheduling test for precedence related chains of tasks that

execute in a sequential way in the different processors.

Although the algorithm presented contemplates three

Copyright © 2009 Praise Worthy Prize S.r.l. - All rights reserved - Preprint submitted to Computers & Electrical Engineering October 15, 2009

execution stages it can be easily extended for more

resources.

I.2. Organization

The rest of the paper is organized as follows: In

Section 2 previous works on scheduling and energy

saving in single and multiprocessor systems are analysed.

In Section 3 the system model is discussed. The non-

preemptive method for scheduling precedence-related

tasks, and the method to save energy are presented in

Sections 4 and 5, respectively. In Section 6 experimental

results based on simulations are shown and finally in

Section 7, conclusions are drawn and future work

outlined.

II. Previous Work

The list of the analyzed papers is representative of the

state of the art. The problem of scheduling

multiprocessors has been addressed in many papers. In

[6]}, the models differ from the one used in this paper in

that processors are homogeneous (also called symmetric)

and/or tasks are independent. In [8] Rajkumar proposed

the Distributed Priority Ceiling Protocol to schedule

tasks to be executed in a one-GPP/one-SPP system

working under a Fixed Priority discipline. Although the

method could be extended to one-GPP/several-SPP's

systems, it has the problem (analysed in [9]) that

blockings in the SPP's are always taken into

consideration, even for tasks that execute only in the

GPP. Because of this, some feasible systems would be

deemed to be non-schedulable by this method.

 In [9], the proposal of Rajkumar is improved by

assembling two scheduling queues, one for chains

executed at the DSP and the other one for tasks executed

only at the GPP. However, the DSP is not considered to

be an independent processor but it is seen as a critical

section of the GPP. This lowers the utilization factor of

the system to be processed, an inconvenience saved in

the scheduling method proposed in the next section.

Moreover, both approaches use a Fixed Priority

discipline instead of the dynamic Earliest Deadline First,

EDF, of the system model described in Section 3

 In [10] two scheduling methods for the

synchronization of processes in distributed systems are

presented. The time that a process is waiting for a

response from another process is called external

blocking. A scheduling algorithm based on the Response

Time Analysis [11] divides the tasks in two independent

parts, before and after the external blocking. While the

first part has a deterministic release time, the second one

has a release jitter which is equal to the external

blocking. Although the proposition provides an

interesting way to analyze the feasibility of the system,

the schedulability of the second processor is not

discussed. A Fixed Priority discipline is used.

 In [12] the authors describe a Dynamic Voltage

Scheduling algorithm, DVS, for saving energy in non-

preemptive systems working under EDF. The method is

restricted to only one processor and is dynamic while in

this paper the scaling is static.

 In [13], a variant of non-preemptive EDF is proposed

for soft real-time systems. The proposed algorithm,

named gEDF, groups tasks with near deadlines and

schedules them following the Shortest Job First (SJF)

policy. The authors show that in the case of

uniprocessors, the performance under overload is better

than the traditional EDF approach.

III. System Model

This paper deals with sets of precedence related tasks. γi

and τij denote the i
th

 set and its j
th

 task, respectively. Two

tasks are said to be related by precedence when, in order

to be executed, a task τij needs data produced by other

task, τig. The relation, notated τig≺ τij, determines a partial

ordering of the tasks. When there is no task τih such that

τig≺τih≺τij, τig and τij are called predecessor and successor,

respectively. In what follows it will be assumed that all

the tasks in the set have the same period. Although it

may be the case that different tasks in the set can have

different periods, the analysis here performed considers

the minimum one as the period of the set. This imposes

an extra restriction that may be relaxed later if necessary.

Cij, Tij and Dij shall denote the worst-case execution time,

the period and the deadline of τij, respectively. Different

tasks may execute in different processors running at

different speeds.

Scheduling disciplines in the different processors are

determined by the kind of tasks executed in them. For

example, the SPP's generally require a non-preemptive

discipline because they perform specific functions based

on registers values. The context-switch, associated to the

preemption, imposes a cost that is too high and

diminishes the advantages that a preemptive discipline

can have. Instead, for the case of the GPP, a preemptive

discipline provides a better utilization of the processor.

The existence of shared resources is not particularly

considered in this paper. For the case of the individual

SPPs, as the scheduling discipline is not preemptable,

there is no need for a contention algorithm. The

possibility of introducing shared resources in the GPP or

even between the different processors may be

contemplated by means of the blocking relation

presented in [8].

IV. Heterogeneous Real-Time

Schedulability

In this section, the problem of scheduling sets of tasks

consisting in chains of precedence-related periodic real-

time tasks as defined in Section III is addressed. The

basic idea of the method here presented is to convert the

precedence-related tasks in sets of independent periodic

Copyright © 2009 Praise Worthy Prize S.r.l. - All rights reserved - Preprint submitted to Computers & Electrical Engineering October 15, 2009

tasks, with their own release times and deadlines, to be

executed in heterogeneous processors.

 Several priority disciplines have been proposed to be

used in the scheduling of real-time systems. In

preemptive EDF, a higher priority task gains access to

the processor for the duration of an execution slot, by

displacing a lower priority task. The status of the

preempted task, mainly registers' contents, must be

preserved in order to resume its execution at a later time.

In [14], it is proved that preemptive EDF is optimal if the

time required to switch from one task to another one is

neglected. However, if switching times are taken into

consideration and they are expensive, non-preemptive

EDF may turn to be better. This is the reason why

preemptive EDF is used in the GPP while non-

preemptive EDF is used in the SPP's.

 In [15] a method, using preemptive EDF, was

presented to schedule single processor real-time systems

composed of precedence-related tasks. It can therefore be

applied to our GPP scheduling; in order to do it, the

chain of precedence-related tasks must be converted into

a set of independent tasks. Once this is done, the tasks

are allocated to the different processors in such a way

that time-constraints are met; following that, a reduction

in energy consumption may be attempted.

 The central idea to be used is the Chetto definition of a

coherent system [15]. In it, each task has its own release

time and deadline. The release time, deadline and period

of the set of precedence related tasks, γi, are notated ri, Di

and Ti, respectively. The release and deadline of τij,

notated rij and dij respectively, should be selected in such

a way that the processors are coherent. A processor is

coherent if the release of a succesor task executing in it is

greater than or equal to the deadline of its predecessor in

the chain. Therefore, rij < dij ≤ rik < dik must hold. In this

paper the number of tasks considered in a chain is at

maximum three. The first and the last one run in the GPP

while the second one executes in one of the SPP's. The

system is feasible if all the processors are schedulable.

 In the SPP's, tasks are independent among them so the

schedulability can be analysed following the test

proposed in [16] for non-preemptive EDF.

V. SPP's Schedulability

To check the schedulability of the SPP's and the GPP,

release times and deadlines for each task in the system

should be computed; this is not an easy job because they

are not independent. In order to begin the analysis, a

preliminary value for the deadline of each of the SPP's

tasks has to be set. If the task has a successor in the GPP,

then the preliminary value will be the latest possible

release of the successor. This, however, does not secure

the schedulability of the GPP which should be checked

later with Chetto's method.

 For each set γi, di2, the deadline of τi2, is the latest

moment at which τi2 can finish its execution and still

leave enough time for τi3 to be completely executed

before its own deadline, di3=Di, if it is assumed that no

other task interferes with it. di2 is therefore

𝑑𝑖2 = 𝑑𝑖3 − 𝐶𝑖3 (1)

 Since τi3 may be preempted, this equation merely

states the latest deadline for the task in the SPP or, what

is equivalent, the latest possible release time for its

successor in the GPP. How to ascertain the schedulability

of the GPP is explained later.

 In what follows, U and L denote the utilization factor

of the set Γi and the set of instants where the

schedulability should be checked, respectively.

 Theorem: In [17] it is proved that set of non-

preemptable tasks is feasible under EDF if:

𝑈 ≤ 1, ∀𝑡 ∈ 𝐿 (2)

𝑡 ≥ 𝐹 𝑡 = max 0,1 +
𝑡 − 𝐷𝑖

𝑇𝑖

𝑛

𝑖=1

𝐶𝑖 + 𝐶𝑝 − 1

Where 𝐶𝑝 = max𝑖 𝐶𝑖 and

𝐿 = 𝐷𝑖 + 𝑘𝑇𝑖 , 𝑘 ∈ ℵ

𝑛

𝑖=1

 0, max max
𝑖

 𝐷𝑖 , 𝑀

 The theorem states that for a non-preemptive EDF

scheduling to be feasible, the utilization factor should be

less than one and the demand in a busy period begining

after the task with longer execution time has started its

execution should be less than the available time.

 Example: Let S(3)={(2,4,8),(3,6,10),(3,10,10)}. The

system is not feasible since:

 U=0.85

 L={4,6,10,12,16,20,26,28,30,36}

 F(4)=4, F(6)=7 and one task will miss a

deadline as can be seen in Figure 1.

Figure 1. SPP schedulability example

VI. GPP's Schedulability

The tasks in the GPP are not independent. As explained

in the system model, the execution of some of them is

conditioned to the completion of others. Traditional

approaches to analyse the schedulability are not valid in

this case, so the Chetto approach is used [15] instead. In

it, the set of precedence related tasks is mapped into a

new set of independent tasks with release times and

Copyright © 2009 Praise Worthy Prize S.r.l. - All rights reserved - Preprint submitted to Computers & Electrical Engineering October 15, 2009

deadlines computed in such a way that the coherence of

the set is preserved. In [15] the following is proved:

 Theorem: Let S(m) be a set of tasks related by

precedence. Let S
*
(m) be a set of independent tasks such

that they respect the partial order imposed in S(m) for the

release and deadline, and Ci
*
=Ci. S(m) is schedulable if

and only if S
*
(m) is schedulable.

 Corollary: Let S(m) be a set of precedence related

tasks, and S
*
(m) the mapped set that respects the partial

order imposed by S(m) , then S
*
(m) is schedulable if and

only if

∀ = 1, … , 𝑞, ∀𝑔 = 1, … , 𝑞 such that

𝑟 ≤ 𝑟𝑔 , 𝑑 ≤ 𝑑𝑔 (3)

 𝐶𝑠 ≤ 𝑑𝑔 − 𝑟
𝑟≤𝑟𝑔 ,𝑑≤𝑑𝑔

 For simplicity, suppose that the set of precedence

related tasks, γi, are composed of just three tasks, with

the first and last ones (τi1, τi3) executing in the GPP and

τi2 in the SPP. In order to use the above expression it is

necessary to determine the release times and deadlines of

all the tasks in the chain. The pairs (ri3, di3) are already

known. Since ri1=ri is also known, it remains only di1 to

be calculated. Some tasks in the GPP are predecessors of

tasks in the SPP's and therefore their deadlines should be

set in such a way that the successor can have enough

time to be executed in the SPP. In order to do this, it is

important to know the worst case response time of the

tasks in the SPP's.

 The response time of τi2, denoted Ri2, defined as the

maximum time that can elapse between ri2 and the end of

the execution of τi2, has to be obtained. The following

lemma, proved in [18], shows how to find it:

 Lemma: The worst case response time of a task τi2 is

found in a deadline busy period in which: a) τi2 has an

instance released at time ri2, possibly with others released

before. b) all tasks with relative deadline smaller than or

equal to ri2+ di2 are released from time t=0 on at their

maximum rate. c) a further task with relative deadline

greater than ri2+ di2, if any, has an instance released at

time t=-1.

 The lemma states that a task in the SPP not only may

be blocked by a lower priority task (greater absolute

deadline) but also would have to wait for the execution

of all the higher priority tasks' instances that are released

together and along the busy period. In order to compute

the response time, a recursive formula is used until a

solution is found:

𝑊𝑖 𝑟𝑖2, 𝑡 = min 1 +
𝑡

𝑇𝑗
 , 1 +

𝑟𝑖2 + 𝑑𝑖2 − 𝑑𝑗2

𝑇𝑗

𝑗≠𝑖

𝐶𝑗2

𝑑𝑖2 ≤ 𝑟𝑖2 + 𝑑𝑖2

 The above expression computes the demand of the

tasks in the interval considered.

𝐴𝑖 𝑟𝑖2 = max
𝑑𝑖2>𝑟𝑖2+𝑑𝑖2

 𝐶𝑗2 − 1 + 𝑊𝑖(𝐴𝑖 𝑟𝑖2, 𝐴𝑖 𝑟𝑖2 +
𝑟𝑖2
𝑇𝑖

Computes the length of the actual busy period that has

started at t=0 previous to the release of τi2 which is upper

bounded by Γi:

𝑖 = max
𝑗 :𝑑𝑗2>𝑑𝑖2

 𝐶𝑗2 − 1 +
𝑖

𝑇𝑗

𝑗 :𝑑𝑗2≤𝑑𝑖2

𝐶𝑗2

 The response time is taken as the max between the

previous combinations:

𝑅𝑖2 = max max 𝐶𝑖2, 𝐴𝑖 𝑟𝑖2 + 𝐶𝑖2 − 𝑟𝑖2 : 0 ≤ 𝑟𝑖2 < 𝑖

 The latest possible deadline for τi2 is given by the

difference between the actual deadline and the response

time of τi2. With di1 set and Ri2 computed, the latest

possible deadline for τi1 is given by:

𝑑𝑖1 = 𝑑𝑖2 − 𝑅𝑖2 (4)

 Since Ri2, computed by the previous method considers

the worst case, it is assured that even if τi1 finishes as late

as its deadline, τi2 will have enough time to finish before

its own deadline.

VII. Scheduling test

For a system to be schedulable, the GPP and all the SPP's

have to be schedulable. Because tasks are not

independent it is necessary to determine the release times

and deadlines of each one of them and check the

schedulability of the processors. The following steps

conform the scheduling test:

1. Compute deadlines of the different subtasks

according to:

a. The last task has the deadline of the chain.

b. If the task's successor is allocated to an SPP,

expression (4) is used to determine the deadline.

In the case that there is more than one successor,

the minimum value is chosen.

c. If the task's successor is allocated to the GPP,

expression (1) is used to determine the deadline.

2. Release times of the different tasks are computed as:

a. The first task has the release time of the chain

b. If the task j has a predecessor g: rij=rig+Cig. In the

case that the task has more than one predecessor,

the maximum value is chosen.

3. To test the schedulability of the system, each

processor has to pass the scheduling test. For the SPP,

condition (2) must hold; for the GPP, condition (3)

must hold.

 Example: Let the system be the one presented in

Figure 2 and in Table 1. In the figure, each node

represents a task, and directed arcs connect predecessors

to successors. The system has one GPP and two SPP's.

Each chain is already divided in three tasks and the

release times and deadlines are those assigned when the

system is operating at full frequency on both processors.

The processors are coherent and the GPP is schedulable.

Table 2 shows the release and deadlines for each subtask

Copyright © 2009 Praise Worthy Prize S.r.l. - All rights reserved - Preprint submitted to Computers & Electrical Engineering October 15, 2009

as computed by the method. In Figure 3, the evolution of

the system during the firsts slots is shown.

Figure 2. System's tasks graph representation

TABLE 1

SYSTEM’S DEFINITION

i Ci1 Ci2 Ci3 Ci4 Ti

1 1 2 2 3 20

2 1 2 1 - 15

3 1 1 2 2 15

4 1 2 1 - 10

TABLE 2

COMPUTED DEADLINES AND RELEASE TIMES

i ri1 ri2 ri3 r14 di1 di2 di3 d14

1 1 2 2 7 12 17 17 20

2 1 2 6 - 10 14 15 -

3 1 2 2 5 11 13 13 15

4 1 2 4 - 7 9 10 -

VIII. Energy consumption management

 In CMOS technology, extensively used in today

processors, the energy consumed in the execution of a

given task diminishes quadratically with voltage [19].

Assuming that there is an available continuous spectrum

of frequencies, the minimum frequency at which each

processor is preemptible EDF-schedulable, is given by:

foj=fnjUj. foj and fnj denote the operating and the nominal

frequencies of processor j, respectively and Uj the

utilization factor of the processor defined as 𝐶𝑖 𝑇𝑖 . By

reducing the operating frequency, the execution time of

the tasks is incremented and a new feasibility test should

be performed for the case of the non-preemptible

processors to check the schedulablity.

In real microprocessors, however, the operating

frequencies cannot be varied continuously. Each

processor shall use, therefore, an operating frequency

chosen from the available set in such a way that it is

equal to or bigger than the one obtained from the

continuous spectrum. In that way, a set of suboptimal

single frequencies produced by Static Voltage Scaling is

obtained. Two important problems associated with

Dynamic Voltage Scaling in real-time systems are

avoided: the appearance of scheduling anomalies leading

to not meeting time-constraints and the need to introduce

transit times between frequencies as an overhead in the

calculations when scheduling with multiple frequencies.

If 𝑓 and p denote the number of available frequencies

in the processors and the number of processors,

respectively, the number of possible frequency

assignments is 𝑓 𝑝 and the problem may become

intractable.

Figure 3.Temporal Evolution, release, deadline

 However, since in practice 𝑓 and p are small

numbers, a systematic search of feasible frequency

combinations may be conducted and heuristic or

statistical methods result unnecessary. In fact, many

possible solutions are not considered because the

utilization factor of the processors at nominal frequency

prevents them. The search is static off-line, it is made

only once and requires a small time. For example, the

calculations for a set of thirty chains processed in a five-

core SoC, performed in a Celeron 2.4 GHz PC, require

only 60ms.

IX. Energy consumption computation

 In what follows it is assumed that a satisfactory

assignment of tasks over the GPP and the SPPs has been

made and that the system, with all its processors

operating at nominal frequency, meets all the time-

constraints.

 Theorem: The energy consumed per unit of time in a

multiprocessor system operating at reduced frequencies

is given by:

𝐸𝑜 = 𝑓𝑜𝑗
2 𝑈𝑗 + 𝛼(1 − 𝑈𝑗)

𝑝

𝑗 =1

 (5)

where foj is the reduced frequency of processor j, Uj is

the utilization factor of processor j at nominal frequency,

and α is a constant less than or equal to 1 that represents

the percentage of energy consumed by the processor

when it is idle.

Copyright © 2009 Praise Worthy Prize S.r.l. - All rights reserved - Preprint submitted to Computers & Electrical Engineering October 15, 2009

 Proof: To compute the energy consumption per unit of

time it is necessary to determine the amount of time the

system is either busy or idle. To do that, the concepts of

work-function and utilization factor are used. The work-

function at instant t is defined as:

𝜔 𝑡 =
𝑡

𝑇

=𝑚

=1

𝐶

 If M denotes the value of the Least Common Multiple

of the periods, often called the hyperperiod, ω(M) and

(1 - ω(M)) represent the time the processor spends

executing tasks or is idle in the hyperperiod, respectively.

If the power of the processor at nominal frequency is

taken as unit of power, the energy consumed in the

hyperperiod will therefore be:

𝐸 = 𝜔 𝑀 + 𝛼(1 − 𝜔 𝑀)

The expression:

𝜔 𝑀 + 𝛼(1 − 𝜔 𝑀)

𝑀
= 𝑈𝑝 + 𝛼(1 − 𝑈𝑝)

represents then the average energy consumed per unit of

time at nominal frequency. Knowing the power of the

processor in W and the unit of time used, it is a trivial

matter to obtain the energy consumed in MKS units (e.g.

Ws). Since the power consumption undergoes a cubic

reduction with frequency but the time necessary to

execute a given workload is inversely proportional to the

frequency, the average energy consumption when the

processor operates at fo, relative to the nominal

consumption is

𝑓𝑜
𝑓𝑛

3 𝑈𝑝

 𝑓𝑜 𝑓𝑛
+

1 − 𝑈𝑝

 𝑓𝑜 𝑓𝑛
=

𝑓𝑜
𝑓𝑛

2

 𝑈𝑝 + 𝛼(1 − 𝑈𝑝)

If fn is taken as unit of frequency, the final expression is:

𝑓𝑜
2 𝑈𝑝 + 𝛼(1 − 𝑈𝑝)

 The energy consumed by all processors in the chip will

be the sum of the individual consumptions.

 In this paper, the energy consumed in the idel state is

assumed to be 15% (α=0.15) of that consumed when

executing tasks, a figure based on measurements

presented at [20]. If En denotes the consumption with all

the processors operating at nominal frequency, the

relative saving is defined as (En-Eo)/En.

X. Frequency assignment method

 Unfortunately the method to determine operating

frequencies in the case of systems of precedence-related

tasks executed in different processors is not so straight:

diminishing the frequency in the processor in which the

predecessor-task is executed may result in a

postponement of its deadline leading to an inadmissible

delay in the release time of the successor. The problem

can be represented in a p-dimensional space in which

each dimension is associated to the frequency of one

processor. Each possible solution in this space can be

represented as an n-tuple where each element represents

the actual operating frequency of each processor. In this

view, the p-tuple that minimizes the energy consumption

has to be found. The procedure is iterative and it is

described in the following algorithm:

1. Eliminate the p-tuples with frequencies below the

utilization factors of each processor as they are not

possible solutions.

2. Compute Eo for each one of the remaining p-tuples.

3. Order the p-tuples by increasing values of Eo.

4. Select the p-tuple with the minimum Eo.

5. Check the schedulability of the system following

the algorithm of the previous section. If the system

is schedulable a solution has been found.

6. If the system is not schedulable, select the next n-

tuple in the ordered list and return to step 5.

 Example: Consider the system described in the

example of the previous section. The total utilization

factor of the GPP is 0.73 and that of both SPPs is 0.37.

The available frequencies are fn, 0.75fn and 0.5fn.The

minimum available frequencies for the GPP and the SPP

computed independently are equal to 0.75fn and 0.5fn.

However, if the SPP frequencies are set to that value, the

GPP will not be schedulable. By incrementing the SPPs'

frequencies to 0.75fn the system becomes feasible. The

system will be then described by Tables 3 and 4.

TABLE 3

COMPUTATION TIMES RECOMPUTED FOR THE REDUCED

FREQUENCIES

i Ci1 Ci2 Ci3 Ci4

1 1.33 2.66 2.66 4

2 1.33 2.66 1.33 -

3 1.33 1.33 2.66 2.66

4 1.33 2.66 1.33 -

TABLE 4

RELEASED AND DEADLINES MODIFIED

i ri1 ri2 ri3 r14 di1 di2 di3 d14

1 1 2.33 2.33 7.33 9 16 16 20

2 1 2.33 8.33 - 7.33 13.66 15 -

3 1 2.33 2.33 7.33 7.66 12.66 12.66 15

4 1 2.33 4 - 7 8.66 10 -

 Using expression (5) to compute the energy consumed

at nominal and reduced frequencies, an overall energy

saving of 43% is obtained.

XI. Esperimental Evaluation

 The performance of the method presented in the

previous section was evaluated by simulations carried out

on a system composed of one GPP and four SPP's. The

set of available frequencies, relative to the nominal one,

in each processor was {1.00, 0.75, 0.50, 0.25}.

Workloads were randomly generated and the energy

consumption to process them at nominal and at reduced

frequencies were determined. The utilization factors of

the SPP's varied between 0.20 and 0.7 in steps of 0.1. For

Copyright © 2009 Praise Worthy Prize S.r.l. - All rights reserved - Preprint submitted to Computers & Electrical Engineering October 15, 2009

every case, 100 basic workloads were run. A basic

workload is a set of 30 chains with periods randomly

chosen in the interval [3000, 30 000] with uniform

distribution. The second tasks in the chain were allocated

to the SPP's in such a way that balanced loads were

obtained among them. Loads were run and the energy

savings determined.

 The results are shown in Figures 4- 9. SPP's utilization

factors are fixed at different values (0.2 to 0.7) while the

GPP's utilization factor is varied between 0.1 and 0.9.

Figure 4. USPP=0.2

The experiments show that the method provides

relative energy savings that depend on the utilization

factors of the processors. The perceptual saving is about

90% for low utilization factors (UGPP=0.1; USPP=0.2) and

falls to near 20% for high utilization factors (UGPP=0.9;

USPP=0.7). This is due to the fact that when the operating

frequency, although less than 1, is bigger than 0.75, the

GPP must operate at nominal frequency with no relative

energy saving. However, even when the SPPs have a

high average utilization factor (0.7, Figure 6), they can

probably work at 0.75 producing the little savings shown.

Figure 5. USPP =0.3

Figure 6. USPP =0.4

Figure 7. USPP =0.5

Figure 8. USPP =0.6

Figure 9. USPP =0.7

Copyright © 2009 Praise Worthy Prize S.r.l. - All rights reserved - Preprint submitted to Computers & Electrical Engineering October 15, 2009

Figure 10. Energy Consumption with nominal and reduced frequencies

o Nominal Frequency, + Reduced

 Four regions, approximate plateaus with low gradients,

corresponding to the four available frequencies at the

GPP, can be observed in every case. As could be

expected, abrupt incremental steps take place when

changing those frequencies. The plateaus representing

the relative energy savings (En-Eo/En) have very small

derivatives, indicating slight increments or decrements in

the relative savings as the GPP's utilization factor

increases.

 The reason behind this result can be understood by

examining Figure 10. In it, actual energy consumptions

are represented vs the GPP utilization factor. The

utilization factors of the SPP's are kept constant at a

value of 0.4 throughout the experiment. As can be seen,

the energy consumed by the system when all processors

operate at nominal frequencies, En=f(Ug), is a linear

function of the GPP utilization factor. This could be

expected since, bearing in mind expression (5), the

consumption at nominal frequencies (foj = fn = 1), can be

expressed as:

 𝐸𝑛 = 𝑈𝑔 + 0.15 1 − 𝑈𝑔 + 𝐾𝑠 = 0.85𝑈𝑔 + 𝐾𝑠 (6)

where K{s} denotes the consumption of the SPP's,

constant throughout the experiment. The energy

consumed at reduced operating frequencies, Eo=f(Ug), is

shown in the four discontinuous steps. For low utilization

factors (0.10 to 0.25), the GPP can operate at a frequency

of 0.25. From factors of approximately 0.25 up, the

system is not feasible any more, and the GPP must jump

to an operating frequency of 0.5, producing the

discontinuity and the second step. Further discontinuities

are produced for utilization factors of approximately 0.50

and 0.75, and the steps corresponding to the GPP

operating at higher available frequencies are produced.

At every step the consumption grows with a higher

derivative as the utilization factor grows and less slack is

available.

 However, the relative savings shown in Figures 4-9 are

the representation of 1-(Eo/En) vs. the GPP utilization

factor. This means that, in spite of growing energy

consumptions, relative savings may grow, be constant or

diminish according to Eo/En being a decreasing, constant

or increasing function; in other words, according to

d(Eo/En)/dUg being negative, constant or positive,

respectively. The function Eo/En depends on the type of

load, the utilization factors and the available frequencies.

XII. Conclusions and future work

 In this paper a method to deal with the schedulability

of precedence-related tasks in multicore GPP/SPP's

systems-on-a-chip has been presented. The method is

completed with an heuristic based frequency selection for

the processors involved to reduce the energy

consumption.

The system model follows the industry trend: one

General Purpose Processor acting as a master of one or

many Special Purpose Processors acting, in turn, as

accelerators of the first one. Tasks executing in the chain

GPP-SPP-GPP are precedence-related. The scheduling

problem is compounded by the fact that the specialized

processors act as critical sections and need, therefore, a

non-preemptive scheduling discipline.

Scaling algorithm is used to avoid shortcomings like

the the need to introduce transition times between

frequencies in the schedulability calculations. Extensive

simulations were performed. They showed that important

savings in energy consumption may be obtained. Future

work will be oriented to the determination of heuristics to

find a suboptimal set of frequencies in systems of such

complexity that a systematic search of all possible sets is

not feasible.

References

[1] J. M. Paul, What’s in a name?, IEEE Computer 39 (3) (2006) 87–

89.
[2] Texas Instruments, Military Semiconductor Products Fact Sheet

SMJ320C80 (2000).

[3] C. Gonsalves, Challenges of providing interoperable solutions in
todays IPTV market, Texas Instruments (April 2006).

[4] Atmel, Atmel Smart Internet Appliance Processor,
http://www.aplio.com/pdf/AplioTRIO Summary DS Rev01.pdf.

[5] S. K. Moore, Winner multimedia monster, IEEE Spectrum.

[6] J. H. Anderson, S. K. Baruah, Energy-aware implementation of
hard-real-time systems upon multiprocessor platforms, in: Proc.

ISCA 16th International Conference on Parallel and Distributed

Computing Systems, 2003, pp. 430–435.
[7] S. Rivoire, M. Shah, P. Ranganathan, C. Kozyrakis, J. Meza,

Models and metrics to enable energy efficiency optimizations,

Computer 40 (12) (2007) 39–48.
[8] R. Rajkumar, Ch. Synchronization in multiple processors systems

Synchronization in Real-Time Systems: Apriority Inheritance

Approach, Kluwer Academic Publishers, 1991,.
[9] P. Gai, L. Abeni, G. Buttazzo, Multiprocessor dsp scheduling in

system-on-a-chip architecture, in: 14th Euromicro Conference on

Real-Time Systems, 2002.
[10] I.-G. Kim, S.-K. Choi, K-H.and Park, D.-Y. Kim, M.-P. Hong,

Real-time scheduling of tasks that contain the external blocking

intervals, in: 2nd International Workshop on Real-Time
Computing Systems and Applications, 1995, pp. 25 – 27.

[11] N. Audsley, A. Burns, M. Richardson, K. Tindell, A. J. Wellings,

Applying new scheduling theory to static priority pre-emptive
scheduling, Software Engineering Journal.

[12] R. Jejurikar, Energy aware non-preemptive scheduling for hard

real-time systems, in: Proc. 17th Euromicro Conference on Real-
Time Systems, IEEE Computer Society Press, 2005, pp. 21–30.

Copyright © 2009 Praise Worthy Prize S.r.l. - All rights reserved - Preprint submitted to Computers & Electrical Engineering October 15, 2009

[13] W. Li, K. Kavi, R. Akl, A non-preemptive scheduling algorithm

for soft real-time systems, Computers & Electrical Engineering

33 (1) (2007) 12–29.
[14] G. L. Liu, J. W. Layland, Scheduling Algorithms for

Multiprogramming in Hard Real Time Environment, ACM 20

(1973) 46–61.
[15] H. Chetto, M. Silly-Chetto, T. Bouchentouf, Dynamic scheduling

of real-time tasks under precedence constraints, Real-Time

Systems 2 (1990) 181–194.
 [16] K. Jeffay, D. F. Stanat, C. U. Martel, On non-preemptive

scheduling of periodic and sporadic tasks, in: Proceedings of the

IEEE Real-Time Systems Symposium, 1991, pp. 129–139.
[17] Q. Zheng, K. G. Shin, On the ability of establishing real-time

channels in point-to point packet-switched networks, IEEE Trans.
on Communications 42 (2/3/4) (1994) 1096–1105.

[18] L. George, N. Rivierre, M. Spuri, Preemptive and non-preemptive

real-time uniprocessor scheduling, Tech. Rep. 2966, INRIA
(September 2006).

[19] P. Pillai, K. G. Shin, Real-Time Dynamic Voltage Scaling for

Low-Power Embedded Operating Systems, in: Proc 18th

Symposium on Operating Systems Principles, 2001, pp. 89–102.

[20] J. Pouwelse, P. Langendoen, H. Sips, Dynamic voltages scaling

on a low-power microprocessor, in: Proc. 7th Conf. on Mobile
and Computing and networking MOBICOM01, 2001.

XIII. Authors’ information

Rodrigo Santos received his Engineering
degree in 1997 from Universidad Nacional del

Sur and got his Ph.D., degree in Engineering

in 2001. He has become a Researcher for The
Argentina in 2005 and in the same year

became Assistant Professor His research

interests are mainly related to real-time
systems: QoS, Multimedia, Operating Systems

and Communications. He has published his research’s results in

international indexed Journals and proceedings of Conferences. He is a

member of several Technical Committees for conferences in the area of

real-time systems and also a reviewer for several journals. He is the

President for the Latin American Center of Studies in Informatics and a
member of the Working Group 6.9 of IFIP. He is also an IEEE

member.

Jorge Santos is Consulting Professor at the

Department of Electrical Engineering and

Computers, Universidad Nacional del Sur,
Argentina, where he teaches courses on Real-

Time Systems and on Professional

Communication. He has published more than
70 papers on multivalued logics and their

electronic implementation, theory of automata,

systems reconfigurations, local area networks, and real-time systems.
He has been head of the department and principal researcher of the

National Council of Scientific and Technical Research. He is

Corresponding Member of the Argentine Academy of Engineering.

Javier Orozco received his Electrical

Engineering degree in 1984 and his doctoral
degree in Engineering in 1998 from National

Universidad Nacional del Sur, Bahia Blanca,

Argentina. He joined the Argentine National
Research Council in 1991as a researcher.

Currently is a Professor at the Department of

Electrical Engineering and Computers at
Universidad Nacional del Sur. His main

interest area is in Real-Time operating systems theory and applications
and architectures for embedded systems and communications. He has

an active participation in several Scientific and Technical Committees

and governmental boards for science and engineering promotion. He
has published on local area networks, digital architectures and real-time

systems theory and applications.

David Donari received his Computer

Engineering degree in 2006 from Universidad

Nacional del Sur. Presently he has a Doctoral
Scholarship from the Argentine National

Research Council. His main interest areas are

in Real Time Operating Systems and
Embedded Systems.

Leo Ordinez received his Computer

Engineering degree in 2006 from Universidad

Nacional del Sur. Presently he has a Doctoral
Scholarship from the Argentine National

Research Council. His main interest areas are
in Real Time Operating Systems and

Embedded Systems.

