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Abstract. The harmonic content of periodic solutions in ODEs is obtained

using standard techniques of harmonic balance and the fast Fourier transform

(FFT). For the first method, the harmonic content is attained in the vicinity

of the Hopf bifurcation condition where a smooth branch of oscillations is

born under the variation of a distinguished parameter. The second technique

is applied directly to numerical simulation, which is assumed to be the correct

solution. Although the first method is local, it provides an excellent tool to

characterize the periodic behavior in the unfoldings of other more complex

singularities, such as the double Hopf bifurcation (DHB). An example with

a DHB is analyzed with this methodology and the FFT algorithm.

1. INTRODUCTION

The Hopf bifurcation theorem (HBT) provides a key tool to determine the birth
of periodic solutions in nonlinear differential equations which depend on a distin-
guished parameter [3,5]. Furthermore, the HBT not only constitutes an elegant
analytical treatment to assure the existence of oscillations as well as their stability
but also supplies formulas to approximate locally the harmonic content of the os-
cillations [8,9]. Although the expressions for approximating the periodic solutions
can be obtained by using different analytical techniques [13,7], a special consid-
eration is assigned to harmonic balance methods (HBM) due to its tradition in
mechanical and electrical engineering [15,2,1]. More specifically, one can separate
the scope of the method in terms of the number of computed harmonics. For
example, in [15] the authors have the objective of determining the stability of the
periodic solutions and its bifurcations by using the information of the first har-
monic given, at the same time, a simple test in engineering terms. On the opposite,
in [2] the authors have computed up to twenty harmonics in order to detect care-
fully the tortuosity of the periodic solution branch in terms of the distinguished
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bifurcation parameter. In the middle of both extremes, in [10] the authors have
presented the approximation of the periodic solutions from Hopf bifurcation with
two, four, six and eight harmonics. This approach gives a reasonable complexity
in the computation and a respectable accuracy in the neighborhood of the bi-
furcation point. This article intends to explore an accurate measure of the first
harmonics (up to order eight) based on the approximation formulas obtained in
[10], but in this case applied to a double resonant circuit [16,4]. In electronic terms,
the purity of a sinusoidal oscillator is defined as the ratio between the amplitude
of the total harmonic content to the amplitude of the first harmonic component.
This magnitude can be sensed graphically by electronic circuit designers [6,12]
by ordering the amplitude of the different harmonics with the HBM and the Fast
Fourier Transform (FFT) technique [11] evaluated on the numerical solution of the
ODE. This paper is organized as follows: the background of Hopf bifurcation in
the frequency domain [8] is briefly reviewed in Section 2 and a summary of results
about stability and bifurcation of cycles can be found in Section 3. In Section 4, a
double resonant nonlinear circuit is analyzed and its harmonic content with both
methods is compared. The conclusions are reported in Section 5.

2. BASIC CONCEPTS

Let us consider an n-dimensional nonlinear differential system expressed by

ẋ = f(x; µ), (1)

where ẋ = dx
dt , x ∈ Rn, f ∈ Cr, r ≥ 9 and µ ∈ R is a bifurcation parameter. It

is supposed that x̃ is an equilibrium point (f(x̃; µ) = 0) of (1). This system can
be also written via input and output variables, namely u ∈ Rp and y ∈ Rm, as a
feedback control problem. Thus, one obtains the following mixed representation
with a state variable x, an output variable y, and a nonlinear control u

ẋ = Ax + B[Dy + u],
y = Cx,

u = g(e; µ) = g̃(y; µ) − D(µ)y,

(2)

where A is a n × n matrix, B is n × p, C is m × n and D is p × m. All matrices
can depend on µ, g̃ is a nonlinear function defined on Rp which results from the
original function f and the selection made for the matrices A, B, C and D, besides
g ∈ Cr, r ≥ 9, where e = −y. Then, if one applies Laplace transform to system (2)
with the initial condition x(0) = 0, the analysis of the feedback system proceeds

Rev. Un. Mat. Argentina, Vol 47-2



BIFURCATION THEORY AND HARMONIC CONTENT OF OSCILLATIONS 139

by finding the equilibrium ẽ, which is the solution of the equation

e = −G(0; µ)g(e; µ), (3)

where G(s; µ) = C[s ∗ I − (A + BDC)]−1B is the transfer matrix of the linear
part of system (2), s being the Laplace transform variable, and a nonlinear part
represented by u = g(e; µ) which can be thought of as an input of the system.
Computing a linearization of (2) at the equilibrium ẽ, one obtains a system whose
Jacobian J is a p × m matrix given by

J = J(µ) = D1g(e; µ)|e=ẽ =
[

∂gj

∂ek

∣∣∣∣
e=ẽ

]
, (4)

where g =
[

g1 g2 · · · gp

]T
, j = 1, 2, · · · , p, k = 1, 2, · · · , m. Then, the

application of the generalized Nyquist stability criterion [8] provides the necessary
conditions for the critical cases:

Lemma 1: If the linearization of system (1) evaluated at x̃ has an eigenvalue
iω0 when µ = µ0 then the associated eigenvalue of the matrix G(iω0; µ0)J(µ0)
evaluated at ẽ takes the value (−1 + i0) for µ = µ0.

The situation of Lemma 1 concerns the existence of bifurcations in the solutions
of system (1). If ω0 �= 0 and some additional conditions are satisfied [10], a Hopf
bifurcation arises. This is related to the appearance or disappearance of periodic
solutions.

Due to Lemma 1, it is known that if a bifurcation exists in (1) then

h(−1, iω; µ) = det(−1 ∗ I − G(iω; µ)J(µ)) = 0, (5)

for a certain pair (ω0, µ0). The equation (5) can be transformed by splitting its
real (Re) and imaginary (Im) parts as written below{

F1(ω, µ) = Re(h(−1, iω; µ)) = 0,

F2(ω, µ) = Im(h(−1, iω; µ)) = 0.

Making use of the functions F1 and F2, the next result can be formulated [9]:

Proposition 1: If a Hopf bifurcation exists at (ω0, µ0), ω0 �= 0, then it follows:

F1(ω0, µ0) = F2(ω0, µ0) = 0.

The HBT [3,5] gives sufficient conditions to assure the appearance of a branch
of periodic solutions in (1). Its formulation in the frequency domain [8,9,10] is
established through three fundamental hypotheses:
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Theorem 1:
H1) There is a unique complex function λ̂, which solves h(λ, iω; µ) = 0, passes
through (−1 + i0) with frequency ω0 �= 0 and µ = µ0 and involves a stability
change of the equilibrium while varying the parameter µ. Moreover, ∂F1

∂ω

∣∣
(ω0,µ0)

,
∂F2
∂ω

∣∣
(ω0,µ0)

do not vanish simultaneously, avoiding any resonance case.

H2) The determinant M1 is nonzero, i.e.

M1 =

∣∣∣∣∣ ∂(F1, F2)
∂(ω, µ)

∣∣∣∣
(ω0,µ0)

∣∣∣∣∣ =
∣∣∣∣∣

∂F1
∂ω

∂F1
∂µ

∂F2
∂ω

∂F2
∂µ

∣∣∣∣∣
(ω0,µ0)

�= 0,

which is an equivalent expression for the nondegeneracy of the transversality con-
dition of the classic formulation in the time domain.

H3) The expression σ1, known as stability or curvature coefficient, and given by

σ1 = −Re
(

uT G(iω0; µ0)p1(ω0, µ0)
uT G′(iω0; µ0)J(µ0)v

)
, (6)

has a sign definition. This coefficient can be calculated by other techniques and is
also recognized as the first Lyapunov coefficient [5].

Observation: In the last formula, uT and v are the left and right normalized eigen-
vectors of the matrix G(iω0; µ0)J(µ0) associated with the eigenvalue λ̂ (ūT v = 1
and v̄T v = 1, where “ · ” means complex conjugate), G′ = dG

ds and p1 is a
p-dimensional complex vector

p1(ω, µ) = QV02 +
1
2
QV22 +

1
8
Lv,

whose computation is based on the second and third derivatives of the function g

[8], and Q, Q and L are p × m matrices defined as

Q = Q(µ) = D2g(e; µ)|e=ẽ =

[
m∑

l=1

∂2gj

∂el∂ek

∣∣∣∣
ẽ

vl

]
,

where v =
[

v1 v2 · · · vm

]T
, and

L = L(µ) = D3g(e; µ)|e=ẽ =

[
m∑

l=1

m∑
i=1

∂3gj

∂el∂ei∂ek

∣∣∣∣
ẽ

vlvi

]
,

where j = 1, 2, · · · , p, k = 1, 2, · · · , m. Furthermore, the following vectors are
defined

V02 = −1
4
H(0; µ)Qv, V22 = −1

4
H(i2ω; µ)Qv,
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where H(s; µ) = [I + G(s; µ)J(µ)]−1
G(s; µ) is the so-called closed loop transfer-

ence matrix.

Then a branch of periodic solutions starts at µ = µ0 whose direction and stability
result from the values of M1 and σ1, respectively. When σ1 > 0 it follows that
the solution will be unstable (subcritical Hopf bifurcation) or else stable if σ1 < 0
(supercritical case).

The demonstration of the HBT by using harmonic balance is constructive, namely,
it allows to write an approximate expression of the periodic solution, after estimat-
ing its frequency ω and the amplitude θ of its first harmonics. These values can be
interpreted as a part of a certain graphic in the complex plane and this is the rea-
son for calling this formulation as the graphical Hopf theorem. More specifically,
according with the behavior of the eigenlocus described by the critical eigenvalue
λ̂ = λ̂(iω; µ), one chooses µ̃ next to µ0 and searches for a first estimate of the
frequency ω̃, through the intersection point between the eigenlocus and the real
axis, which results nearest to (−1 + i0). With this solution pair (ω̃, µ̃), one com-
putes the corresponding eigenvectors uT , v, the vector p1 and the complex number
ξ1 = −uT G(iω̃; µ̃)p1. Then, a certain curve is plotted, described by L1 = −1+ξ1θ

2,
as θ varies, which is known as the amplitude locus. The next step consists in look-
ing for the intersection between the two mentioned loci. So, one obtains a new
solution pair (ω̂, θ̂), where ω̂ = ω̂(µ̃) and θ̂ = θ̂(µ̃) are approximations for the fre-
quency and the amplitude of the analyzed oscillation. Using second order harmonic
balance, one calculates a semi-analytical approximate expression of the variable e

which appears in the system (2) writing

e = e(t; µ̃) = ẽ(µ̃) + Re

(
2∑

k=0

Ek exp(ikω̂t)

)
, (7)

where E0 = θ̂2V02, E1 = θ̂v + θ̂3V13 = θ̂V11 + θ̂3V13, E2 = θ̂2V22. The vector
V13 can be found by solving

P [I + G(iω̂; µ̃)J(µ̃)]V13 = −PG(iω̂; µ̃)p1, (8)

where P = I − V11V
T
11, under the condition V13 ⊥ V11. All the previous expres-

sions which involve the nonlinear function g must be evaluated at the equilibrium
ẽ = ẽ(µ̃). The generalization of the described method with explicit fourth-order
harmonic balance formulas appears in [9] and justifies the properties established
for f(.) at the beginning of this section, which are inherited by the function g(.).
This extension allows to improve the approximations substantially, due to the use
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of better estimations of the frequency and amplitude of the oscillation. The de-
tails and explicit expressions for the computation involving up to eight harmonics
(q = 4, in the equation below) can be found in [10] and repeated here briefly as

e(t) = ẽ(µ̃) + Re

{
2q∑

k=0

Ek exp(ikω̂t)

}
, (9)

where E0 = θ̂2V02 + θ̂4V04 + θ̂6V06 + · · · + θ̂2qV0,2q, E1 = θ̂V11 + θ̂3V13 +

θ̂5V15 + · · · + θ̂2q+1V1,2q+1, E2 = θ̂2V22 + θ̂4V24 + θ̂6V26 + · · · + θ̂2qV2,2q and
Ek = θ̂kVkk + θ̂k+2Vk,k+2 + · · · + θ̂2qVk,2q .

However, one must keep in mind that these results are valid locally (the parameter
µ must be close to the Hopf bifurcation value µ0) and when the analyzed cycles
have small amplitude.

3. STABILITY OF CYCLES

Floquet theory can be applied to examine the stability of a periodic solution
X = X(t; µ̃) of a system as (1) [5,15]. The stability of the orbit X is based on
the study of the eigenvalues of the so-called monodromy matrix. This array is
obtained from the general solution of the following differential equation

ż = D(t)z, (10)

where z ∈ Rn, ż = dz
dt and D(t) = D1f(X(t; µ̃); µ̃) = ∂f

∂x

∣∣∣
x=X(t;µ̃),µ=µ̃

,

D(t + T ) = D(t), T being the period of the cycle X.

If one considers M = M(t), a fundamental matrix of solutions of (10) such as
M(0) = I, where I is the identity of order n, and computes M(T ), then the
monodromy matrix of the orbit X is obtained. The eigenvalues of this matrix are
known as Floquet or characteristic multipliers. It can be proved that one of the
multipliers of a periodic solution of an autonomous system is always identically
+1 and it gives a theoretical measure for the accuracy of the cycle approximation.
Then, if all Floquet multipliers except the one at +1 are inside the unit circle, the
limit cycle is stable.

If one or more Floquet multipliers are crossing the unit circle after a parameter
variation, the periodic solution changes its stability. Generally, this situation gives
rise to a bifurcation of cycles. There are three possibilities of crossing as shown in
Figure 1: a) One multiplier crosses the border along the negative real axis (crosses
by −1), b) one multiplier traverses the unit circle through the positive real axis
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(c)

� 1

1

(b)

� 1

1

(a)

� 1

1

Figure 1. Bifurcations of cycles: (a) flip or period-doubling, (b)
fold, transcritical or pitchfork, (c) Neimark-Sacker.

(crosses by +1), and c) two complex conjugate multipliers cross simultaneously the
frontier out of the real axis. In case (a), a flip or period-doubling bifurcation of cy-
cles appears, giving rise to a new periodic solution that rests over a Möbius band in
Rn [14] and whose period doubles the period of the orbit X. On the contrary, case
(b) results in fold (saddle-node), transcritical or pitchfork (symmetry-breaking)
bifurcation [5]. Finally, in case (c) a secondary Hopf or Neimark-Sacker bifurca-
tion occurs and, in its vicinity, a quasiperiodic motion can be detected. In this
work, besides the trivial multiplier +1 another complementary measure will be
introduced considering the harmonic content of the approximated cycle and the
one obtained by numerical simulation.

4. EXAMPLE

The considered nonlinear system describes two coupled circuits LCR as shown
in Figure 2, where C1, C2 are capacitors, L1, L2 are inductances, and R is a resistor.
The conductance is a nonlinear element which is described through the current-
voltage relation as: iG = − 1

2vG + v3
G. If the voltages across the capacitors and the

currents in the inductors are chosen as the state variables, it follows

ẋ1 = 1
2η1x1 + η1x2 − η1x4 − η1x

3
1,

ẋ2 = − 1
2

√
2 x1,

ẋ3 = (
√

2 + 1)x4,

ẋ4 = (2 −√
2)(x1 − x3 − η2x4),

(11)

where x = (x1, x2, x3, x4) = (vC1 , iL1 , vC2 , iL2), η1 = 1
C1

and η2 = R are two in-
dependent bifurcation parameters, and C2 =

√
2−1, L1 =

√
2 and L2 = 1

2 (2+
√

2).
It is easy to see that the unique equilibrium point of Sys. (11) is x̃ = 0. In [16], the
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Figure 2. Double resonant circuit [16].

existence of a non-resonant double Hopf bifurcation with frequencies ω1 = 1 and
ω2 =

√
2 for η1 = 2 and η2 = 1 + 1

2

√
2, is shown. It must be taken into account

that this Hopf degeneracy is a singularity of codimension 2, i.e., its unfolding is
dynamically characterized by two parameters. Then, the HBM is applied to each
Hopf bifurcation curve in order to recover the periodic solution branches.

It is proposed the following feedback realization of Sys. (11)

ẋ = Ax + B(Dy + u), y = Cx,

u = g(e) = g̃(y) − Dy,

where

A =




0 η1 0 −η1

− 1
2

√
2 0 0 0

0 0 0
√

2 + 1
2 −√

2 0 −(2 −√
2) −(2 −√

2)η2


 ,

C =
[

1 0 0 0
]
, B = −CT and D = [ 0 ], (12)

u = g(e) = η1

(− 1
2e + e3

)
, with e = −y.

Thus, calculating the matrix G, that in this case is only a scalar, Eq. (3) yields
ẽ = 0 and the Jacobian J results J = − η1

2 . Therefore, the characteristic eigenvalue
λ̂ is obtained through the matrix GJ when it is evaluated for s = iω, namely

λ̂ = (A1 + iA2) (A3 + iA4)
−1

,
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Figure 3. Hopf bifurcation curve for Sys. (11). ((o) (η1, η2) = (2, 1.3))

where
A1 = −η1η2ω

2(2 −√
2),

A2 = η1ω(
√

2 − ω2),
A3 = −2ω4 + κω2 − 2η1,

A4 = (4 − 2
√

2)η2ω
3 − (2

√
2 − 2)η1η2ω,

with κ = (4−√
2)η1+2

√
2. Solving the nonlinear system F1(ω, η) = Re(λ̂)+1 = 0,

F2(ω, η) = Im(λ̂) = 0, where η = (η1, η2), the Hopf bifurcation points are obtained
and its graphical representation in the parameter space η is given in Figure 3.
The selfcrossing of this curve is the non-resonant DHB mentioned previously. By
varying the parameters η1 and η2 around the Hopf bifurcation curve, Sys. (11)
exhibits diverse dynamic behaviors [4]. Particularly, when η1 = 2 and η2 = 1.3 two
stable cycles coexist, one for each periodic branch, and they are shown in Figure 4.

If the initial condition is chosen close to the origin, the small limit cycle is
reached whereas the larger one is achieved starting with an initial condition farther
from equilibrium. With the HBM of eighth order it is possible to estimate the first
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Figure 4. Two stable limit cycles for Sys. (11) with (η1, η2) = (2, 1.3).

component of the limit cycle as

x1(t) = a0 cos(ω̂2t) + a1 cos(3ω̂2t) + a2 sin(3ω̂2t) + a3 cos(5ω̂2t) +

a4 sin(5ω̂2t) + a5 cos(7ω̂2t) + a6 sin(7ω̂2t),

where a0 = −0.39476619, a1 = −0.77433989 × 10−3, a2 = 0.69648608 × 10−2,

a3 = 0.21638611 × 10−3, a4 = 0.27356940 × 10−4, a5 = 0.30154649 × 10−5,

a6 = −0.60240323 × 10−5 and the fundamental frequency is
ω̂2 = 1.63176876. In this case, the eigenvalues of the monodromy matrix are:
λ1 = 0.99996918, λ2 = 0.57538276, and λ3,4 = 0.8480e±i3.0768. The results with
the HBM are shown in the upper part of Figure 5, while its lower part depicts
the complete harmonic content of the numerical simulation of the original system.
Both waveforms are obtained through FFT techniques for an easy comparison.

The first component of the other limit cycle with fundamental frequency ω̂1 =
0.86081428 is expressed through

x1(t) = a0 cos(ω̂1t) + a1 cos(3ω̂1t) + a2 sin(3ω̂1t) + a3 cos(5ω̂1t) +

a4 sin(5ω̂1t) + a5 cos(7ω̂1t) + a6 sin(7ω̂1t),
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Figure 5. Harmonic content of the small limit cycle with funda-
mental frequency ω̂2 = 1.63176876 for (η1, η2) = (2, 1.3).

where a0 = −0.40598360, a1 = −0.42186586 × 10−2, a2 = 0.21408871 × 10−1,

a3 = 0.16248559 × 10−2, a4 = 0.55248524 × 10−3, a5 = 0.79656378 × 10−4,

a6 = −0.49948418 × 10−4 and the Floquet multipliers are: λ1 = 1.00035562,
λ2 = 0.61353938, and λ3,4 = 0.4989e±i0.1406. In both cases the even harmon-
ics are zero, and the agreement between both techniques is impressive, at least up
to the seventh-order harmonics (see Figure 6). Notice, however, that harmonics
higher to the seventh-order are smaller than one-thousandth to the first harmonics,
and so their contribution in engineering terms is negligible.

5. CONCLUSIONS

The harmonic content of periodic solutions in ODEs has been obtained using
two different techniques: one enrooted in the classical analysis of bifurcation the-
ory and the other coming from numerical simulation. The first technique is able to
recover up to the eighth harmonics via a HBM, while the second gives the complete
spectrum obtained directly from numerical simulations. The agreement between
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Figure 6. Harmonic content of the big limit cycle with funda-
mental frequency ω̂1 = 0.86081428 for (η1, η2) = (2, 1.3).

results coming from these two different methods is amazing, at least close to the
Hopf bifurcation curve. Moreover, the HBM has allowed to analyze the dynamic
behavior in the unfolding of a DHB accurately.
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