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Abstract: System coding is a growing trend in all fields of engineering. Many different algorithms have been developed and
studied for applications in signal processing, radar and multi-emission systems, among others. One of the most interesting
algorithms, among these, is the complementary sets of sequences (CSS) given their potential and simplicity. They are
characterised by a distinctive correlation and orthogonality properties. Nowadays, sustained efforts are being devoted to
reducing the calculations involved in the generation and/or correlation of these sequences by means of recursive algorithms.
Some authors have brought forward efficient algorithms that are based on modular architectures made up of adders,
multipliers and delays. This work introduces an inverse generation approach to perform the correlation of CSS. This approach
allows one to substantially reduce calculations, and enables the simultaneous correlation of M sequences, adopting neither
time-multiplexing schemes nor complex parallel implementations. This is theoretically demonstrated by means of generation
and correlation algorithms. An analysis of the performance and efficiency is then conducted in a reconfigurable hardware
platform. The proposal represents an advance in the practical application of these sequences in the above-mentioned fields.
1 Introduction

Coding systems are used in different fields of engineering to
improve signals identification. Those codes with good
correlation properties, which allow one to detect signals in
noisy environments, are of particular interest. Traditional
approaches based on pseudo-random sequences have been
widely applied despite their disadvantages, such as, their failure
to remove correlation sidelobes. In this case, complementary
sets of sequences (CSS) provide a good solution.

Complementary sequences were defined by Golay [1] as a
pair of finite sequences of two kinds of elements with the
property that the number of pairs of like elements with
any given separation in one sequence is equal to the
number of pairs of unlike elements with the same
separation in the other sequence. The distinctive feature of
these sequences is the possibility of signal detection under
high-noise level conditions because of their correlation
properties. Years later, Tseng and Liu [2] generalised and
extended this concept to CSS. The properties of the
complementary sets have improved signal detection,
making them suitable for applications in which many
digital signals are transmitted over the same physical
channel. Golay sequences and complementary sets of M-
sequences (M-CSS) are currently being applied to signal
coding [3], radar [4], wideband radio channel sounders
[5], multiemission systems [6], channel estimation [7] and
sensor systems [8].
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The application of M-CSS in any of the previously
mentioned areas involves the use of logical architectures for
generation and correlation. With respect to Golay sequences,
Budisin [9] and Popovic [10] proposed efficient architectures
able to perform both operations. Along these lines, the
generation and correlation of M-CSS can be conducted by
means of recursive methods that reduce computational load
and hardware complexity as compared to the straightforward
implementation. Some authors [11–13] introduced efficient
architectures to generate and correlate M-CSS. Despite the
fact that these modular architectures herald significant
progress in the implementation of M-CSS-based systems, the
correlation approach by these authors is based on the
recursive method proposed by Popovic [10] for pairs of
complementary sequences. That correlation algorithm
executes the correlation of a single input signal with the two
sequences of the complementary pair. Therefore two options
for processing a pair of sequences exist: the first one is time
multiplexing and the other one is architecture duplication. In
the former, the architecture is the same, although the
processing time doubles. In the latter, the processing is much
faster, although the architecture duplicates (with the
consequent hardware consumption). This problem
accentuates in M-CSS, in which the possibilities are either
time-multiplexing M sequences composing a macro-
sequence or multiplying the architectures by M.

The simultaneous correlation of Golay sequences was
achieved in a previous work [14], applying an inverse
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generation approach. According to said approach, two
sequences are correlated simultaneously with neither time
multiplexing nor correlation architecture duplication.
Considering that these pairs are a particular case of
complementary sets, this paper introduces a generic
correlation algorithm for M-CSS. This approach allows for
a regular and modular architecture, which executes the
correlation of M inputs on a simultaneous basis, with the
consequent calculation reduction. This is theoretically
demonstrated by means of generation and correlation
algorithms. An analysis of the performance and efficiency
is then realised in a reconfigurable hardware platform and
compared to those brought forward by other authors.

2 Complementary sequences

Complementary pairs of sequences (also known as Golay
sequences [1]) are defined as a pair of sequences, {S1, N[k];
S2,N[k]}, composed of two binary elements, –1 and +1,
respectively, which can be generated of length L ¼ 2N

elements (N [ {N − 0}). The condition to be met by these
sequences is that the addition of their periodic
autocorrelation functions is a Kronecker delta of amplitude
2L for k ¼ 0, and is null for k = 0. This can be expressed
as follows

Y [k] = C1[k] + C2[k] = 2Ld[k] (1)

were C1[k] and C2[k] are the autocorrelations of S1,N[k] and
S2,N[k], respectively.

Golay defines rules to generate complementary pairs of
different length from shorter ones. These rules can be
recursively applied to generate diverse pairs, as put forward
by Busidin [9]

S1,n[k] = S1,n−1[k] + w1,nS2,n−1[k − Dn]

S2,n[k] = S1,n−1[k] − w1,nS2,n−1[k − Dn]
(2)

where S1,n[k], S2,n[k] are the pairs of sequences at nth
iteration, Dn ¼ 2n21 and w1,n is a seed coefficient with
value +1. Applying Z transform, (2) can be expressed as

S1,n[z]
S2,n[z]

∣∣∣∣
∣∣∣∣ = +1 +1

+1 −1

∣∣∣∣
∣∣∣∣ · 1 0

0 w1,n

∣∣∣∣
∣∣∣∣ · 1 0

0 z−2n−1

∣∣∣∣
∣∣∣∣

· S1,n−1[z]
S2,n−1[z]

∣∣∣∣
∣∣∣∣ (3)

or

Sn[z] = H2 · W 2,n · D2,n · Sn−1[z] (4)

where H2 is a Hadamard matrix of order 2; W2,n is a seed
matrix of order 2 of the nth iteration and D2,n is a delay
matrix of order 2 of the nth iteration.

Golay sequences correlation can also be performed by
recursive algorithms, as first advanced by Popovic [10] and
later optimised by Donato et al. [14]. The correlator of
Popovic is a digital matched filter, which simultaneously
performs the correlation of one input signal with both
sequences of the Golay pair. The correlator by Donato et al.
[14] is an architecture enabling the inverse generation
process, and thereby enabling the simultaneous correlation
of two inputs. This recursive algorithm is summed up as
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follows

C1,n−1[k] = C1,n[k − Dn] + C2,n[k − Dn]

C2,n−1[k] = w1,n · C1,n[k] − w1,n · C2,n[k]
(5)

where C1,n[k], C2,n[k] are a pair of sequences at the input of
the nth stage of the correlator and C1,n21[k], C2,n21[k] are
the outputs of the same stage. Expressing this algorithm
with matrices and Z transform

Cn−1[z] = D′
2,n · W 2,n · H2 · Cn[z] (6)

where

D′
2,n = z−2n−1

0
0 1

∣∣∣∣∣
∣∣∣∣∣ (7)

and the correlator output is

Y [k] = C1,0[k] + C2,0[k] = 2Ld[k − L] (8)

where C1,0[k], C2,0[k] are the correlation outputs at the last
stage and the output of Y [k] is a Kronecker delta of
amplitude 2L delayed L samples because of the iterative
process.

CSS is a generalisation derived from Golay sequences [2].
An M-CSS is defined as a set of M ¼ 2m sequences of length
L ¼ MN elements (m, N [ [N − 0]), where each one is a
binary element (+1 or 21). A set is characterised by the
sum of their autocorrelations

Y [k] =
∑M

i=1

Ci[k] = MLd[k − L] (9)

where Ci is the autocorrelation of the sequence Si,N[k]

Ci[k] =
∑L

j=1

Si,N [j] · Si,N [j + k] (10)

where Si,N is a sequence of length L ¼ MN. The
autocorrelation addition of the M sequences generates a
Kronecker delta of amplitude ML, with null sidelobes, just
like with Golay sequences.

Recursive algorithms were developed for M-CSS. Álvarez
et al. [11] proposed an efficient architecture to generate and
correlate a 4-CSS. Afterwards, De Marziani et al. [12]
generalised generation and correlation architectures to M-
CSS. This proposal was then improved by Pérez et al. [13],
who obtained a more efficient architecture, especially for
interleaved sequences schemes. Even though these
correlation algorithms anticipate significant progress, the
correlation approach by these authors is based on the
recursive method proposed by Popovic [10] for Golay
sequences, in which the correlation is performed between a
single input signal and the two sequences of the
complementary pair. Then, for all cases, it is necessary to
multiply the number of correlators by M, or else, use an
interleaved transmission scheme to process the signal.
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3 New correlation approach

Just like Golay sequences, the correlation of M-CSS can be
performed as an inverse generation process. This section
develops and demonstrates this concept for M-CSS of any
length.

The algorithm for M-CSS generation can be obtained
starting with the generation algorithm by Budisin [9] (3)
and applying the properties presented by Tseng and Liu [2]

S1,n[z]

· · ·
· · ·

SM ,n[z]

∣∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

·

1 0 · · · 0

0 z−Mn−1

· · · 0

· · · · · · · · · · · ·
0 0 · · · z−(M−1)Mn−1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
·
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· · ·
· · ·

SM ,n−1[z]

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
(11)

or

Sn[z] = HM · W M ,n · DM ,n · Sn−1[z] (12)

where

† H(M/2) is a Hadamard matrix of order (M/2), with H1 ¼ 1;
† W(M/2),n21 is a seed matrix of order M/2, with

W 2,0 = 1 0
0 w1,0

[ ]
;

† wr,n is a seed coefficient, with r ¼ log2M:

† z−(M−i)Mn−1

are delays with i ¼ 1, . . ., (M 2 1), i [ N.

Fig. 1 illustrates a detailed scheme of a 4-CSS generator
stage with the simplified arithmetic architecture. The
correspondence between (11) and the elements in the figure
can be easily noticed. The delays are grouped at the input
of each stage and the product HM

.WM, n is represented by
the adders and the gains. The length of the M sequences
can be extended with the concatenation of several stages
following Golay rules [1].

Fig. 1 4-CSS example of a generation stage
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Once the generation equations are defined, the next step
consists in performing the correlation as an inverse of the
generation process [14]. A generic recursive architecture is
proposed, as shown in Fig. 2, made up of N stages. The
underlying idea is to decompose an M-CSS into a shorter
one, and to repeat the process iteratively until it is reduced
to a single delta. If the correlator inputs are the M
sequences of an M-CSS of length L ¼ MN, the sequences
length are reduced to MN21 in the first stage and their
amplitudes are multiplied by M. In the second stage, in
turn, they are reduced to MN22, and their amplitudes are
multiplied by M once again and so on. After N stages, the
sequences length is reduced to 1 with an amplitude of MN.

In order to better understand the process, let us consider a
vector Sn as an M-CSS of length L at the input of the
correlator. If the product W.H.S is performed, a new
M-CSS is obtained, in which each sequence is made up of a
sum of complementary sequences of length L/M. For
example, given an Sn obtained from (12)

Sn=

S1,n

S2,n

S3,n

S4,n

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

=

S1,n−1+S2,n−1 ·z−4n−1

+S3,n−1 ·z−2·4n−1

+S4,n−1 ·z−3·4n−1

S1,n−1−S2,n−1 ·z−4n−1

+S3,n−1 ·z−2·4n−1

−S4,n−1 ·z−3·4n−1

S1,n−1+S2,n−1 ·z−4n−1

−S3,n−1 ·z−2·4n−1

−S4,n−1 ·z−3·4n−1

S1,n−1−S2,n−1 ·z−4n−1

−S3,n−1 ·z−2·4n−1

+S4,n−1 ·z−3·4n−1

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
(13)

the result W4,n
.H4

.Sn (considering W 4,n = I for simplicity) is
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=
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L/4

(14)

As a result, four sequences of length L/4 are obtained, each
one delayed L/4 with respect to the previous one. Fig. 3
illustrates an example of this processing for a set of length
L ¼ 64.

If a proper delay is applied to each sequence, a new M-CSS
(Cn21) with lower length and larger amplitude is obtained.
The correlation algorithm for the nth iteration is

Cn−1 = D′
M ,n · W M ,n · HM · Cn (15)

Fig. 2 M-CSS correlator of N stages
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doi: 10.1049/iet-spr.2011.0296



www.ietdl.org
Fig. 3 Example of the product W4,nH4Sn with a set of length L ¼ 64
where D′
M ,n is the delay matrix

D′
M ,n =

z−(M−1)Mn−1

0 · · · 0
0 z−(M−2)Mn−1

· · · 0
· · · · · · · · · · · ·
0 0 · · · 1

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
(16)

Note that the delays are ordered inversely with respect to (11).
Fig. 4 depicts the detail of the proposed correlation stage for a
4-CSS.

Generalising, the formulation for N stages is

C0 =
∏1

n=N

(D′
M ,n · W M ,n · HM ) · Cn (17)

and like with pairs of sequences, the output of the correlator
(Y ) is the addition of the M correlations outputs

Y [k] =
∑M

i=1

Ci,0[k] (18)

3.1 Example

Consider an M-CSS generated with (11) denoted as SN, which
has to be correlated. The input of the correlator could be
assumed to be the generator output, CN ¼ SN (Fig. 2). For

Fig. 4 4-CSS example of the proposed correlation stage
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simplicity reasons, an M-CSS generated with N ¼ 2
(L ¼ M2) is assumed. The output of the first correlation
stage is (15)

C1 = (D′
M ,2W M ,2HM ) · C2 = (D′

M ,2W M ,2HM ) · S2 (19)

Using (12)

C1 = (D′
M ,2W M ,2HM )(HM W M ,2DM ,2) · S1

= D′
M ,2W M ,2HM HM W M ,2DM ,2S1 (20)

Computing some associations

C1 = D′
M ,2W M ,2(HM HM )W M ,2DM ,2S1

= M · D′
M ,2W M ,2W M ,2DM ,2S1 (21)

The product HM HM = M · I, where M is a scalar and I is the
identity matrix. In the same way, W 2 · W 2 = I when the
seeds are +1. After such simplification the following is
obtained

C1 = M (D′
M ,2DM ,2)S1 (22)

From (11) and (16), the product (D′
M ,2DM ,2) can be simplified

by a delay and an identity matrix

C1 = M · (z−(M−1)M · I)S1 (23)

Using (15)

C0 = (D′
M ,1W M ,1HM ) · M (z−(M−1)M · I)S1 (24)

Then, if S1 ¼ (HMWM,1DM,1).S0,

C0 = M · z−(M−1)M (D′
M ,1W M ,1HM )

· (HM W M ,1DM ,1)S0 (25)
727
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Fig. 5 4-CSS correlation
and after iteratively processing (25), the result is

C0 = M2 · z−(M2−1) · I · S0 (26)

The output of the correlator (Y ) is the addition of the M
correlation outputs. Being C0 ¼ [C1,0C2,0 . . . CM,0]T,

Y =
∑M

i=1

Ci,0 = M · M 2 · z−(M2−1) (27)

a Kronecker delta of amplitude ML ¼ MM2 is obtained.
If this is considered a generic case in which N is any natural

number, the correlator output is

Y =
∑M

i=1

Ci,0 = M N
∑M

i=1

Si,0 · z−(MN−1) (28)

Rewriting (28) as a difference equation yields

Y [k] = M N
∑M

i=1

Si,0[k − (M N − 1)] (29)

and considering that the generation stimulus was a

Table 1 Number of calculations for an M-CSS correlation

Operations Straightforward Efficient [12] Proposed

multiplications MN+2 (M2/2) N log2(M ) (M/2) N log2(M )

add/subs. M2(MN 2 1) M2N log2(M ) MN log2(M )

delays 2MN+2 (M2/2) (MN 2 1) (M/2).(MN 2 1)
728
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Si, 0 ¼ d[k], then

Y [k] = MN
∑M

i=1

d[k − (MN − 1)]

= MMNd[k − (MN − 1)] (30)

From (30), the output of the proposed correlator, Y [k], is a
Kronecker delta of amplitude MMN ¼ ML delayed MN

samples, considering that at k ¼ 0 the first element of the M
sequences is generated and correlated.

3.2 Simulations

In order to illustrate the operation of the correlator described
in this section, a simulation is conducted. Fig. 5 displays the
waveforms of the proposed correlator in which a 4-CSS of
length L ¼ 64 (three stages) is present at the input. As
explained above, in each correlation stage, the length of the
sequences is divided by M and the amplitude is multiplied
by the same factor. So, if the input signals are of L ¼ 64
and unitary amplitude, the output at the first correlation
stage is a set of sequences of L ¼ 16 and amplitude +4. In
the same way, at the second correlation stage, four
sequences of amplitude +16 and length L ¼ 4 are
obtained, and at the third stage L ¼ 1 with a 64 amplitude.
Finally, the sum of the correlations is a Kronecker delta of
amplitude ML ¼ 256, as expected.

4 Proposed correlator efficiency

The main contribution of the proposed correlator is the
reduction of calculation resources. The efficient correlator
[12] executes M (M 2 1) unnecessary correlations, and
consequently M correlators are needed to obtain the sum of
autocorrelations, just like in the straightforward correlation.
IET Signal Process., 2012, Vol. 6, Iss. 8, pp. 724–730
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Table 2 Amounts of operations to perform 4-CSS correlations

Operation Straightforward Efficient Proposed

N 1 2 3 4 1 2 3 4 1 2 3 4

mult. 64 256 1024 4096 16 32 48 64 4 8 12 16

add/subs. 48 240 1008 4080 32 64 96 128 8 16 34 32

delays 128 512 2048 8192 24 120 504 2040 6 30 126 510

Table 3 Implementation results for 4-CSS and 8-CSS

M 4 8

N 1 2 3 4 5 1 2 3

FGs 110 208 322 452 598 328 661 1066

FFs 92 344 1364 5456 21 836 372 2920 23 388

clock, [MHz] 149.1 83.3 57.8 44.2 35.8 105.4 57.3 39.4
Conversely, the proposed correlator uses only the resources of
one of the so-called efficient correlators. Table 1 summarises
the number of calculations to perform Y [k] for an M-CSS of N
stages; and Table 2 exemplifies a 4-CSS. The reduction of any
of the amounts of operations considered is important
especially for larger L. Note that the number of calculations
of the efficient correlator and that proposed here are related
by a scale factor M (set size) or N (number of stages).

The evaluation of the proposed architecture was performed
in a real platform applying Xilinx Spartan 3 development kit
(3S1500FG320-5) with Xilinx ISE software. The FPGA
applied contains 13 312 slices, each with the following
elements in common: two logic function generators (FG),
two storage elements (FF), wide-function multiplexers,
carry logic and arithmetic gates. Table 3 summarises the
implementation results for M ¼ 4 and 8, respectively. The
parameters evaluated were: the set size M, the number of
stages N, and the quantisation of the input sequences q ¼ 8.
The latter is inherent to any practical application, in which
an input signal is acquired with an analogue-to-digital
converter. The same kind of seed matrix was used for all
the implementations.

Tables 2 and 3 illustrate the relevance of calculation
reduction. The number of calculations impacts directly on
the hardware regarding resources utilisation. Such utilisation
increases as the number of stages does, as well with the set
size. Hence, processing speed reduces inversely with these
parameters. Table 4 shows some examples of the efficiency
achieved in this proposal by comparing it to those reported
in the literature. For this comparison, the correlator was
implemented in the same FPGA, but with the option of
SRL (Luts-based shift registers) synthesis enabled. This
option allow flip-flops consumption reduction by
synthesising the shift registers as states machines, and it
was reported as a synthesis technique in the paper by Pérez

Table 4 Proposals comparison

M ¼ 4, L ¼ 64 Alvarez et al. [11] Pérez et al. [13] Proposed

slices 396 349 289

LUTS not reported 578 446

FFs not reported not reported 140

frequency 41.6 MHz 33.8 MHz 57.11 MHz
IET Signal Process., 2012, Vol. 6, Iss. 8, pp. 724–730
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et al. [13]. As shown in Table 4, the efficiency attained is
about 20% with respect to the correlator introduced by
Pérez et al. [13] and even greater with regard to that of
Alvarez et al. [11], just comparing the architecture. Also
bear in mind that those proposals ([11, 13]) require M
correlators to perform the simultaneous correlation of all the
sequences of a complementary set.

5 Conclusions

This paper presents an improved correlation algorithm for
M-CSS based on an inverse generation process. The
approach herein simplifies the correlation algorithm,
allowing a recursive regular and modular calculation
scheme that simultaneously performs M correlations of M
inputs. It also enables a more efficient implementation that
requires lower hardware complexity with respect to the
straightforward and other previously proposed correlation
schemes. The reduction attained is almost M times for all
cases. The calculation efficiency encouraged by this
contribution represents another essential step forward in the
practical application of these sequences in signal coding,
radar and multiemission systems, among others.
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