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a b s t r a c t

If the purpose of adaptation is to fit sensory systems to different environments, it may implement an opti-
mization of the system. What the optimum is depends on the statistics of these environments. Therefore,
the system should update its parameters as the environment changes. A Kalman-filtering strategy per-
forms such an update optimally by combining current estimations of the environment with those from
the past. We investigate whether the visual system uses such a strategy for speed adaptation. We per-
formed a matching-speed experiment to evaluate the time course of adaptation to an abrupt velocity
change. Experimental results are in agreement with Kalman-modeling predictions for speed adaptation.
When subjects adapt to a low speed and it suddenly increases, the time course of adaptation presents two
phases, namely, a rapid decrease of perceived speed followed by a slower phase. In contrast, when speed
changes from fast to slow, adaptation presents a single phase. In the Kalman-model simulations, this
asymmetry is due to the prevalence of low speeds in natural images. However, this asymmetry disap-
pears both experimentally and in simulations when the adapting stimulus is noisy. In both transitions,
adaptation now occurs in a single phase. Finally, the model also predicts the change in sensitivity to
speed discrimination produced by the adaptation.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The responses of sensory neurons habituate in a characteristic
way to maintained stimulation. Such adaptation process may serve
to enhance sensitivity to small variations in the environment (Bex,
Bedingham, & Hammet, 1999; Clifford & Langely, 1996; Clifford &
Wenderoth, 1999; Greenlee & Heitger, 1988; Regan & Beverley,
1985). Every time the environment changes, a new process of
adaptation begins. If the purpose of adaptation is to fit sensory sys-
tems to different environments (Laughlin, 1989; Thorson & Bieder-
man-Thorson, 1974), it may function as an optimization of the
system. This optimization may put responses of the system in
the middle of the range for natural images, such as to encode as
many stimuli as possible (Grzywacz & de Juan, 2003). Optimization
may also mean finding the best condition of the system to perform
a task (Atick & Redlich, 1992; Balboa & Grzywacz, 2000a, 2000b;
Field, 1994; Grzywacz & Balboa, 2002; Srinivasan, Laughlin, &
Dubs, 1982). In either event, to know what optimum is, the system
must be able to estimate the statistics of the environment. For
example, when one is driving in daylight and suddenly gets into
a tunnel, a transient visual impairment occurs. This is because just

before entering the tunnel the parameters of our visual system are
set to daylight, the current state of the environment.

To estimate the new stimulus statistics optimally, engineers
would use a Kalman-filter strategy. This filter performs the esti-
mates based on two factors. The first is the quality of the current
measurements, and the second are the measurements from the
past. If the system knows that current measurements are excellent,
then it trusts them. However, if the measurements are of poor
quality, then the system has to take more measurements and in
the meanwhile, uses those from the past. For example, the system
has to be sure that the low light levels found when it gets into a
tunnel are due to an actual change of the environment and not
to a particular ‘‘dark image” of the previous one. The Kalman filter
is the optimal way to combine the actual measurements with those
from the past. Recently, Grzywacz and de Juan (2003) applied this
theory to retinal contrast adaptation and showed that its time
course in ganglion cells follows characteristics that are consistent
with Kalman filtering.

We wondered whether Kalman-filter strategies are also applied
to the adaptation processes in visual perception. In this article, we
report on a study of the particular case of speed adaptation. We
studied speed adaptation, because, in addition to the well-known
importance of motion processing in vision, we now possess enough
background knowledge to approach this topic. Recent investiga-
tions suggested that perceived speed decreased during adaptation
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to high speeds and followed an approximately exponential time
course (Bex et al., 1999; Hammet, Thompson, & Bedingham, 2000).
Moreover, as argued by many before (Ullman & Yuille, 1989; Weiss
& Adelson, 1998), the distribution of speeds in natural images has a
bias towards slow speeds (Martinez Rach, Martinez Verdú, Grzy-
wacz, & Balboa, 2005). It turns out that this distribution, when ap-
plied to Kalman filtering, makes surprising predictions for the time
course of speed adaptation. The model predicts that the time
course of speed adaptation will be different if the speed transition
occurs from slow to fast versus from fast to slow. In the Kalman-
model simulations, this asymmetry would be due to the prevalence
of low speeds in natural images. Interestingly, the model also pre-
dicts that this asymmetry will disappear if the adapting stimulus is
sufficiently noisy. This is because the system does not trust in the
current measurements. The model also accounts for more general
aspects of motion processing such as the enhancement of sensitiv-
ity for speed discrimination as a result of adaptation (Bex et al.,
1999; Clifford & Langely, 1996; Clifford & Wenderoth, 1999;
Greenlee & Heitger, 1988; Regan & Beverley, 1985). This work on
Kalman modeling of the speed-adaptation system appeared previ-
ously in abstract form (Barraza & Grzywacz, 2006).

2. Models and simulations

Fig. 1 shows a schematic of the Kalman theory of sensory adapta-
tion. The model begins with the idea of Grzywacz and Balboa (2002)
for how a sensory system adapts optimally to an environment when
knowing its statistics (Boxes 1–4). In this model, an adaptive stage
(Box 1) processes the sensory input and feeds a second stage (Box
2) to obtain the system’s responses. Next, the system has to estimate
with how much error these responses code important attributes
from the environment (Box 3). The system then adapts the prepro-
cessing stage such as to minimize this error (Box 4). To estimate
the error, the system needs to know the statistics of the environ-
ment. Grzywacz and de Juan (2003) used the Kalman framework
to address how the system estimates those statistics as the environ-
ment changes. They proposed that the system estimates them from
its own responses (Box 5) and from predictions based on past re-
sponses (Box 6). Such estimates do not change if current responses
are statistically consistent with these predictions. Otherwise, the
estimates change slowly, optimally balancing these responses with
the tendency of the environment to remain stable.

To perform simulations of the Kalman mechanism, we applied
to speed adaptation the theoretical framework developed by Grzy-
wacz and de Juan (2003). If speed adaptation were a form of Kal-
man filtering, then the sensory system would store the following
four types of knowledge to perform the tasks optimally:

(1) One type would be about the relevant statistics of the envi-
ronment, which in Bayesian formulation, is the prior-proba-
bility function. The probability function P(I|K) indicates the
distribution of an input variable of interest when the envi-
ronment is K. Because in our case, the attribute of the envi-
ronment of interest is speed, P(I|K) represents the
distribution of local speeds in natural images produced by
the current environment. From measurements of the distri-
bution of speeds in natural movies, we approximate P(I|K)
with a power law (Dong & Atick, 1995; Martinez Rach
et al., 2005), as follows

PðI ¼ sjK ¼ s�kÞ ¼
1

sn þ s�nk

; ð1Þ

where s is local speed, sk
* is the estimated mean speed in the

environment at time k, and n is a constant, which was 2.8 in

our simulations. In other words, we specify the environment
here with the mean of its local speeds.

(2) Another necessary type of knowledge is about how the envi-
ronment changes. This is a second type of prior-probability
function, but instead of saying what the statistics of the
environment are, this function specifies how rapidly they
change in time. Because there are no data available on this
yet, we assume that this probability is Gaussian (Grzywacz
& de Juan, 2003), i.e.,

PðKk ¼ s�kjKk�1 ¼ s�k�1Þ

¼ 1ffiffiffiffiffiffi
2p
p

ððtk � tk�1Þ=sÞ
exp � ðs�k � s�k�1Þ

2

2ððtk � tk�1Þ=sÞ2

 !
; ð2Þ

where s is similar to a time constant for a typical variation of
the mean speed during tk � tk�1.

(3) Knowledge on how information is processed by the system
(mainly at Boxes 1 and 2) must be stored and is called the
likelihood function. The use of the likelihood function
implies that adaptation is a constrained optimization, with
limitations coming from the available biological hardware.
The likelihood function of the measurement stage, P(R|I,Ak),
indicates the probability of responses R when the input is
I, with Ak being a set of parameters, indicating the adaptation
state of the system. For choosing this function for our simu-
lations, we assumed that perceived speed arose from a pro-
cess of antagonistic comparison of responses of two
temporal filters, one low-pass and one broadly tuned
band-pass (Smith & Edgar, 1994). The ratio of the mean
responses of these temporal filters increases with temporal
frequency (or in our case, with speed) in a sigmoidal fashion
(Smith & Edgar, 1994). In this paper, R is a statistical sample
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Fig. 1. Schematics of the Kalman theory of sensory adaptation. The adaptive stage
(Box 1) processes the sensory input and feeds a second stage (Box 2) to obtain the
system’s responses. Next, the system has to estimate with how much error these
responses code important attributes from the environment (Box 3). The system
then adapts the preprocessing stage such as to minimize this error (Box 4). To
perform the error estimation, the system must first estimate the state of the
environment (Box 5). The system does this by combining its own responses (Box 2)
and the predictions based on responses from the past (Box 6).
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of this ratio. We then modeled P(R|I,Ak) with a Gaussian
function of R, representing the assumption that the noise
was normal and additive. Although it was suggested that
noise should be multiplicative because speed perception fol-
lows a Weber’s law, it is known that this behavior may also
be explained by an underlying compressive response with
constant noise (Georgeson & Meese, 2006; Johnson, Hsiao,
& Yoshioka, 2002; Katkov, Tsodyks, & Sagi, 2006, 2007a,
2007b; see also for discussion Klein, 2006, 2007; Kontsevich,
Chen, & Tyler, 2002). For simplicity, we assumed additive
noise and expressed the likelihood function as

PðR ¼ RkjI ¼ s;Ak ¼ ckÞ

¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr
p exp �ðRk � ðcks=ð1þ cksÞÞÞ2

2r2

 !
; ð3Þ

where r is the standard deviation of the noise and ck is a
parameter of the sigmoidal function (the second term of the
numerator of the exponential) representing the mean ratio.
This parameter specifies the adaptational state of the system
and thus, can vary as the environment changes. The choice of
the sigmoidal function is not relevant for the functioning of
the model. We tried other curves such as a Weibull function
obtaining the same result.

(4) The final piece of knowledge that we must specify is the loss
function L(I,R: Kk,Ak). This function describes how much
penalty the system incurs if its response is R when the input
is I. The response provides an estimate of the input, but may
deviate from a reasonable value because of noise Eq. (3). In
this case, the estimate is bad and the system pays a (natural
selection) penalty. We assume that the goal of adaptation is
to maximize sensitivity by putting the system in the middle
of the range of speeds in natural images. In other words, we
assume that R provides the most amount of information pos-
sible about I. Therefore, we can write the loss function as (for
details see Grzywacz & de Juan, 2003).

LðI ¼ s;R ¼ R : K ¼ s�k;Ak ¼ ckÞ ¼ � log
PðRjs; ckÞ
PðRjs�k; ckÞ

� �
: ð4Þ

With these pieces of knowledge, one can apply the mathematical
machinery of Kalman adaptation (Grzywacz & de Juan, 2003). We
were especially interested in the application to the cases where
speeds changed abruptly from slow to fast and vice versa. Our inter-
est was so, because the distribution of speeds in natural images had
a bias towards low speeds Eq. (1). Hence, adaptation to those two
speed transitions could show an asymmetry (Grzywacz & de Juan,
2003). Fig. 2 shows the result of the simulations for these speed
transitions.1 When the adapting speed changes from slow to fast,
the model predicts that the time course of adaptation presents
two phases, namely, a rapid decrease followed by a slower phase.
In contrast, when the change occurs from fast to slow, the adapta-
tion appears to happen in a single phase. Grzywacz and de Juan
(2003) explained the reason for this particular form of adaptational
asymmetry with further simulations. Their explanation was based
on making a transition in an environment with a bias (in our case,
towards low speeds). If the transition is away from the bias, then
the new measurements are significantly different from the old ones.
However, if the transition is towards the bias, the statistical distri-

bution of responses does not change much. Therefore, in the first
case, one can trust the new measurements as indicating a change
of environment. The system can thus quickly vary the internal
adaptational and environmental parameters Eqs. (1) and (3). How-
ever, in the second case, one cannot trust the measurements and
thus, must make the variations slow, weighing more the past Eq.
(2). The reason for the two phases in the first case is that after
the system adapts quickly because of the measurements, it becomes
conservative, trusting the past. In contrast, in the second case, the
system is conservative from the beginning.

To test these explanations of the asymmetry of Kalman speed
adaptation, we added noise to the input signal (see Section 3).
Our rationale for adding noise was that if the model did not trust
the noisy measurements, then the adaptation would have to trust
the past. In that case, the slow–fast transition would now cause
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Fig. 3. Results of model simulations for noisy stimulus. Plots show that with noise,
adaptation occurs in one phase for both transitions.
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Fig. 2. Results of model simulations for both transitions (slow-to-fast and fast-to-
slow) and for noise-free stimuli. The left panel shows an initial fast decay of the
speed bias followed by a slow decay. In turn, the right panel shows that the speed-
bias rise occurs in a single phase.

1 For this figure, parameters were s = 10 s and r = 0.1, which give adaptation
behavior similar to that observed in the psychophysics (see below). Although other
parameters change the quantitative behavior, they do not change the qualitative
results.
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adaptation to develop in a single phase. Fig. 3 shows that this is ex-
actly what the model predicts. However, although the speed of
adaptation in this case is a little slower than the fast phase ob-
tained without noise, according to our hypothesis, we expected
that it were closer to the slow than to the fast adaptation phase.

Finally, we run simulations to study how the sensitivity to
speed changes varies with adaptation (Bex et al., 1999; Clifford &
Langely, 1996; Clifford & Wenderoth, 1999; Clifford, 2002).
Fig. 4a shows the results of the simulation. The model predicts a
maximum discrimination threshold just after the speed change
and that it decreases as the system adapts to the new situation.

Consistently with Bex et al. (1999), the model also predicts a
linear relation between discrimination threshold and perceived
speed (Fig. 4b). Note that this linearity appears with two different
slopes corresponding to both adaptations phases. The line with
smaller slope (Weber fraction about 0.095) corresponds to the slow

adaptation phase, and the steeper line (Weber fraction about 0.21)
corresponds to the fast adaptation phase.

3. Psychophysical test

To test the model predictions, we performed a psychophysical
experiment in which we measured speed bias and discrimination
thresholds as a function of adaptation time. We define speed bias
as the ratio between perceived and standard speeds. The bias
was measured for the four situations simulated with the model.

3.1. Methods

Experimental stimuli were drifting vertical sinusoidal gratings
of 1 c/deg and 80% contrast moving to the right. They were pre-
sented in two rectangular patches located to both sides of the fix-
ation point on the center of a high-resolution CRT monitor with a
60 Hz refresh rate. The size of the patches was 4 deg and their cen-
ters were 2.5 deg away from the fixation point. The mean lumi-
nance of the screen was 30 cd/m2. The adaptation stimuli were
displayed in the left patch, while the right patch contained the
standard stimulus for speed comparison. Differently from previous
studies on speed adaptation, in this experiment, we used two
adapting conditions. In each trial, subjects were first fully adapted
to a ‘‘pre-adaptation speed” during 60 s. Once the subject was
adapted, we changed the speed of the left patch to the ‘‘adaptation
speed,” while the right patch remained with the pre-adaptation
speed. The duration of this second part of the stimulus presenta-
tion, i.e., the duration of adaptation, was the independent variable
of the experiment. Next, we removed the stimuli from both
patches and waited 100 ms before presenting test (left) and stan-
dard (right) stimuli during 300 ms. Fig. 5 shows schematically
the sequence of stimuli presentation in a trial. Importantly, this
procedure allows us to isolate the effect of contrast adaptation
on the speed bias. Perceived contrast falls with adaptation (Blake-
more, Muncey, & Ridley, 1973; Georgeson, 1985; Hammett, Snow-
den, & Smith, 1994) and perceived speed itself changes with
contrast (Stone & Thompson, 1992; Thompson, 1982). In our
experiment, both patches contained the grating during the whole
sequence of stimulus presentation; therefore, contrast adaptation
affected both retinal areas equally.

The noisy-adaptation modification of the stimuli consisted of
adding noise to the speed of the grating. The speed switched every
three frames between 0.2 and 1.8 of the speed of adaptation.

We instructed subjects to fixate on the center of the screen dur-
ing the whole presentation of the pre- and adaptation stimuli.
Immediately after these stimuli were removed, a short beep
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Fig. 4. Model simulations for speed discrimination. (a) Speed discrimination
threshold as a function of adaptation time. The plot shows that adaptation
enhances sensitivity to speed changes. (b) Speed discrimination threshold as a
function of normalized speed. The threshold is expressed as a proportion of
normalized speed. The plot shows that there are two Weber fractions correspond-
ing to both adaptation phases. The line with smaller slope (Weber fraction about
0.095) corresponds to the slow adaptation phase. On the other hand, the steeper
line (Weber fraction about 0.21) corresponds to the fast adaptation phase.

Pre-adaptation speed Adaptation speed Test LEFT

RIGHTStandardPre-adaptation speed

Time

Fig. 5. Sequence of stimulus presentation. The upper plot shows the order of
presentation of pre-adaptation, adaptation, and test stimuli on the left patch.
Simultaneously, only pre-adaptation and standard stimuli are displayed on the
right patch, such as shown in the lower plot. The duration of the pre-adaptation
stimulus in the left patch is 60 s. In the right patch, this duration is longer and
depends on the duration of the adaptation stimulus. Importantly, we assumed that
the system gets fully adapted during the 60 s. Therefore, the state of adaptation
before presenting the standard stimulus in the right patch and the adaptation
stimulus in the left patch would be the same. Our data below justifies the
assumption of full adaptation in 60 s.
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sounded so that the subject was prepared for test presentation. The
subject task was to indicate by pressing a button of the mouse
which stimulus, left or right, moved faster. We used a forced choice
paradigm with the method of constant stimuli to obtain the sub-
jects’ psychometric functions. We calculated the matching velocity
and the discrimination threshold by fitting cumulative Gaussian
curves to these functions. The matching velocity corresponded to
their 50% point, while discrimination thresholds were calculated
from the difference between the velocity at 75% performance and
the matching velocity. To obtain these functions, we used a set of
six stimuli in each of two blocks of trials. Each stimulus appeared
15 times per block.

Two subjects experienced in motion experiments participated
in this experiment, one of the authors and another naïve as to
the purpose of the study. Subjects viewed stimuli binocularly and
with natural pupils.

3.2. Results

Fig. 6 shows the results for all experimental conditions. Panels A
and B (upper row), and Panels C and D (lower row) correspond to
the ‘‘no-noise” and ‘‘noise” conditions, respectively. Figures A and C
(left column) correspond to the data obtained with a pre-adapta-
tion speed of 1 deg/s and an adaptation speed of 6 deg/s. Panels
B and D (right column) correspond to the data obtained with a
pre-adaptation speed of 6 deg/s and an adaptation speed of
1 deg/s. In both cases, the speed of the test was the same as the
adaptation speed. Each panel contains adaptation data for both

subjects. Results show that speed adaptation presents two phases
when speed changes from slow to fast (Panel A). For the opposite
speed transition, adaptation occurs in a single phase (Panel B), as
predicted by the model (Fig. 2). When we apply noise to the adapt-
ing stimulus, adaptation occurs in a single phase in both cases
(Panels C and D), which is also consistent with model predictions
(Fig. 3).

We wanted to test whether speed bias decreases with two time
constants in Panel A and with a single one in the other conditions.
Hence, we re-plotted the data so that they varied linearly with
time and the inverse of the time constant was the slope of the lines.
In Fig. 7, Panels A and C, we plot ln(s � A) � ln(B) as a function of
time, where s is the speed bias and A and B are the constants of
the exponential decay s = A + Be�t/s. In Panels B and D, we plot
ln(B) � ln(A + B � s) as a function of time, where s is the increasing
exponential s = A + B(1 � e�t/s). The constants A and B were ob-
tained by fitting the exponential curves to the experimental data
with a least-squares procedure. For the case of the double
exponential, we performed the fit separately for each section of
the curve. Fig. 6 shows that for the slow-to-fast transition, the time
course of speed adaptation presents two exponential time
constants when the stimulus is noise-free (Panel A). The fast time
constants are 2.0 and 1.3 s for Subjects MC and JB, respectively. In
turn, the slow time constants are 18 and 17 s. However, these
times constants become a single one when the adapting speed is
noisy (Panel C). Our estimates for the time constants in this condi-
tion are 13 and 9.2 s for MC and JB, respectively. It is important to
note that psychophysical data for the noise-free situation match
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Fig. 6. Results of the psychophysical experiments. Each panel shows the speed bias as a function of time for one experimental situation and both subjects. The top panels
show the results for the noise-free situation. The top-left panel shows that for slow-to-fast transition, the bias presents two temporal phases, such as those found with model
simulations. On the other hand, results show that the bias occurs in a single phase for the fast-to-slow transition (top-right panel). As predicted by the model, when we apply
noise to the stimulus, the bias occurs in one phase for both transitions (Bottom panels).
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both qualitatively and numerically the model predictions.
However, when noise is added to the stimulus, psychophysical
data and simulations agree only qualitatively since, in both cases,
the time constant of the single phase falls between the fast and
slow phases obtained without noise. A numeric discrepancy can
be noted in the fact that the time constant of the single phase
obtained experimentally is close to the slower phase obtained

without noise, while for the simulations the time constant is close
to the faster noise-free phase (Figs. 2 and 3). Finally, for the fast-to-
slow condition, Panels B and D show that speed adaptation occurs
in a single phase for both noise-free and noisy stimuli, respectively.
The mean time constants were 5.9 and 5.3 s for the noise-free and
noisy conditions, respectively. Hence, differently from the slow-to-
fast condition, noise did not affect the fast-to-slow condition
significantly. In the simulations, noise increased the time constant
of the adaptation in the slow-to-fast condition by about 40%
(Fig. 2). In terms of our human data, this effect would be to increase
the time constant from about 5 to about 7 s.

Fig. 8 shows the discrimination threshold as a function of adapta-
tion time for both observers, for the slow-to-fast transition. Results
show that the threshold decreases with increasing adaptation time
in a similar manner to that predicted by the model in Fig. 5.

4. Discussion

In this article, we studied whether speed adaptation followed
an optimal Kalman-filtering strategy. We began by modifying the
model developed by Grzywacz and de Juan (2003) to deal with
speeds. We then performed simulations to generate predictions
about speed adaptation. The model predicted that the time course
of speed adaptation was different depending on whether the speed
transition was from slow to fast or from fast to slow. In the first
case, modeled perceived speed presented a maximum immediately
after the transition. The predicted perceived speed then decreased
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in two phases, a rapid fall followed by a slower one. In contrast,
when the transition was from fast to slow, the model predicted
that the time course would have a single phase. Interestingly,
when noise was applied to the adapting stimulus, predicted adap-
tation occurred in a single phase for both transitions. The model
gains generality by predicting also the effect of adaptation on sen-
sitivity to speed changes: the speed discrimination threshold de-
creases with increasing adaptation time.

Psychophysical experiments showed that those predictions were
qualitatively correct and suggested that speed adaptation was opti-
mal in the human visual system. That speed adaptation appears to be
optimal makes us think that other brain processes can follow the
same strategy. In this context, predictions for other forms of adapta-
tion will strongly depend on the priors. For example, an asymmetric
prediction such as that shown in Fig. 2 requires an asymmetric prior.
Consequently, it should be applicable also to contrast adaptation
(Balboa & Grzywacz, 2003), but not perhaps to light adaptation. This
is because the distribution of illuminations in natural environments
has no especial bias towards low or high values.

The predictions were not correct in full quantitative details, how-
ever. For example, the model predicted a shorter time constant than
observed when adding noise to the slow-to-fast condition. Further-
more, in the opposite condition, we could not detect a lengthening of
the time constant with noise. This latter detection failure might have
been due to inter human-variability, but the former failure was not.
We do not believe that these small quantitative failures have to do
with the human visual system not using a Kalman-adaptation strat-
egy. Without this strategy, one cannot easily account for the qualita-
tive predictions of asymmetry and of the effect of noise. Rather, the
failures of the quantitative predictions are probably due to an imper-
fect choice of the model Eqs. (1)–(4). We have good data to back up
the use of Eqs. (1) and (3) (Section 2), but the other equations were
just guesswork. No one has measured how local velocities vary over
time in natural images, as necessary to develop a good Eq. (2). In
turn, the Eq. (4) guess is reasonable, as it implies that the mechanism
is maximally informative about local speeds. However, the brain
may implant other loss functions for speed measurement. For exam-
ple, it may penalize errors in large speeds more than in low speeds,
since the former can occur when a nearby object is approaching dan-
gerously fast.

ThattheKalman-adaptationmodelmakesgoodqualitativepredic-
tions suggest that one of the two temporal phases in the slow-to-fast
conditioncorrespondstotrustingthepastwhiletheothercorresponds
totrustingthemeasurements(Section2). Is thephysiologicalmecha-
nism mediating the slow, past-trusting phase different from that
mediating the fast, measurement-trusting phase? If these mecha-
nismsweredifferent,thenonemechanismwouldprobablybeahyper-
polarizationcausedbythedecreaseintheexcitationreceivedbyacell
(Carandini & Ferster, 1997). Unfortunately, the other mechanism, if
existent,isnotyetknown.Nevertheless,wehaveanargumentagainst
two clearly resolved separate mechanisms. With noise, the slow-to-
fast condition yields a single time constant that is intermediate be-
tweenthetwotimeconstantswithoutnoise.Thissuggeststhatanon-
linear dynamic network controls the time course of adaptation,
changing the apparent time constants in a stimulus-dependent
manner.
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