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a b s t r a c t

Screening of relevant factors using Plackett–Burman designs is usual in analytical chemistry. It relies on

the assumption that factor interactions are negligible; however, failure of recognizing such interactions

may lead to incorrect results. Factor associations can be revealed by feature selection techniques such

as ant colony optimization. This method has been combined with a Monte Carlo approach, developing a

new algorithm for assessing both main and interaction terms when analyzing the influence of

experimental factors through a Plackett–Burman design of experiments. The results for both simulated

and analytically relevant experimental systems show excellent agreement with previous approaches,

highlighting the importance of considering potential interactions when conducting a screening search.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

When many different experimental factors have a potential
influence on a chemical response, and the specific response-factor
relationship is not known, it is wise to resort to statistical
techniques known as design and optimization of experiments
(DOE) [1]. Applications in chemistry abound, specifically in
analytical chemistry studies, as has been beautifully described
in a recent tutorial [2]. Common application areas for DOE
comprise chromatography [3], capillary electrophoresis [4], phos-
phorimetry [5], electrochemistry [6], etc.

When the number of potentially influencing factors on a given
response is large, it is advisable to conduct a screening study
before the optimization phase, in order to detect the relevant
factors. Screening models intend to explain the system behavior
as a function of the experimental factors [7–10], usually by
rationally devising a reasonably small number of experimental
runs. Two-level full factorial designs, for example, are appealing
in this regard, but are only capable of describing linear relation-
ships and associations between factors. They require 2k runs to
build a model, where k is the number of factors. However, for
more than three factors, the number of runs may be uneconomi-
cal, and therefore fractional factorial designs have been devised,
which save experiments by dividing the number of runs by
powers of 2. As a consequence, the possibility of independently

estimating main and two-factor interacting terms is lost, and only
estimations of confounded effects can be obtained [8,9].

A very popular and extremely economic design in terms of
number of experimental runs is the one devised by Plackett and
Burman (PB) [11]. A 12-experiment PB design allows one to study
the effect of up to 11 factors. In comparison, two-level full
factorial designs require 32 runs for 5 factors, 64 for 6 factors,
etc. PB designs can only estimate main factors, while association
terms are confounded with main effects or other associations.
The PB confounding pattern is complex: every main factor is
partially confounded with all possible two-factor interactions not
involving the factor in question. It is important to notice that the
validity of a PB screening design to estimate the main factor
effects depends on the assumption that the interaction effects are
negligible [8]. Ignoring interactions when they are indeed present
may lead to the following undesired effects: (1) missing impor-
tant effects, (2) including irrelevant effects in subsequent opti-
mization stages, and/or (3) mistaking effect signs, leading to
incorrect factor levels.

Because PB designs are very appealing due to the apparent
economy of experimental runs, it is of interest to probe for strategies
that allow to estimate the importance of interactions terms. The latter
can be uncovered in PB designs by: (1) regression guided by the alias
matrix [12], (2) frequentist analysis, (3) Bayesian–Gibbs analysis
[13–20], (4) Danzig selection [21], and (5) genetic algorithms [14].
The latter belongs to a group of variable selection chemometric
activities mimicking natural processes [22], such as particle swarm
optimization [23] and the recently introduced ant colony optimiza-
tion (ACO) [24]. The ACO approach has been employed for feature
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selection in QSAR [25–27] and in partial least-squares (PLS) regression
models [28,29].

The ACO algorithm mimics the behavior of ant colonies in the
search for the best path to food sources [24]. Features to be selected
are identified with space dimensions defining the available paths
followed by ants, with allowed coordinates of 1 or 0 (selected and
unselected features, respectively). A given path is thus connected to a
number of selected variables, which in turns corresponds to a given
value of the objective function to be minimized. In each generation,
ants deposit a certain amount of pheromone in their paths, which
increases with decreasing values of the objective function. During the
evolution of the ant colony, they find new and better paths, based on
a probabilistic combination of the following factors: (1) the pher-
omone amount accumulated in each of the dimension coordinates,
(2) a heuristic measure of path goodness, and (3) a random search
across all available paths.

In the present report we describe a strategy based on Monte
Carlo ant colony optimization to uncover factor associations in PB
designs with analytical implications. A suitably adapted algorithm
has been applied to the analysis of a simulated PB design and also
to experimental ones which are relevant to analytical chemistry.

2. Theory

2.1. Screening designs

The purpose of an experimental design is to build a statistical
model for estimating the system response as a function of the
values of a certain number of factors. When two-level models are
considered for evaluating main factors and two-factor interac-
tions, the following expression can be employed for modeling:

y¼ b0þ
Xk

i ¼ 1

bixiþ
Xk

i ¼ 1

Xk

j ¼ iþ1

bijxixjþe ð1Þ

where y is the system response, b are coefficients to be estimated,
xi and xj are model factors, k is the total number of factors, and e

collects the model error. The model matrix includes the k columns
corresponding to the main factors xi (i¼1, 2, y, k), and the
[k (k–1)/2] columns corresponding to the interacting terms (xi xj)
(for ia j) (the need of the intercept b0 is usually removed by mean
centering the data). The total number of main and interacting
terms is thus [k(kþ1)/2]. For k44, this latter number is larger
than the 12 runs required by the minimum PB design, leading to a
rank-deficient model matrix which cannot solve for both main
and two-factor associations directly.

Classicallle during PB analysis. The PB model matrix X0 (size
12� k), with k columns corresponding to the main factors only, is
full-rank. It is employed to find the b coefficients through:

b¼Xþ0 y ð2Þ

where y is the vector of responses and the superscript ‘þ ’ stands
for the generalized inverse of a matrix. However, if interactions
are present, the model may lead to erroneous results concerning
the significance of the coefficients.

In practice, certain models including only some of the main
factors and their two-factor interactions may lead to full-rank
model matrices X (size 12� s, where s is the number of included
main terms and two-factor interacting terms). This may allow for
a direct least-squares solution of the selected model coefficients.
These models are usually assumed to comply with the following
principles: (1) factor sparsity, meaning that only a few factors are
significant, and (2) heredity, implying that significant interactions
occur between factors when at least one of them is in itself
significant. The existence of these models can be searched guided
by a significant improvement in model fit, i.e., a decrease in the

root mean square error (RMSE), which is given by:

RMSE¼ :y2XXþ y:=ðDOFÞ1=2
ð3Þ

where : : indicates the Euclidean norm of a vector, X the model
matrix including a certain number of main and two-factor
interacting terms, and DOF the degrees of freedom, equal to the
number of experimental runs minus the number of coefficients to
be estimated.

The above discussion implies that feature selection algorithms
can be adapted to find the best fitting models, as was the case
with genetic algorithms [14].

2.2. Ant colony optimization

The ACO flow chart shown in Fig. 1 compactly illustrates the
proposed algorithm steps. The aim is to find a suitable model
including s terms, selected from the full number of terms N

(i.e., the sum of the numbers of main terms and two-factor
associations). The setup of the algorithm is similar to that recently
discussed for PLS regression, except that in the present case
certain combinations of features are not allowed. This occurs if
the resulting model matrix X (size 12� s) is not full rank, or if the
association terms do not comply with the heredity principle.
These latter models are easily discarded by assigning them
arbitrarily large values of the objective function to be minimized.

At the start, a vector p of size N�1 is defined, whose generic
element p(n) represents the amount of ant pheromone at a given
evolution time, associated to the nth. term. Initially, all elements

Fig. 1. Flow chart of the Monte Carlo ant colony optimization algorithm for

feature selection in screening designs.
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of p are equal to 1, meaning that all terms have the same
probability of being selected. Then, s terms are selected from
the available N according to the pheromone content p(n), using
the roulette-wheel selection mode. In this selection method, a
fitness value equal to p(n) is assigned to each term, and its
probability prob(n) of being selected is:

probðnÞ ¼
pðnÞ

PN
n ¼ 1

pðnÞ

ð4Þ

This could be imagined similar to a roulette wheel in a casino:
a proportion of the wheel is assigned to each of the possible
candidates based on their fitness values (normalized to a sum of
fitness values equal to 1). Then, a random selection is made
similar to how the roulette wheel is rotated, but with wheel
sections having areas proportional to prob(n). After selection of a
given term, its p(n) value is set to zero to avoid duplication, and
the selection starts again following the same roulette scheme,
until s terms have been selected. Notice that in the first step, all
variables have the same probability of being selected, but as p is
updated in successive steps, these probabilities will differ.

Having selected the s terms, a model matrix X is built joining
the corresponding columns of selected main and two-factor
interacting terms, and the coefficients are estimated by least-
squares, leading to a given RMSE value [Eq. (3)]. If the model
matrix does not meet the heredity principle or is not full-rank,
then an arbitrarily large RMSE is assigned.

The vector p is updated at successive time steps through the
vector Dp accounting for pheromone changes. A given ant con-
tributes to the change in pheromone associated to the nth.
selected term according to:

Dpan ¼2logðRMSEÞa if the nth: term is included ð5Þ

Dpan ¼ 0 otherwise ð6Þ

where a identifies a particular ant. Observe that the pheromone
content increases with decreasing error [Eq. (5)]: the lower the
error, the higher the pheromone content deposited by a specific
ant in the corresponding term.

The pheromone changes are then summed for all terms and all
ants in order to obtain the Dp vector:

Dp¼
XA

a ¼ 1

XN

n ¼ 1

Dpan ð7Þ

where A is the total number of ants. The vector p is then updated
according to:

pðtÞ ¼ ð1�rÞpðt21ÞþDp ð8Þ

where t is the current time step and r is the rate of pheromone
evaporation (ro1). The latter parameter controls the speed at
which the trail left by ants disappears. If ants deposit pheromone
continuously on a certain path, this effect tends to reinforce the
selection of the path; conversely, if they do not visit a given path
for a certain time, pheromone evaporation may erase the path.
Therefore, the parameter r controls that paths are not found
randomly, but are selected if they are consistently better than
others.

The above scheme is applied for values of s ranging from 1 to a
certain maximum. According to the factor sparsity principle, the
maximum value of s should be kept as small as possible; in
practice we found it sensible to set it at 10 for a 12-run PB design,
and then let a forward selection procedure described below to
select minimal models having satisfactory statistical indicators.

2.3. The Monte Carlo approach

The Monte Carlo approach implies that the above ACO calcula-
tions are repeated a number of times for each of the analyzed
cases. A normalized histogram is then built on the average, over
the Monte Carlo cycles, of the absolute value of the coefficient
terms, weighted inversely with the RMSE model, in order to give
comparatively more importance to better models. Then a forward
selection procedure is implemented, which involves creating
gradually augmented models, adding successive terms appearing
in the histogram, in decreasing order of intensity, until a certain
minimum level is attained. Each of these models is checked for
leading to full-rank model matrices, and for compliance to the
heredity principle, otherwise they are discarded.

The standard deviations of the least-squares coefficients sol-
ving for the candidate augmented models are estimated in order
to judge their statistical significance. Specifically, the confidence
interval for each coefficient is computed as [10]:

CIðbnÞ ¼ tv,a=2sðbnÞ ¼ tv,a=2RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðXTXÞ�1

�

q
nn

ð9Þ

where t is a Student coefficient for n degrees of freedom (number
of experiments minus number of estimated coefficients) and a
(1�a)�100% confidence level, and s(bn) is the standard error in
the estimation of bn. A term is not considered significant when
bn7CI(bn) includes the value of zero.

The RMSEs for all the valid forward-selected models are succes-
sively compared using Van der Voet’s randomization test [30].
Significance is established if the probability for the applied test is
smaller than 0.05.

The required parameters for running this ACO version for
variable selection are (suggestions in brackets): (1) r parameter
(0.65), (2) number of ants (20), (3) maximum time steps (50),
(4) number of Monte Carlo cycles or repeated calculations for
histogram building (10), (5) minimum level to include terms in
forward selection (0.1). These parameters were estimated as
optimum for the present examples on a trial and error basis.
They can be employed as starting values for future work, with
suitable adaptations on account of the particular characteristics of
each system.

2.4. Software

All routines for performing the presently described calcula-
tions were written in MATLAB 7.10 [31]. They are available from
the authors on request, including data files containing the model
matrices and responses herein studied.

3. Data

3.1. Simulated system

A simulated model, including nine main factors, has been
studied. Notice that the total number of main and two-factor
associations in this system is 45, i.e., larger than the number of
the PB screening experiments, and thus the system cannot be
directly solved because the full X matrix of size 12�N (N¼45) is
rank deficient. For the simulated model, the following expression
was employed to compute the responses:

y1 ¼ b1x1þb7x7þb13x1x3þb17x1x7 ð10Þ

The b coefficients were selected so that factors 1 and 7 were
significant, as well as an association between a significant (1) and
a non-significant main factor (3), and another association
between two significant main factors (1 and 7). Factors 2, 3, 4,
5, 6, 8 and 9 were not considered significant, as all associations
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except 1–3 and 1–7. The values of b1, b7, b13 and b17 were 1, �1,
2 and 1, respectively, leading to the following normalized values:
0.38, �0.38, 0.76 and 0.38, respectively.

With the vector of coefficients b normalized, a PB design of 12
runs was created at two factor levels (�1 and 1). Once the twelve
responses were calculated, they were scaled in the range 0�1 and
random Gaussian noise was added with zero mean and 0.05
standard deviation. The model was evaluated in order to assess
the terms recovered as statistically significant.

3.2. Experimental systems

Two experimental systems taken from the analytical literature
have been analyzed with the present ACO approach. In both cases
the influence of eight different factors were studied through a PB
design of 12 runs, meaning that the total number of main and
two-factor interacting terms (36 terms) greatly outnumber the
available experiments. In these examples, the original works
resorted to classical PB analysis, with no particular emphasis on
interacting terms. After reinvestigation, interactions were indeed
found, leading to the detection of previously unseen relevant
factors [13].

In the experimental example 1, the potential influence of eight
different factors was analyzed on several responses associated to
the high-performance liquid chromatographic (HPLC) determina-
tion of pharmaceutical mixtures [32]. For one of the responses,
namely the recovery of the analyte ridogrel, no significant
relationship between the latter and any of the factors was
originally detected. However, Bayesian–Gibbs analysis identified
some of the factors as being relevant, including a two-factor
interaction [13]. The factors were: the mobile phase flow rate, the
buffer pH, the column temperature, the type of column, the % of
one organic solvent in the mobile phase at the gradient start, the
% of another organic solvent at the gradient end, the buffer
concentration and the detection wavelength.

In the experimental example 2, a methodology for the chemi-
cal characterization of white grapes was developed by simulta-
neously determining phenolic compounds and organic acids [33].
Eight variables were studied as to their relevance regarding the
analytical response (chromatographic peak area/amount of sam-
ple); in the present report focus is directed towards the analyte
kaempferol-3-O-rutinoside. The traditional approach identified a
single factor as important, although the confidence for this
selection was rather low, given the poor fit of the standard PB
evaluation. Significant interactions were then found by Bayesian–
Gibbs analysis, pointing to additional effects as significant [13].
The experimental factors studied were: the extractive solvent, the
extraction volume, the extraction time, the temperature, the
extraction type (ultrasonic energy or stirring), the sorbent type
(end capped or non end capped C18) and the elution volume.

4. Results and discussion

4.1. Simulated data

It is already known that standard PB evaluation may lead to
increasingly incorrect results regarding the significance of the
main factors as the interaction increases. In particular, for the
presently analyzed simulated system, no main terms are found to
be significant using classical PB analysis, because all associated
probabilities with the main terms were larger than 0.05. This is in
clear contrast to the building of the simulated system, where four
significant terms (two main and two interactions) were definitely
included in the model.

Table 1 collects the ACO results for the simulated system. The
Monte Carlo histogram shows the most intense peaks corre-
sponding to the four terms included in the simulation, in good
agreement with expectations (Fig. 2). Forward selection confirms
the applied strategy for building the final model: if only the most

Table 1
Model matrix, responses and ACO forward selection results for the simulated system.

Experiment Factors Response

1 2 3 4 5 6 7 8 9

1 –1 –1 –1 –1 –1 –1 –1 –1 –1 0.97

2 –1 1 1 –1 1 –1 –1 –1 1 0.61

3 –1 –1 1 1 1 –1 1 1 –1 –0.07

4 1 1 1 –1 1 1 –1 1 –1 1.01

5 1 1 –1 1 –1 �1 –1 1 1 0.55

6 1 –1 1 1 –1 1 –1 –1 –1 1.00

7 –1 –1 –1 1 1 1 –1 1 1 1.00

8 1 –1 –1 –1 1 1 1 –1 1 0.46

9 1 –1 1 –1 –1 –1 1 1 1 1.01

10 1 1 –1 1 1 –1 1 –1 –1 0.43

11 –1 1 1 1 –1 1 1 –1 1 0.04

12 –1 1 –1 –1 –1 1 1 1 –1 0.58

Model Terms included Normalized coefficients Commentsa

Forward model selection

1 Empty design None 1–3 alone does not meet the heredity principle

2 7 b7¼–1.00 1–3 does not meet the heredity principle

RMSE¼0.29

r2
¼0.3784

3 1, 7 and 1–3 b1¼0.36 RMSE¼0.13

b7¼–0.46 r2
¼0.8926

b13¼0.82 p value for 2 and 3o0.05

4 1, 7, 1-3 and 1–7 b1¼0.33 RMSE¼0.05

b7¼–0.42 r2
¼0.9870

b13¼0.77 Selected model

b17¼0.34 p value for 3 and 4o0.05

a The p value corresponds to Van der Voet’s test for comparing RMSEs (see text).
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intense term is considered (the interaction 1�3, see Fig. 2), the
model is empty, because this term alone does not meet the
heredity principle (Table 1). The gradually augmented models
display the final coefficients shown in Table 1, with RMSE values
decreasing and r2 improving on increasing the model complexity.
The comparison of models shows that a definitely smaller RMSE is
reached at model No. 4. No models beyond the latter one were
found, which is thus selected by the present analysis (Table 1).
The normalized coefficients nicely agree with those employed for
simulation, while the final RMSE value is compatible with the
noise level introduced in the responses (0.05 units).

Therefore, a correct solution was found in the simulated case
using ACO analysis, including the finding of the significant
interacting term and main factors. Agreement was found in the
absolute values and signs of the significant coefficient terms (see
Table 1). It is noteworthy that the model described by Eq. (2),
which hypothetically has 45 different coefficients, was analyzed
with only 12 runs.

As already reported [14], it is important to recall that standard
PB analysis of this system would produce the wrong impression

that the factors had no influence on the response, whereas clear
effects of several terms are found by the present methodology.

4.2. Experimental data

4.2.1. HPLC recovery experiment

Standard PB evaluation of this experimental system indicates
no statistically significant terms at po0.1 level [32]. Only factor
4 is marginally important (p¼0.17), leading to a rather poor
correlation coefficient of 0.2519. This suggests that the conclu-
sions drawn from simple PB analysis may be dubious.

Using the presently discussed ACO methodology, three terms
were found to be relevant: 4, 5 and their mutual interaction 4–5
(Table 2). This is supported by the Monte Carlo histogram shown in
Fig. 3(A), which leads to the forward selection results displayed in
Table 2. The first forward selected model only includes the interac-
tion 4–5, and does not meet the heredity principle, because no main
terms appear to justify the interaction (Table 2). The subsequent
model No. 2, now also including term 4, meets all requirements but
provides a rather poor fit. In fact, the best model No. 3 provides a

Fig. 2. (A) Histogram of Monte Carlo coefficient values for the simulated system 1. (B) Analogous results for the simulated system 2. Blue bars correspond to the terms

included in the final selected model. (For interpretation of the references to color in this figure legend, the reader is reffered to the web version of this article.)

Table 2
Model matrix, responses and ACO forward selection results for the HPLC recovery experiment.

Experiment Factors Response

1 2 3 4 5 6 7 8

1 1 1 –1 1 1 1 –1 –1 101.6

2 1 1 1 –1 –1 1 1 1 101.7

3 1 –1 1 –1 1 –1 –1 1 101.6

4 1 –1 –1 –1 1 –1 1 1 101.9

5 1 –1 –1 1 –1 1 1 –1 101.8

6 –1 1 1 –1 1 –1 1 –1 101.1

7 –1 1 –1 –1 1 1 –1 1 101.1

8 –1 –1 1 –1 1 1 1 –1 101.6

9 –1 –1 1 1 –1 1 –1 1 98.4

10 –1 1 –1 1 –1 –1 1 1 99.7

11 1 1 1 1 –1 –1 –1 –1 99.7

12 –1 –1 –1 –1 –1 –1 –1 –1 102.3

Model Terms included Normalized coefficients Commentsa,b

Forward model selection

1 4–5 None 4–5 alone does not meet heredity principle

2 4–5 and 4 b4¼–0.58 RMSE¼0.16

b45¼0.81 r2
¼0.7373

3 4–5, 4 and 5 b4¼–0.53 RMSE¼0.10

b5¼0.42 r2
¼0.8949

b45¼0.74 Selected model

p value for 2 and 3o0.05

a RMSE values are given in arbitrary units because responses were mean centered and scaled before applying ACO selection. See text for values in the original response

scale.
b The p value corresponds to Van der Voet’s test for comparing RMSEs (see text).
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clear improvement in r2 with respect to model No. 2 and a reason-
ably low RMSE value. This result is in good agreement with Ref. [13]
in terms of the selection of terms for the finally selected model:

y¼ 101:020:6x4þ0:4x5þ0:8x4x5 ð11Þ

which, in original units, yields an RMSE¼0.44%. It should be noticed
that classical PB evaluation would indicate absence of influencing

effects on the response, leading to misinterpretation of the experi-
mental data, whereas further analysis using the present methodol-
ogy strongly suggests the presence of two significant factors.

Interaction between experimental factors means, in general,
that the effect of one factor depends on the level of a second
factor. The mathematical model leads to the result that the effect
of changing column type (i.e., different manufacturers) depends

Fig. 3. (A) Histogram of Monte Carlo coefficient values for the HPLC recovery experimental system 1. (B) Analogous results for the extraction/purification experimental

system 2. Blue bars correspond to the terms included in the final selected model; red bars to those not included. (For interpretation of the references to color in this figure

legend, the reader is reffered to the web version of this article.)

Table 3
Model matrix, responses and ACO forward selection results for the extraction/purification experiment.

Experiment Factor Response

1 2 3 4 5 6 7 8

1 1 –1 1 –1 –1 –1 1 1 6.98

2 1 1 –1 1 –1 –1 –1 1 5.31

3 –1 1 1 –1 1 –1 –1 –1 9.67

4 1 –1 1 –1 1 –1 –1 6.45

5 1 1 –1 1 1 –1 1 –1 5.23

6 1 1 1 –1 1 1 –1 1 5.34

7 –1 1 1 1 –1 1 1 –1 4.03

8 –1 –1 1 1 1 –1 1 1 3.76

9 –1 –1 –1 1 1 1 –1 1 2.10

10 1 –1 –1 –1 1 1 1 –1 2.65

11 –1 1 –1 –1 –1 1 1 1 7.40

12 –1 –1 –1 –1 –1 –1 –1 –1 7.14

Model Terms included Normalized coefficients Commentsa

Forward model selection

1 1–4 None 1–4 alone does not meet heredity principle

2 1–4 and 3 None 1–4 and 3 do not meet heredity principle

3 1–4, 3 and 4 b3¼0.48 RMSE¼0.

b4¼–0.49 r2
¼0.9271

086 b14¼0.75 Selected model

a RMSE values are given in arbitrary units because responses were mean centered and scaled before applying ACO selection. See text for values in the original response

scale.
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on the % of one organic solvent in the gradient. The physical basis
of this factor interaction may be found in chemical/physical
interactions between the mobile phase and the column material.
Whether this is a real effect or not would certainly merit further
investigation.

4.2.2. Extraction/purification experiment

In this experimental system there are no significant terms if
standard PB analysis is applied. Only factor 4 appeared to be
marginally significant (p¼0.16), but the poor correlation coeffi-
cient (0.2435) might indicate the presence of interactions.

The present ACO analysis helps to uncover main and interact-
ing effects in this system, according to the histogram shown in
Fig. 3(B), which leads to the forward selection results presented in
Table 3. According to this Table, the first two forward selected
models do not meet the heredity principle. The subsequent model
No. 3, however, achieves a low RMSE value, by considering factors
3 and 4 as well as the interaction between factors 1 and 4. With
no further models beyond model No. 3, the present ACO results
are entirely consistent and supportive of the model proposed in
[13]. The selected model leads to the following expression for
explaining the response:

y¼ 5:5þ1:1x321:0x4þ1:7x1x4 ð12Þ

leading to a final RMSE of 0.69 units (12% with respect to the
mean response value).

Notice that the specific factors identified as being important
were the temperature (x4), the extraction time (x3) and the
extracting solvent (x1). As with the first experimental example,
the finding of factor interactions calls for the search of physical
interpretations. In the present example, the existence of an
interaction between extracting solvent and temperature is per-
fectly understandable on a chemical basis. Of course this must be
proved experimentally with separate experiments.

5. Conclusions

A study about the possibility of using the Plackett–Burman
experimental design to build models that include associated
terms has been carried out. In this regard, ant colony optimization
provides an efficient tool for estimating the significant terms,
including the values of the model coefficients directly. From this
point of view, the Plackett–Burman design could not only be
considered as a screening design, but as a design which allows
one to build models with a great economy of runs, provided it is
complemented with the appropriate approaches for uncovering
factor interactions.
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