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Graphical abstract 

TG and ΔCp measurement in plant cryopreservation solutions. 
 

Highlights 

 TG and associated ΔCp measurement in Plant Vitrification Solutions (PVS) 
 The TG of five PVS can be related to their different composition, especially to its 

water content 
 TG of PVS and its associated ΔCp are not altered (or only very slightly) by a wide 

range of cooling and warming rates 
 Consequently, TG of these PVS do not significantly change with cryopreservation 

methods with different cooling/warming rates 
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ABSTRACT 

Differential scanning calorimetry (DSC) was employed to investigate the vitrification and 

annealing behaviors of the most commonly used plant vitrification solutions (PVS). These 

solutions are employed to protect plant tissues towards ice formation and freeze injury, and 

help to the vitrification of these tissues, by globally reducing the intracellular fluids mobility. 

Glass transition temperatures (Tg) and heat capacity increments (∆Cp) were determined for 

five solutions PVS1, PVS2, PVS2 mod, PVS3 and PVS3 mod, with different composition, 

and a range of cooling and warming rates was employed. Glass transitions showed clear and 

consistent temperature differences within vitrification solutions, which could be related to 

composition and water content. Roughly, two sets of TG values were obtained, those for PVS1 

and 2, at -112 ºC and -114 ºC, respectively, and those for PSV3, at -90 ºC. The observed Tg 

and ∆Cp, unexpectedly, did not significantly change within a wide range of cooling rates 

(from 5 ºC min-1 to liquid nitrogen quenching) and warming rates (from 5 to 20 ºC). Garlic 

shoot tips cryopreserved after the droplet method produced a similar result to that of the 

vitrification solutions employed. After quench cooling to temperatures below Tg, repeated 

excursions to higher temperatures were made and the cooling and warming Tg were recorded. 

These treatments had little or no effect over the PVS solutions Tg, which remained practically 

constant. A direct practical consequence is that the plant vitrification solutions glass transition 

temperature does not significantly change with cryopreservation methods based on either 

direct plunging of samples into liquid nitrogen or employing closed cryovials. 

 

1. Introduction 

Glass, the state of matter where molecular mobility is so reduced that most physicochemical 

processes (including ice formation) are actually detained, is a basic state of matter for 

cryopreservation. The temperature at which glass initially forms from supercooled liquid is 
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known as the glass transition temperature (TG). It is rather a range of temperatures than a 

single defined one. The glass transition is also characterized by a change in heat capacity 

(∆Cp), which is measured as the baseline difference at the transition inflection point. At 

temperatures above TG, there is an increase in molecular mobility and a decrease in viscosity 

which enables the crystallization of water, if sufficient time to carry out the process is granted 

[1]. Per contra, when temperature is below the glass transition, the system can be considered 

stable. Most physical and chemical processes (especially those that are diffusion driven) are 

impeded, in a physically accessible time frame. Actually, there is movement in the glassy 

state: many reports describe the existence of a significant degree of short range mobility, 

associated to solvent molecules (water, in this case) (for example Ablett et al. [2] and Le 

Meste et al. [3]). Within the very field of plant cryopreservation, a reduced but not null 

molecular movement degree has been found in intracellular glasses, investigated by different 

physical techniques [4-7]. However, the relatively large-scale molecular reorganizations 

required for ice crystal nucleation are certainly not possible in these conditions of greatly 

reduced molecular mobility [8]. 

Consequently, glassy state allows living tissues preservation with no or very limited 

physicochemical changes and completely free of ice formation, which is associated with lethal 

freeze injury [9,10]. Since the knowledge that cells treated with specific cryoprotecting 

solutions survive exposure to cryogenic temperatures was achieved, numerous variations on 

solution composition were developed for plant cells [11]. Different vitrification solutions 

were developed by various research teams worldwide [12,13]. Sakai’s group developed the 

PVS (Plant Vitrification Solution) series. PVS1 has been employed for work with asparagus 

cell suspensions [14,15]. PVS2, originally developed for treating citrus cell suspensions [12], 

has been successfully used for different explants of around 200 species [16], including garlic 

[11,17]. PVS3 has been notably employed with wasabi [18], asparagus [19] and garlic [20] 
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shoot tips. The cryopreservation of garlic germplasm, an economically important crop, has 

been profusely studied by several authors using different approaches [11,17,20-22]. 

The glass transition temperature of aqueous systems is very sensitive to the proportion of 

water and other small molecules, and small changes in compositions can give rise to large 

variations in TG. When taking advantage of the glassy state for preservation purposes, often 

the difficulty lies in the prediction and control of this temperature. Another problem is how to 

reach temperatures below TG, from room temperature, without ice being formed during the 

cooling process (the same problem arises when warming specimens to room temperature) 

[1,23]. The probability of ice formation increases with the time that the system is at a 

temperature comprised between Tf (the equilibrium freezing temperature) and TG. Actually, 

the ice nucleation temperature should be considered, instead of Tf. This nucleation 

temperature has not a fixed value, being dependent on Brownian movement, but is often 

placed well below Tf. On the other hand, the region “close” above TG is considered too 

viscous for anything like ice nucleation to happen, in a short time frame. A zone of 20ºC 

above TG is often accepted as having a very low probability of ice formation [24]. 

The glass transition is not a phase transformation in the full thermodynamic sense. Its 

occurrence is determined by the history of the material, and is dependent on the exact 

conditions of the experiment [25]. The change between liquid and vitreous state has also been 

described as a second order phase change, not characterized by an enthalpy increment as first 

class changes are, but by a step in some of the physical properties, such as the heat capacity, 

specific volume and apparent viscosity [26]. Differential scanning calorimetry (DSC) is a 

powerful tool to investigate glass transition and heat capacity behaviors of plant vitrification 

solutions [27]. A model plant system (garlic) was included in the experimental design, to 

compare the behavior of the pure solutions and that of a real system. Garlic shoot tips 
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cryopreservation had been studied previously, using PVS2 [11] and PVS3 [28] 

cryopreservation solutions.  

The present study aimed the characterization of the calorimetric properties of the most 

common plant vitrification solutions under the same range of cooling and warming rates, at 

conditions relevant to their use as cryopreservation agents. The characterization of the 

calorimetric properties of garlic shoot tips treated with one of such solutions (PVS3) is also 

included. 

 

2. Materials and methods 

2.1. Standard compounds 

Dimethyl sulfoxide (DMSO), ethylene glycol (EG) and propylene glycol (PG) of 

chromatographic grade were purchased from Sigma Aldrich (Heidelberg, Germany); glycerol, 

sorbitol and sucrose used were manufactured by Penta (Chrudim, Czech Republic) and 

isothiazolinone by Schulke & Mayr (Norderstedt, Germany). All other chemicals used were 

of the highest commercially available purity. 

 

2.2. Solutions 

The vitrification solutions were (Table 1): (1) PVS1 (Plant Vitrification Solution 1: 19% w/v 

glycerol, 13% w/v EG, 13% w/v PG, 6% w/v DMSO in half-strength MS liquid medium + 0.5 

M sorbitol) [14], (2) PVS2 (30% w/v glycerol, 15% w/v EG, 15% w/v DMSO, and 0.4 M 

sucrose in half-strength MS liquid medium) [12], (3) modified PVS2 (PVS2 mod: 37.8% w/v 

glycerol, 16.7% w/v EG, 16.5% w/v DMSO and 0.4 M sucrose in half-strength MS liquid), 

(4) PVS3 (50% w/v glycerol, 50% w/v sucrose in water) [19], (5) modified PVS3 (PVS3 

mod: 50% w/v glycerol, 50% w/v sucrose, 5% DMSO in water) [19]. 
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2.3. Plant material  

Experiments were carried out with Alium sativum L. sativum cv. ´Djambul 2´. Microbulbils 

(small areal bulbs formed together with flower buds) were rinsed with 1% isothiazolinone 

solution for two hours. Subsequently, the shoot apex (1 mm) in each microbulbil was excised 

with a scalpel blade and forceps. Shoot apices were placed in 75% isothiazolinone solution for 

2 s and then transferred to 1% isothiazolinone solution for 10 min. Finally, batches of 20 

apices were directly placed onto MS medium [29] with 10% sucrose overnight. 

Excised shoot tips were immersed into the loading solution (13.7% w/v sucrose + 18.4% w/v 

glycerol) [12] for 20 min at 25ºC. Shoot tips were immersed in PVS3 at 25ºC for 2 h [30]. 

 

2.4. Differential scanning calorimetry conditions 

Thermal processes in vitrification solutions were measured using a TA 2920 DSC (TA 

Instruments, New Castle, DE, USA). Hermetic aluminum pans (TA) were used in all DSC 

experiments and an empty pan was used as reference. The furnace block of DSC was flushed 

with dry nitrogen gas to avoid condensation of moisture from the air. Helium gas (99.999%) 

was used as sample purge at a rate of about 33 ml min-1. The temperature scale of the 

instrument was calibrated with cyclohexane (-87°C), mercury (-38.87°C), water (0.01°C) and 

indium (156.6°C) and with heat fusion of water (334 J g-1). All calibrations were performed 

by using scanning rates of 5, 10 and 20°C min-1. Calorimetric data were collected from two 

replicates per treatment. 

Samples within pans were either approx. 10 mg of vitrification solutions or three garlic shoot 

tips, immediately after treatment with the vitrification solution PVS3. In work with shoot tips, 

pans were weighed before and after DSC; in the second case pans were punctured and oven-

dried (~85°C, 72 h), to obtain the water content. Calorimetric data were collected from two 

replicates per treatment. 
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2.5. Glass transition characterization for PVS 

The glass transition parameters (TG and ∆Cp) were determined for the different vitrification 

solutions considered, in both cooling and warming scans. Pans with samples were cooled at 

standard rates (10ºC min-1) from 30ºC to -145ºC. After 5 min equilibration at this temperature, 

they were warmed back to 30ºC, also at 10ºC min-1. This cycle was repeated four times. Two 

different samples were studied for each solution. 

 

2.6. Cooling rate test 

For this test, cooling was performed at different rates: either using the calorimeter control (5, 

10 and 20°C min-1), or, for higher rates, by quickly immersing the closed pan with the sample 

in liquid nitrogen (LN), either naked or previously included inside a cryovial (approximately 

6600°C min-1 and 160°C min-1, respectively [31]). The pan was then transferred to the 

calorimeter sample chamber, pre-cooled to -150°C, where a short equilibration time was 

allowed. Glass transition temperature and the corresponding heat capacity change were 

observed upon warming from -145°C to room temperature, at a standard warming rate of 

10°C min-1. The samples were either vitrification solutions or garlic shoot tips, after treatment 

with the vitrification solution PVS3. 

 

2.7. Warming rate test 

For investigating the effect of the warming rate, cooling was performed at two fixed rates: 

10°C min-1 (using the calorimeter control) or by quenching in LN (without cryovial). 

Quenched pans were transferred to the calorimeter sample chamber, pre-cooled to -150°C, 

where a short equilibration time was allowed. Glass transition temperature and the 

corresponding heat capacity change were measured upon warming pans with samples from -
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145°C to room temperature, at different warming rates: 5, 10 and 20°C min-1. The samples 

were either vitrification solutions or garlic shoot tips, after treatment with the vitrification 

solution PVS3. 

Crystallinity, for garlic shoot tips was evaluated using TA proprietary software (TA 

Instruments, undated), using a value for the specific fusion heat of water of 334 J g-1. The 

routine basically evaluates the thermal event enthalpy and, by comparing with the water 

specific fusion heat and considering the water content of the sample (obtained by differential 

weighing, after drying in an oven after the DSC experiment), calculates the fraction of water 

that had crystallized into ice.  

 

2.8. Statistical analysis 

The results were analyzed by analysis of variance (ANOVA), and means were compared by 

Duncan’s multiple range test (P ≤ 0.05) using STATISTICA version 10, (StatSoft, Inc., 

2011). 

 

3. Results and Discussion 

3.1. Vitrification behavior of different vitrification solutions 

Glass transition parameters were determined for the five PVS employed, at standard rates of 

10ºC min-1 (Table 2). Glass transitions temperatures were fairly reproducible and showed 

clear and consistent differences among vitrification solutions (confirmed by the statistical 

analysis), which were related to different composition and water contents (Table 1). TG 

values calculated for each solution were identified by the statistical analysis as distinct (Table 

2, P< 0.001). The value of TG generally decreased as the water content of solutions with 

similar chemical composition increased. For example, TG tended to decrease as the water 

content of a particular plant vitrification solution increased (i.e., PVS2 vs. PVS2mod, PVS3 
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vs. PVS3mod). But also TG tended to decrease as the water content of plant vitrification 

solutions based in glycerol and sucrose increased. A minimum square regression to a straight 

line yielded a high regression coefficient (R2 =0.991795) for TG values of PVS2, PVS2mod, 

PVS3 and PVS3mod. PVS1 was excluded from this regression since glycerol and sucrose are 

not present in its chemical composition and, differently than PVS2 or 3, includes sorbitol and 

PG in its composition. 

The general role of water as plasticizer agents and their effect reducing the value of TG have 

been extensively studied (i.e. [32,33]. These vitrification solutions contained large amounts of 

solutes able to form hydrogen bonds with water. The number of water molecules available per 

each solute molecule was relatively low and even lower the number of water molecules per 

potential hydrogen bond in solute molecules. Nevertheless, in such concentrated and complex 

mixtures not all these potential bonds could be expected to bind water, as many intersolute 

(and intramolecular) bonds would arise for molecular formulas of the components of the 

cryopreservation solutions and their molar composition.  

The different TG found could be divided into two groups: one centered around -112ºC (PVS1, 

PVS2 and PVS2 mod) and the other at -89ºC (PVS3 and PVS3 mod). The heat capacity 

changes measured were less distinct than the corresponding TG values, but a decrease with the 

water content in solutions could be appreciated and these data can be fitted to a straight line 

(R2= 0.944513, which improves to 0.992353 upon discarding the value for PVS1). However, 

PVS solutions could be distributed according to ∆Cp in the same groups. The prediction of 

glass transition behavior for complex mixtures as those studied here, is, currently, not a solved 

problem (see, for example, Angell et al. [34]). Nevertheless, water content seems to be the 

dominant factor over the solute composition.  

Very few data on glass transition parameters of PVS have been reported. The initial PVS2 

publication [12] reported a TG value of -115ºC (equal for both cooling and warming scans), 
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within experimental error of our data. It must be noted that, in the same publication, the 

existence (upon warming at 10ºC min-1, following 80ºC min-1 cooling) of a devitrification 

event (at -75ºC), subsequently followed by melting (at -36ºC) was reported. After extensive, 

repeated and reproducible DSC experiments, we have been unable to find any ice formation 

event, at any of the combinations of cooling and warming rates considered, and for any of the 

PVS studied. The reported devitrification event took place upon warming at 10ºC min-1, twice 

as fast as our 5ºC min-1 slowest experiment (where ice formation would have been more 

likely). PVS3 was also previously reported to have a TG in good agreement with those 

reported here [28]. 

Pure water glass transition temperature, though difficult to physically measure, is believed to 

take place at 135K (-138ºC) [35,36], actually not so far away from the TG found here for PVS 

solutions. Other authors even rise this temperature to 165 K (-108ºC) [37,38], or even higher 

[39,40]. Clearly, the question is far from being settled. 

Binary mixtures (water and a single solute) can partly explain the TG values reported here for 

PVS. Sucrose aqueous solutions with a 40-60% (w/w) solute content, present glass transition 

temperatures ranging from -110ºC to -86ºC [41], comparable with those obtained in this work 

(PVS3 and PVS3-mod have approx. 40% w/w sucrose content). Meanwhile, glycerol, which 

is present in the aforesaid solutions also at ≈ 40% w/w, but at ≈ 30% w/w in PVS2 and PVS2-

mod, would, in binary aqueous systems, show a TG at approx. -100ºC and -110ºC, 

respectively [42]. PVS1, lacking glycerol and sucrose, has a combined ethylen and propylen 

glycol content of ≈ 25% w/w. A 25% w/w ethylen glycol water solution would give raise to a 

TG between -130ºC and -135ºC [42]. A correct prediction of the glass transition temperatures 

for PVS from composition data would be a more complex matter, though. 

 

3.2. Effect of cooling rate on vitrification behavior 

ACCEPTED M
ANUSCRIP

T



Vitrification in cryopreservation protocols is achieved, without sophisticated cooling 

equipment, by simply plunging specimens into LN after a set of physicochemical treatments, 

designed to increase their cytoplasmatic microviscosity and enhance tissue resistance to cold 

and dehydration. Fast cooling is required to achieve vitrification avoiding ice crystal 

formation [43]. In a similar way, warming after the storage period must be carried out 

quickly, and it is practically performed by plunging samples (naked or inside cryovials) 

directly from LN into a water bath or warm culture medium [31].  

Thermograms showing details the effect of cooling rate on the vitrification behavior of PVS3 

are shown in Figure 1. The glass transition recorded in the warming scan (always carried out 

at 10°C min-1) was similar both in temperature and heat capacity change. The width of the 

glass transition process was estimated to be on an average of 7ºC.  

TG and ∆Cp were measured for the five solutions studied and are shown in Figure 2. 

ANOVA indicated that the vitrification solution had a significant effect (p < 0.001) on TG, 

while cooling rate and the interaction of both variables/factors did not. The TG of a solution 

did not significantly change within a wide range of cooling rates (from 5 to 20°C min-1, under 

the DSC control, and the faster resulting from plunging the sample pan into LN, with the 

aluminum pan naked or inside a cryovial). The cooling rate did not influence the glass 

transition region, as compared with the width of the whole transition interval (Figure 1). The 

mean TG for each PVS (calculated with the data from all cooling rates) were significantly 

different among them (according to Duncan`s test, p< 0.05): PVS1 -112.4210 ± 0.3656, PVS2 

-114.5770± 1.01569, PVS2-mod -109.4910 ± 0.56078, PVS3 -90.0550± 0.82682 ; PVS3-mod 

-87.3010±1.25750. 

Although ∆Cp values show a larger variation, no clear trend with the cooling rate could be 

observed (Figure 2). ANOVA indicated that cooling rate did not have a significant effect on 

∆Cp, while the vitrification solution and the interaction of solution rate did (p < 0.001). 
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Therefore, statistical analysis on both TG and ∆Cp, showed that the differences observed 

among cooling rates were not significant. This was an unexpected finding, as both TG and the 

∆Cp are generally considered to be dependent on cooling rate (e.g. [4,44]). After this, the 

slower a liquid is cooled, the longer time would be available for configuration of samples at 

each temperature, and hence the colder it could become before falling out of liquid-state 

equilibrium. This would be reflected in TG increasing with cooling rate [45,46], as the 

properties of the glass depend on the process by which it is formed. In practice, the reported 

dependence of TG on the cooling rate is weak: TG changes by 3–5°C when the cooling rate 

changes by an order of magnitude [44,47]. 

Possible explanations for the discrepancy between the small variation (1.2ºC) reported here 

and the expected value (3-5ºC per rate magnitude order corresponds to 9-15ºC, for the more 

than three orders between 5 and 6600ºC min-1 of our experiments) may lie on that the 

experimental observations in which TG undergoes these changes with cooling rate refer in 

most cases to much simpler systems, either pure liquids or binary mixtures. These ternary, 

quaternary and pentary solutions may present a compensating behavior, with different 

components having contributions of different sign to the glass transition displacement with 

cooling rate. 

Another explanation may lay on the fact that, in the present work, the reported glass transition 

parameters measured at fast cooling rates were evaluated always at the ensuing warming scan. 

Actually, very few experimental techniques can perform a proper glass transition 

measurement while cooling at fast rate. Faster cooling would cause the glass transition to take 

place at earlier, higher temperatures (giving rise to a less stable glass). Upon warming, the 

glass transition would occur as soon as the lower TG (of the more stable glass, found at slow 

warming processes) was reached. In that way, the influence of the previous cooling rate 

would be ignored. 
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Cooling rates present a wide variation in practical plant cryopreservation, though they have 

not been very frequently accurately measured. They range from the very slow processes of 

those methods relying on extracellular freezing for induced intracellular vitrification (using 

temperature control equipment, with rates as low as 0.3ºC min-1) [48], to those of he 

vitrification method (approx. 2.3°C s-1), the encapsulation-dehydration protocol (approx. 

2.7°C s-1) and the faster droplet-vitrification method (110ºC s-1) [31,48-50]. Other faster 

approaches have been tested, such as those avoiding the Leidenfrost effect that limits the 

cooling rate in LN by using other cryogenic fluids, such as liquid propane or ethane, or even 

using mechanical implements to make faster the immersion of the sample in the cryogenic 

medium [11,50]. The two quench cooling procedures used here had rates similar to those of 

the droplet-vitrification (naked DSC pan) and the encapsulation-dehydration method (inside 

the cryovial), i.e. approximately 110ºC s-1 (6600ºC min-1), and 2.7ºC s-1 (160ºC min-1), 

respectively. 

The behavior of the vitrification parameters of garlic shoot tips in the last stage of the 

cryopreservation protocol (after treatment with PVS3) was different from that of the 

vitrification solutions (Figure 2). Shoot tips present a much more marked dependence of both 

TG and ∆Cp with the cooling rate than solutions. This may be due to the fact that the shoot tips 

have higher cytoplasmic water content or to the presence of other cellular components, apart 

form their structural and compartmentalization elements.  

The glass transition parameters obtained here differ from those of other works, which had 

been carried out in different conditions: the TG reported for garlic studies using PVS2 is 

approximately -115ºC [11]. This is a very close data to the PVS2 solution TG data reported in 

this work (-114.3ºC). Accordingly, our values (ranging from -90 to -100ºC for different rates), 

are close to the -89.85ºC found for PVS3. The ∆Cp data for garlic, showing a strong variation 

in the present study, are not too different from those reported using PVS2 [11]. 
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3.3. Effect of warming rate on vitrification behavior 

The glass transition parameters were measured for different warming rates after using two 

different cooling rates: 10°C min-1 (Figure 3a and c) and LN quenching (Figure 3b and d). 

The variations in both TG and ∆Cp were not significant and, again, showed no dependence of 

the warming rat. A clear relation between TG and the solution composition, for all the cooling 

and warming conditions studied, could be observed, with a similar response of the group 

PVS1-PVS2-PVS2 mod, on one hand and the group PVS3-PVS3 mod, on the other (data not 

shown). The dependence of ∆Cp with composition for the different warming and cooling rates 

tested was more obscure. 

Practical warming rate values for cryopreservation are of the same order of those reported for 

cooling rates, as most cases heat exchange is driven by stirring the sample (naked, 

encapsulated or inside a cryovial) in a warm water bath or culture medium, being the 

temperature gradients induced comparable to those created by plunging room temperature 

specimens into LN. Nonetheless, warming rates slightly lower than those found for cooling 

have been reported [31,49]: approx. 1.8, 2 and 40°C s-1, for mint shoot tips following the 

vitrification, encapsulation-dehydration and droplet-vitrification protocols, respectively.  

 

3.4. Crystallinity of garlic shoot tips 

Garlic shoot tips subjected to the vitrification procedure exhibited both freezing and glass 

transition events when cooled slowly (10ºC min-1) (Figure 4). Other systems treated by the 

vitrification method did not produce water freezing when, in the last step of the protocol, were 

cooled at this slow rate. This is the case of mint shoot tips [51] and this might be due to their 

smaller size, when compared with garlic shoot tips. Mint shoot tip average weight after the 

vitrification dehydration step was 0.7 mg [51], while garlic shoot tips in the same stage 
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weighed 3.9 ± 0.4 mg. Sample size is one of the most important determinants of vitrification 

probability [25]. Other differences, such as water content or permeability to solutes, may 

sustain alternative explanations.  

The presence of this (always very small) melting endotherm allows calculation of the fraction 

of crystallized water. The onset of the melting process and the crystallinity calculated after the 

TA proprietary software, are presented in Table 3 for different warming rates. The 

crystallinity decreased with increasing warming rates, while the transition onset grew. The 

corresponding glass transition temperatures were almost constant with warming rate. In 

similar systems, it has been reported that ∆Cp decreases while crystallinity increases [52], 

which agrees with the observations of Figure 4 and Table 3. Although, at quenching rates 

(those employed in practical cryopreservation) there was no formation of ice, these findings 

could imply a potential amount of freezable water that could result in ice formation. 

Garlic shoot tips cryopreservation has previously been studied employing PVS2 instead of 

PVS3 [11]. After 15 min exposure to PVS2, garlic shoot tips were reported to show a melting 

endotherm centered at -50ºC, corresponding to approximately 12% crystallinity (at a scan rate 

of 10ºC min-1). 30 min exposure, yielding the maximum plant recovery after cryopreservation, 

showed no endotherm [11]. The freezing (observed at the lower nucleation temperature) and 

melting events of garlic shoot tips at this work (employing PVS3) Figure 4 and Table 3, were 

present only at the 10ºC min-1 rate. In conditions customarily employed for successful 

cryopreservation (including quench cooling rates) both freezing and melting events were not 

observed. The crystallinity degree found was small (2-0.4 %, depending on the warming rate). 

As the temperature of these events was higher (-15 to -20ºC, Table 3) than that reported by 

Volk and coworkers [11], a possible interpretation is that these events might correspond to a 

separate water fraction from that required for germplasm viability. Alternatively, the higher 

temperature of the melting event could be the result of using PVS3 rather than PVS2, and a 
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border condition, where ice is formed only at low cooling rates but not at higher quenching 

rates, could have been reached.  

 

Conclusion 

TG and ∆Cp of plant vitrification solutions did not significantly change when the 

cryopreservation methods based on either direct plunging of samples into liquid nitrogen or 

plunging of samples in closed cryovials, or even slower methods, were used. We can conclude 

that the TG of commonly employed PVSs did not change with the wide range of cooling and 

warming rates. The behavior of cryopreserved tissues might be, though, different. 
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Figure 1. PVS3 thermograms showing the glass transition, performed at a warming rate of 

10ºC min-1 and after cooling at different rates. Quenching: direct immersion of the DSC pan in 

LN; cryovial: pan included in a cryovial and then in LN. White arrows mark the glass 

transition inflection point. 
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Figure 2.Glass transition temperatures (a) and glass transition heat capacity changes (b) for 

the different PVS and garlic shoot tips (after treatment with PVS3), obtained in warming 

(10ºC min-1) DSC experiments, after being cooled at different rates.* Rate not tested for garlic 

samples.Mean values of TG and ∆Cpfrom garlic samples with the same letter are not 

significant different according to the Duncan’s Multiple Range Test at alpha = 0.05.Bars: 

standard deviation.  
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Figure 3.Glass transition temperature (a andb) and heat capacity (c and d) obtained by DSC 

during warming at different rates (5, 10 or 20°C min-1). DSC pans had been cooled either at 

10°C min-1 in the calorimeter (a andc) or by quenching in LN (b and d). Bars:standard 

deviation. 
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Figure 4. Typical scan of shoot tips of garlic after treatment with PVS3 for 2 h. Both cooling 

and warming rates were 10ºC min-1. The black arrows mark to the glass transition inflection 

point in cooling and warming scans, while gray arrows signal the freezing and melting events. 
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Table 1.Composition of vitrification solutions. 

Solution Component (% w v-1) 
Sorbitol EG DMSO PG Glycerol Sucrose Water 

PVS1 9.1 13 6 13 - - 64.1 
PVS2 - 15 15 - 30 13.7 40.3 

PVS2 mod - 16.5 16.5 - 37.8 13.7 31.3 
PVS3 - - - - 50 50 28.6 

PVS3 mod - - 5 - 50 50 24.1 
 
 
Table 2. Glass transition parameters of different plant vitrification solutions (cooling and 

warming rates were both 10°C min-1). 

Type of PVS 
TG 

(°C) 

∆Cp 

(J g °C-1) 

PVS1 -112.15 ± 0.38b 1.22 ± 0.03a 

PVS2 -114.31 ± 0.38a 1.12 ± 0.04a,b 

PVS2 mod -109.42 ± 0.11c 1.07 ± 0.04b 

PVS3 -89.85 ± 0.29d 0.87 ± 0.01b 

PVS3 mod -86.84 ± 0.65e 0.83 ± 0.01b 

Average values and standard deviation for at least four repeats. Means of TG and ∆Cp, in a 

column, with the same letter are not significantly different according to the Duncan’s Multiple 

Range Test at alpha = 0.05. 

 

 
Table 3. Crystallization parameters (mean ± standard deviation) of garlic shoot tips after 

treatment with PVS3 for 2 h. Onset of the melting endotherm and crystallinity as 

crystallization percentage, both measured in the warming scan. Cooling scans were performed 

at 10ºC min-1 and warming scans at different rates. 

Warming rate Onset Crystallized 
(°C min-1) (°C) (%) 

5 -19.87 ± 9.40 1.96 ± 2.51 
10 -16.49 ± 3.73 1.21 ± 0.25 
20 -14.61 ± 0.62 0.37 ± 0.51 
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