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This paper deals with state estimation in electric drives. On one hand a nonlinear observer is designed,
whereas on the other hand the speed state is estimated by using the dirty derivative from the position
measured. The dirty derivative is an approximate version of the perfect derivative which introduces an
estimation error few times analyzed in drive applications. For this reason, our proposal in this work con-
sists in illustrating several aspects on the performance of the dirty derivator in presence of both model
uncertainties and noisy measurements. To this end, a case study is introduced. The case study considers
rotor speed estimation in a permanent magnet stepper motor, by assuming that rotor position and elec-
trical variables are measured. In addition, this paper presents comments about the connection between
dirty derivators and observers, and advantages and disadvantages of both techniques are also remarked.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In the modern industry, motion control is a topic of vital impor-
tance and a lot of mechanisms applied in speed and position con-
trol use electric drives [1–3]. There exist different kinds of electric
drives. The production is in continuous evolution due to the change
rate of the technology allows to build motors and converters
increasing the reliability and decreasing the cost [4,5]. However,
in many applications it is necessary to use sophisticated control
strategies to obtain high performance drives. Generally, these
strategies are based on the machine dynamic model by using
state-space representation [6–8]. In the last 10 years, different
new strategies have been used to design nonlinear control laws.
Among others, the feedback linearization [9,10], inter-connection
and damping assignment [11], adaptive control [12] and back-
stepping [13] can be mentioned. These strategies allow to obtain
high performance drives. Nevertheless, regarding from the imple-
mentation point of view a drawback appears. In order to imple-
ment the control strategies all state measurements are needed.
To overcome this drawback a lot of proposals can be found in the
literature. The more common approach consists in using nonlinear
laws including estimators in the closed control loop. In this way,
some sensors are avoided resulting in a more practical and cheaper
controller [14–18].

In electrical drive applications are frequently found speed
estimates obtained from position measurements, acceleration
ll rights reserved.
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estimators based on speed sensors, and mechanical-sensorless
schemes to avoid mechanical sensors.

A lot of these estimators include a prediction term based on the
model and a correction term that weighed in some way, provides
the information contained in the model and the measurements.
The majority of estimation algorithms can be included in some of
the following categories:

� Open loop estimators: they use a model to predict the variable
value [19].

� High gain observers: they consider a model for the signal predic-
tion and a correction term that is a smooth function of the mea-
sured and the estimated variables [20].

� Sliding mode observers: they use a prediction based on the model
and a hard nonlinear function of the measurements and/or the
estimated variables as a correction term [21].

� Estimators differentiating the measurement: they employ a high
pass filter (named dirty derivator in this work) [22].

� Stochastic observers: they are similar to the high gain observers,
but inside a stochastic context. The most widely diffused sto-
chastic observers are the Kalman filter and its non linear version,
the Extended Kalman filter [23].

There exist a great number of papers introducing algorithms
that can be framed in some of the mentioned categories (see,
for instance [24], to find a revision for permanent magnet AC mo-
tors based drives). In other researches, Hakan Akpolat et al. [25]
use a derivator to estimate the speed from the position measure-
ment, and Vainio [26] propose a derivator to estimate the acceler-
ation from the speed measurement. In [22], speed is estimated
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differentiating the position measurement. Harnefors and Nee [27]
introduce a position and speed observer-based estimator for AC
motors, using electric variable measurements. In [28] mechanical
variables are estimated from electrical ones in a brushless DC mo-
tor. In [29] a nonlinear reduced-order observer is used to estimate
mechanical variables in a permanent magnet synchronous motor.

In spite of either of the above techniques can be used, the esti-
mator performances vary in the presence of uncertainty. For this
reason, there exist some aspects to be kept in mind for choosing
the estimator when both model uncertainties and noisy measure-
ments are present.

In practice, it is common to find dirty derivators and observers.
These estimators are treated in different ways and their connec-
tion, to the best knowledge of the authors, cannot be found in
the literature. However, both estimators can be connected. By
understanding this connection, it is possible to choose the more
appropriate estimator depending on the application case. To this
end, a case study is introduced. The case study considers rotor
speed estimation in a Permanent Magnet (PM) stepper motor, by
assuming rotor position and electrical variables are measured.

This work is organized as follows: In Section 2 the PM stepper
motor model is presented and the speed estimation case is de-
scribed. The performance analysis under model uncertainties and
noisy measurements is introduced in Section 3. Finally, in Section
4 conclusions are drawn.
2. Speed estimation

The problem of estimating the mechanical variables (position,
speed and/or acceleration) by using measurements from mechani-
cal and/or electrical variables (voltages and currents) is often found
in motion control based on electrical drives. To this end, different
kinds of estimators have been introduced. In general, estimators
are constructed to guarantee the estimation error tends to zero
with a predetermined convergence rate. A well-known estimation
technique uses an observer consisting of a prediction and a correc-
tion term.

In position control applications, speed is usually estimated to
obtain high performance controllers. Among others are frequently
found dirty derivators and observers. In a given case, the designer
could inquire which is the more appropriate option to achieve good
performance. The key for selecting between a dirty derivator and
an observer is to understand the connection between them.

In this paper, in order to establish the connection between dirty
derivators and observers, a case study is developed. For this pur-
pose, subsections below present a nonlinear observer with linear
error dynamics and a dirty derivator to estimate speed in a PM
stepper motor.

2.1. PM stepper motor model

The PM stepper motor model is described in stationary two-
axes reference frame by the following equations (see [30]):

_h ¼ x; ð1Þ

_x ¼ Te

J
� B

J
x� KD

J
sinð4NrhÞ; ð2Þ

_ia ¼ �
R
L

ia þ
Km

L
x sinðNrhÞ þ

va

L
; ð3Þ

_ib ¼ �
R
L

ib �
Km

L
x cosðNrhÞ þ

vb

L
; ð4Þ

with,

Te ¼ Km ib cosðNrhÞ � ia sinðNrhÞ
� �

; ð5Þ
where ia; ib and va; vb are currents and voltages in phases a and b,
respectively. L and R are the self-inductance and resistance of each
phase winding, Km is the motor torque constant, Nr is the number of
rotor teeth, J is the rotor inertia, B is the viscous friction constant, x
is the rotor speed, h is the motor position, and the term KD sinð4NrhÞ
is the detent torque.

2.2. Observer-based estimation with lineal error dynamics

In order to construct a rotor speed estimator for the PM stepper
motor, it is possible to design an asymptotic reduced-order obser-
ver with linear dynamics error. The key to obtain exponential con-
vergence to zero of the estimation error resides in an appropriate
election of the observer prediction term. For instance, the predic-
tion term can be based on the model given by (1)–(4). Recalling
equation describing the mechanical dynamics, yield,

_x ¼ Te

J
� B

J
x� KD

J
sinð4NrhÞ: ð6Þ

From (6) a Luenberger-like observer is proposed,

_̂x ¼ Te

J
� B

J
x̂� KD

J
sinð4NrhÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

prediction term

þ Kð _h� _̂hÞ|fflfflfflfflffl{zfflfflfflfflffl}
correction term

; ð7Þ

where ‘‘^” stands for estimated value, and K is the correction term
gain. Note that in order to obtain the speed estimate, the derivative
of h is needed. In this case, the high-frequency noise could be ampli-
fied. To overcome this drawback a variable change on Eq. (7) is
introduced. Firstly, it is defined a new intermediate variable, n,

n , x̂� Kh; ð8Þ

which will allow us to obtain the speed estimation without having
to derivate the position measurement. Differentiating (8) it is
obtained,

_n ¼ _̂x� K _h;

¼ Te

J
� B

J
x̂� KD

J
sinð4NrhÞ � Kx̂: ð9Þ

Finally, replacing (8) in (9) the speed estimator description is
obtained,

_n ¼ � B
J
þ K

� �
n� BK

J
þ K2

� �
hþ Te

J
� KD

J
sinð4NrhÞ; ð10Þ

x̂ ¼ nþ Kh: ð11Þ

It should be noticed that the speed model plays an important
role in the observer performance, since the convergence to zero
of the error is only obtained if model represents exactly to the mo-
tor. When the parameters in the speed model are not perfectly
known, the observer’s robustness must be analyzed.

2.3. Dirty derivator-based estimation

As mentioned, in many cases measurements are differentiated
to obtain estimates to be used in control strategies. However, it
must be kept in mind that derivative is an anticausal operator com-
putable only in a theoretical way. In practice to obtain a causal
estimate, the derivative operator is often approximated by a high
pass filter (dirty derivator). The dirty derivator transfer function
is given by,

DðsÞ ¼
bXðsÞ
HðsÞ ¼

s
ðssþ 1Þ ¼

K
1þ K

s

� � ; ð12Þ

where K ¼ 1=s is a positive constant. In this case, the measurement
and the estimate are related as follows:
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x̂ðsÞ ¼ _̂hðsÞ ¼ K
1þ K

s

� � hðsÞ: ð13Þ

By assuming that Laplace Transforms exist, Eq. (13) can be writ-
ten in the time domain in the following way:

1þ K
s

� �
x̂ðsÞ ¼ KhðsÞ;

x̂ðsÞ þ KĥðsÞ ¼ KhðsÞ;
L�1fx̂ðsÞ þ KĥðsÞg ¼L�1fKhðsÞg;

x̂ðtÞ ¼ K hðtÞ � ĥðtÞ
� �

; ð14Þ

then,

x̂ ¼ _̂h ¼ 0þ Kðh� ĥÞ: ð15Þ

Differentiating (15) the estimator can be expressed as follows:

_̂x ¼ 0|{z}
prediction term

þ Kð _h� _̂hÞ|fflfflfflfflffl{zfflfflfflfflffl}
correction term

: ð16Þ

In this point it is possible to see the connection between the two
ways of estimation presented above. The estimate obtained with a
dirty derivator is equivalent to the estimate obtained with an ob-
server with constant gain in the correction term and speed predic-
tion term equal to zero (compare (7) and (16)). In many cases, the
value of the speed can be different from zero, so that a big estima-
tion error can be introduced for selecting the prediction term in a
wrong way. In the next section, this phenomenon is analyzed.

3. Analysis in presence of uncertainty

Following, an analysis by assuming uncertainties in the estima-
tor prediction terms and noisy measurements is introduced.

3.1. Estimation error analysis

Let us denote the actual speed value by g (i.e. _h ¼ g) and the po-
sition estimation error by eh ¼ h� ĥ. Then, from (14) the position
estimation error dynamics results,

_eh ¼ g� Keh; ð17Þ

then, solving the previous differential equation,

ehðtÞ ¼ ehð0Þe�Kt þ
Z t

0
e�Kðt�sÞgðsÞds; ð18Þ

where it is assumed that the integral exists. Therefore by using (15),

_̂h ¼ K ehð0Þe�Kt þ
Z t

0
e�Kðt�sÞgðsÞds

� �
; ð19Þ

and the speed estimation error is,

ex ¼ g� x̂ ¼ g� _̂h; ð20Þ

then by replacing Eq. (19) in (20) yield,

exðtÞ ¼ gðtÞ � K ehð0Þe�Kt þ
Z t

0
e�Kðt�sÞgðsÞds

� �
: ð21Þ

The speed estimation error depends on the rotor speed and its
convergence to zero is strong dependent on the speed value. Ex-
cept for particular speed values, the estimation error does not con-
verge to zero. This is due to that zero was chosen as value for the
prediction term. It is very important to note that the error appear-
ing between the actual speed and the estimated speed depends on
the estimator prediction value (zero when the dirty derivator is
used).
For instance, it is possible to analyze the performance when the
rotor speed is constant,

gðtÞ ¼ W: ð22Þ

The estimation error can be calculated from (21), such that,

exðtÞ ¼ W� K ehð0Þe�Kt þW
Z t

0
e�Kðt�sÞds

� �
;

¼ W� K ehð0Þe�Kt þW
K

1� e�Kt
� �� �

;

¼ W� Kehð0Þð Þe�Kt ; ð23Þ

therefore in steady state,

lim
t!1

exðtÞ ¼ lim
t!1

W� Kehð0Þð Þe�Kt ¼ 0: ð24Þ

In this case the steady state error is equal to zero. However, as it
was previously mentioned, it is only a particular case. Note that the
actual speed is a constant and the prediction in (16) coincides with
the value of the actual speed time-derivative. Nevertheless, in gen-
eral the asymptotic prediction value must coincide with the actual
signal value to attain asymptotic error equal to zero.

For example, we consider now that the actual speed has a ramp
behavior, being defined as,

gðtÞ ¼ bt: ð25Þ

Thus, in this case the estimation error is,

exðtÞ ¼ bt � K ehð0Þe�Kt þ b
Z t

0
e�Kðt�sÞsds

� �
;

¼ b
K
� Kehð0Þ þ

b
K

� �
e�Kt; ð26Þ

As consequence the steady state error will be,

lim
t!1

exðtÞ ¼ lim
t!1

b
K
� Kehð0Þ þ

b
K

� �
e�Kt

� �
¼ b

K
: ð27Þ

This case uncovers two features. One of them, is that when the
actual speed is not null, the dirty estimator has steady state error
and a prediction term different to zero must be chosen to attain
asymptotic exponential convergence. The other feature from the
above equation, is that when the estimator gain, K, is increased
the steady state error decreases. However, as it is going to be
shown in the following lines the K gain should be bounded due
to the measurement noise.

Therefore, for a general speed behavior, it is recommended
using estimators based on observers having prediction terms based
on the speed model. By denoting g0ðtÞ to an arbitrary prediction
term, the speed estimation results,

_̂h ¼ g0ðtÞ þ Kðh� ĥÞ: ð28Þ

In this case, the estimation error becomes,

exðtÞ ¼ gðtÞ � K ehð0Þe�Kt þ
Z t

0
e�Kðt�sÞDgðsÞds

� �
; ð29Þ

where DgðtÞ ¼ gðtÞ � g0ðtÞ is the prediction error. When g0ðtÞ is a
better approximation than zero (the prediction term value for the
dirty derivator), the observer (see Eq. (28)) performance is higher
than the estimator based on an dirty derivator.

It is important to remark that even under the perfect measure-
ment assumption, the estimator based on a dirty derivator intro-
duces an error (see Eq. (27)) that perhaps it could be diminished
when a different value from zero is used for the prediction term
of the signal differentiated.

It should stand out that from the point of view of the prediction,
one should opt for a g0 value as similar to g as possible. Given a
previous knowledge of the motor, zero is an extreme and only
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advisable value when the model of the motor is completed
unknown.

Previously, it was supposed that the measurement was perfect.
However a more realistic case must consider that the measured
signal has certain grade of uncertainty (for instance, measurement
noise) and it can be modeled adding a signal (we will denote r to
this signal). In this case, on the Eq. (28), the estimation dynamics
is given by,

_̂h ¼ g0 þ Kððhþ rÞ � ĥÞ;
¼ g0 þ Kðh� ĥÞ þ Kr; ð30Þ

therefore similarly like it was calculated for the Eq. (29), the estima-
tion error will be,

exðtÞ ¼ gðtÞ

� K ehð0Þe�Kt þ
Z t

0
e�Kðt�sÞDgðsÞdsþ K

Z t

0
e�Kðt�sÞrðsÞds

� �
:

ð31Þ

Eq. (31) shows that when increasing the value of the constant K
we achieve a bigger convergence rate to zero of the error. Never-
Table 1
Data and parameters of the devices.

Device Parameter Value Unit

PM Stepper Motor Nr 50 –
L 1.1 mH
R 10 X
Km 0.113 Nm=A
KD 0.0339 Nm
J 5:7� 10�6 kg m2

B 1� 10�3 Nm s=r

x0 0 r/s

Observer Kmo 0:9� Km Nm=A
KDo 0:7� KD Nm
Jo 1:2� J kg m2

Bo 1:1� B Nm s=r
K (case 1) 104.56 1/s
K (case 2) 524.56 1/s
Pole (case 1) �280 1/s
Pole (case 2) �700 1/s
x0 30 r/s

Dirty derivator K 600 1/s

0 0.05 0.1 0.15 0.2 0.25
−8

−6

−4

−2

0

2

4
 Position Reference (rad)

 Time  (s)

Fig. 1. Position reference.
theless, it must be noted that K multiplies the signal, r representing
the uncertainty in the measurement, consequently high values of K
amplify uncertainties in the position measurement. As a conse-
quence, the best gain value is a trade-off among the convergence
rate, the uncertainty in the prediction term and the uncertainty
in the measurement. Since the estimation is a pondered average
of the prediction and the measurement, it is reasonable to think
that the value of the constant K can be increased when the value
of the uncertainty or noise in the measurement is low.
3.2. Estimator comparison tests

In order to illustrate the performance of the estimators, several
tests of a position control in an electrical drive containing a PM
stepper motor are presented. Feedback linearization is used as con-
trol strategy [30], but in order to satisfy our goal (i.e., to compare
estimators) the control law is built by using the actual values.
0 0.05 0.1 0.15 0.2 0.25
−600

−500

−400

−300

−200

−100

0

100

 Time  (s)

Fig. 2. Speed profile to estimate.
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Fig. 3. Speed error without model uncertainty.
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Comparisons are carried out taking into account both model uncer-
tainties (see observer rows in Table 1 which show mismatches be-
tween actual and observer parameters) and noisy measurement,
where we consider a 1.5% of white noise in sensors. The rest of data
and parameters used in tests are detailed in Table 1. Position and
speed reference trajectories used in the assessment are shown in
Figs. 1 and 2.

Firstly, in Fig. 3 the speed estimation errors are illustrated by
assuming estimator parameters coincide with the motor ones
and state variables are obtained without noise. As it can be seen,
after an initial exponential decay (see Fig. 3b), the estimation error
converges to zero when the observer with linear error dynamics is
used. However, that does not happen in the dirty derivator. When
the rotor speed is estimated via a dirty derivator, the estimation er-
ror coincides with zero only when actual speed is zero. This agrees
with the theoretical derivations from the above section.
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Fig. 4. Speed error with model uncertainty.
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Fig. 5. Speed error with model uncertainty and noisy measurement. Low observer
gain, case 1.
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Fig. 6. Speed error with model uncertainty and noisy measurement. High observer
gain, case 2.
Note that dirty derivator could perform in a bad way although
the parameters are assumed to be known and the measurements
are assumed to be perfect.

Then, in Fig. 4 tests taking into account parameter uncertainties
are presented. In this case, the observer introduces an error since
the prediction term does not copy the model in an exact way.

Finally, both estimators are tested by considering parameter
uncertainties and noisy measurements. Two different gain values
of the observer correction term have been set. In case 1 (Fig. 5),
although both estimation methods present similar error deviation,
the dirty derivator is more vulnerable to the noisy measurement
than the reduced-order observer which gives a smooth estimation.
In case 2 (Fig. 6) a higher gain was selected to the reduced-order
observer (see observer gains in Table 1), and it can be seen that
estimates are equally noisy, however the observer introduces less
error than the dirty derivator.

It is worth to note that in the above tests we considered typical
parameter uncertainties. However, if there exists a greater or com-
plete uncertainty of the motor parameters, then the dirty derivator
could have a better performance than the observer due to the pre-
diction term will give a bad information during the estimation.
4. Discussion and conclusion

In spite of reduced- and full-order observers could be used, they
in most cases, would allow us to improve the estimate regarding
uncertainty in the variable measured, but the algorithm to be
implemented should integrate a greater number of differential
equations. In addition, the full-order observers are, in general,
more sensitive to the peaking phenomenon (see [31]) and then it
could happen that during the convergence transient, the estima-
tion error grows before arriving to the steady-state value. For this
reasons, sometimes a reduced-order observer is preferred.

In the introduced case study, it is clear that the estimator per-
formance strongly depends on both the prediction term uncer-
tainty and the noise in the variable measured. It is frequently
found several researches that use either observer whose prediction
term is based on a signal model or dirty derivator whose prediction
term is equal to zero. For this reason, the connection between both
kind of estimators has been introduced in this paper. In addition, it
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has been demonstrated that robustness is a key issue to be consid-
ered in order to choose the estimator (i.e. for choosing the predic-
tion term). In the author opinion, the results introduced in this
work should be taken into account to select estimators to be used.
Since if a dirty derivator is selected to estimate signals in electric
drives, it should be analyzed the replacement of it by a signal-mod-
el-based observer due to it could be a better option depending on
the uncertainty levels as it was discussed in this paper. Besides,
analysis and conclusions developed in this section are not only
applicable to electrical drives but also to other similar signal esti-
mation applications.
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