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In this work, the dynamics of a coupled electric circuit is studied. Several bifurcation diagrams
associated with the truncated normal form of the Hopf-Hopf bifurcation are presented. The
bifurcation curves are obtained by numerical continuation methods. The existence of quasi-
periodic solutions with two (2D torus) and three (3D torus) frequency components is shown.
These, in certain way, are close (or have a tendency to end up) to chaotic motion. Furthermore,
two fold-flip bifurcations are detected in the vicinity of the Hopf-Hopf bifurcation, and are
classified correspondingly. The analysis is completed with time simulations, the continuation of
several limit cycle bifurcations and the indication of resonance points.
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1. Introduction

The appearance of oscillations in physical systems
may be explained, in several cases, by means of
the Hopf bifurcation mechanism. In general, this
phenomenon occurs when a pair of eigenvalues of
the linearized system crosses the imaginary axis as
a parameter of the system is varied. This kind of
bifurcation has been widely studied in the liter-
ature (e.g. [Marsden & McCraken, 1976; Hassard
et al., 1981]), dealing with an important number of
applications in real systems such as tethered satel-
lites [Liaw & Abed, 1990], magnetic bearing systems
[Mohamed & Emad, 1993], axial flow compressors
[Gu et al., 1999] and induction motors [Gordillo
et al., 2002], to mention only a few of them.

A situation with more dynamical complexity
occurs when two pairs of eigenvalues cross the

imaginary axis simultaneously at ±iω1 and ±iω2.
Leading to the phenomenon known as Hopf-Hopf
bifurcation (or double Hopf bifurcation), in addi-
tion to the typical emergence of periodic solutions
from each single Hopf curve, a kind of interaction
between the two oscillatory modes in certain regions
of a two-parameter plane is present. When the ratio
ω1/ω2 is irrational (nonresonant Hopf-Hopf bifur-
cation) the interaction gives birth to quasiperiodic
motion known as two-dimensional or 2D torus. In
certain cases, the Hopf-Hopf bifurcation gives rise to
a more complex quasiperiodic motion called three-
dimensional or 3D torus on which a third frequency
that modulates the amplitude of the 2D torus oscil-
lations is involved. Some applications with this kind
of behavior have been reported very recently in
the technical literature, particularly in mechanical
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systems, such as in [Yu, 2002; Coller, 2003; Gattulli
et al., 2003; Chamara & Coller, 2004].

This work is focused on the dynamics of a sim-
ple, coupled electric circuit in which four typical
bifurcation diagrams associated to the truncated
normal form of the double Hopf singularity are
glued together after varying a third parameter, by
following the results described in [Kuznetsov, 1995].
This coupled electric circuit is a slight modification
of the cubic model analyzed in [Itovich & Moiola,
2005] but, in the present case, a quadratic non-
linearity has been included. Three “simple” bifur-
cation diagrams are shown, comprising both Hopf
curves, its corresponding Neimark–Saker bifurca-
tions and, the 2D torus developing from them.
Furthermore, a “complex” bifurcation diagram
containing a 3D torus for certain combination of
system parameters is obtained. The connection of
these four diagrams seems to be didactic for assem-
bling the big picture of the Hopf-Hopf bifurcation.
Furthermore, a continuation of saddle-node bifur-
cations of cycles in the vicinity of the double Hopf
degeneracy gives insights to locate other complex
resonance points such as those special limit cycles
with a double Floquet multiplier in +1, or a dou-
ble Floquet multiplier in −1, or even the elusive
degeneracy called fold-flip bifurcation containing
one Floquet multiplier in +1 and one in −1. The
latter singularity has been recently studied and
reported in an extended type of Lorenz-84 model
in [Kuznetsov et al., 2004]. In the current cou-
pled electric circuit, two fold-flip (FF) bifurcations
have been detected in an isle of period-doubling
bifurcations. This isle is located rather close to the
double Hopf singularity, so more complex interac-
tions would be expected after varying, appropri-
ately, other system parameters. The appearance
and deformation of the period-doubling island is
outside the scope of the article. The interested read-
ers can consult an equivalent phenomenon in an
injected semiconductor laser in [Wieczorek et al.,
2001] and [Wieczorek et al., 2005] or as a theo-
retical consequence of the appearance of period-
doubling in strong resonance Hopf-Hopf bifurcation
in the case ω1/ω2 = 2 (see [LeBlanc, 2000], for
more details). In this paper we recovered the unfold-
ings of the FF singularity by numerical continuation
using AUTO software and interpreted these results
into the theoretical framework given by [Kuznetsov
et al., 2004]. It is also interesting to notice that the
present analysis could be helpful when multiple dou-
ble Hopf bifurcation points appear in the parameter

space such as in delayed feedback systems (see,
for example the Hopf bifurcation loops, Neimark–
Sacker curves and period-doubling bifurcations in
[Balanov et al., 2005], using the Rössler system with
delayed feedback).

This paper is organized as follows. In Sec. 2
some basic concepts of the truncated normal form
of the Hopf-Hopf and the fold-flip bifurcations are
reviewed. The analyzed circuit and its correspond-
ing mathematical model are described in Sec. 3.
In Secs. 4–6, the numerical results and a compari-
son between the normal form bifurcation diagrams
are presented. Finally, some concluding remarks are
expressed in Sec. 7.

2. Theoretical Background

In this section, a brief description of both Hopf-Hopf
and fold-flip bifurcations normal forms is included.
Most of this background material can be found
in [Kuznetsov, 1995] and [Kuznetsov et al., 2004],
respectively.

Let us consider an n-dimensional smooth sys-
tem depending on k parameters

ẋ = f(x, µ), (1)

where x ∈ R
n, µ ∈ R

k and f : R
n → R

n is a smooth
function.

2.1. Hopf-Hopf bifurcation

Suppose that the linearization of (1) has two dis-
tinct pairs of purely imaginary eigenvalues for x = 0
and µ = 0 with frequencies ω1 > ω2 and ω1/ω2 irra-
tional. In addition assume that a reduction of the
dynamics to the normal form is performed (see pro-
cedures, for example in [Guckenheimer & Holmes,
1993]). Then, considering that some nondegeneracy
conditions hold and using polar coordinates (r1, r2,
ϕ1, ϕ2), the truncated normal form of the Hopf-
Hopf bifurcation is given by

ṙ1 = r1(µ1 + p11r
2
1 + p12r

2
2 + s1r

4
2),

ṙ2 = r2(µ2 + p21r
2
1 + p22r

2
2 + s2r

4
1),

ϕ̇1 = ω1,

ϕ̇2 = ω2,

(2)

where µ1,2 are the bifurcation parameters, pjk and
sk, j, k = 1, 2, are real coefficients. These coefficients
and the frequencies ω1,2 depend on the parameters,
but for simplicity this dependency is not indicated.

The last couple of equations in (2) corresponds
to rotations over the planes r2 = 0 and r1 = 0 with
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angular velocities ω1 and ω2, respectively. Since the
first pair of equations is uncoupled from the sec-
ond one, the bifurcation diagram is described by
the following planar system, also known as ampli-
tude system,

ṙ1 = r1(µ1 + p11r
2
1 + p12r

2
2 + s1r

4
2),

ṙ2 = r2(µ2 + p21r
2
1 + p22r

2
2 + s2r

4
1).

(3)

Due to symmetry, it is enough to consider the
cases where r1,2 ≥ 0. The equilibrium point with
r1 = r2 = 0 in (3), namely E0, corresponds to a sin-
gular point of (2) located at the origin. The equilib-
rium points of (3) with r2 = 0 or r1 = 0, called E1

and E2 respectively, correspond to limit cycles of
(2). The equilibrium E3 with r1,2 > 0 corresponds
to a 2D torus in the original system, while a limit
cycle of (3) is a 3D torus of (2).

Depending on the signs of p11 and p22, two dif-
ferent sets of bifurcation diagrams can be distin-
guished, namely simple cases (p11 · p22 > 0) and
complex cases (p11 · p22 < 0). For simplicity, in
Figs. 1–4 only those diagrams recognized in the
model of the electric circuit analyzed in this paper
are shown (the others can be seen in [Guckenheimer
& Holmes, 1993] or [Kuznetsov, 1995]). Figures 1–3
correspond to simple cases and Fig. 4 to one of the
complex cases. The associated phase portraits are
shown surrounding the bifurcation diagrams, where
the horizontal axis is proportional to r2

1 and the

Fig. 1. Bifurcation diagram related to the truncated normal
form of the Hopf-Hopf bifurcation for p12 < 0, p21 < 0 and
p12 · p21 > p11 · p22 (p11 < 0, p22 < 0).

Fig. 2. Bifurcation diagram related to the truncated normal
form of the Hopf-Hopf bifurcation for p12 < 0, p21 < 0 and
p12 · p21 < p11 · p22 (p11 < 0, p22 < 0).

vertical is to r2
2. The origin represents the equilib-

rium E0, the equilibria E1 and E2 lie on the coordi-
nate axes, horizontal and vertical, respectively, and
E3 is depicted outside the axes. The filled dots indi-
cate node equilibrium points, while the empty ones
represent saddle equilibria.

The simple cases of Figs. 1–3 are obtained with
p11 < 0 and p22 < 0, s1 and s2 can be set to

Fig. 3. Bifurcation diagram related to the truncated normal
form of the Hopf-Hopf bifurcation for p12 > 0, p21 < 0 and
p12 · p21 < p11 · p22 (p11 < 0, p22 < 0).
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Fig. 4. Bifurcation diagram related to the truncated normal
form of the Hopf-Hopf bifurcation for p12 > 0, p21 < 0 and
p12 · p21 < p11 · p22 (p11 > 0, p22 < 0).

s1 = s2 = 0 without changing the topology. Figure 1
is associated to the unfolding of (3) with p12 < 0,
p21 < 0 and p12 · p21 > p11 · p22. The equilibrium
point E0 is stable in region 1. It loses stability at
H1 when crossing to region 2, and a stable equilib-
rium E1 appears. E0 undergoes a second bifurca-
tion on H2 in the transition between regions 2 and
3, and another equilibrium E2 arises. The equilib-
rium E2 undergoes a bifurcation on TR2 leading to
E3 in region 4. This equilibrium collapses with E1

on TR1 and disappears (region 5). Then E1 van-
ishes on H1 (region 6). Finally, E2 collapses at H2

(region 1). The situation of Fig. 2, is rather simi-
lar, but the curves TR1 and TR2 are swapped and
then phase portrait 4 is replaced by diagram 7. In
this case p12 < 0, p21 < 0 and p12 · p21 < p11 · p22.
Figure 3 corresponds to p12 > 0, p21 < 0 and
p12 · p21 < p11 · p22. The difference from Fig. 2 is
that TR2 crossed to the left of H1. The new phase
portrait is labeled with 8 in Fig. 3.

The complex case (p11 · p22 < 0) of Fig. 4 is
obtained with p11 > 0, p22 < 0, p12 > 0, p21 < 0
and p12 · p21 < p11 · p22 (restrictions on s1 and s2,
as well as nondegeneracy conditions, can be seen
in [Kuznetsov, 1995]). The equilibria E0, E1 and
E2 suffer similar bifurcations as in the simple cases,
but E3 undergoes a Hopf bifurcation at the curve C.
The emerging limit cycle vanishes at an heteroclinic
bifurcation depicted by the curve Y . This scenario
cannot occur in the simple cases.

Bifurcation diagrams of the amplitude system
(3) can be related to the four-dimensional system
(2) as follows. The curves H1 and H2 correspond
to Hopf bifurcations of the origin of (2). The point
(µ1, µ2) = (0, 0), where H1 and H2 occur simultane-
ously, is the Hopf-Hopf bifurcation. The curves TR1

and TR2 represent bifurcations of limit cycles (E1

and E2) into 2D torus, i.e. Neimark–Saker bifur-
cations. In the complex case, the Hopf bifurcation
of the equilibrium E3 determines the birth of a 3D
torus.

Although a four-dimensional generic system
with higher order terms than those considered in
(2) is never topologically equivalent to the system
given by the truncated normal form, it provides
information about the behavior of the complete sys-
tem [Kuznetsov, 1995]. The electric circuit consid-
ered in this work develops, for different values of
the parameters, the four dissimilar bifurcation dia-
grams shown in Figs. 1–4.

2.2. Fold-flip bifurcation

Assume that (1) undergoes simultaneously a saddle
node bifurcation of periodic orbits and a period dou-
bling bifurcation, i.e. a fold-flip bifurcation for some
µ = 0 near x = 0. Suppose that a Poincaré map at
this point is obtained. Then performing a reduc-
tion to the center manifold and neglecting higher
order terms (see the procedure in [Kuznetsov et al.,
2004]), the dynamics of (1) in the neighborhood of
x = 0 and µ = 0 can be studied by means of the
truncated normal form of the fold-flip bifurcation
given by the map N : R

2 × R
2 → R

2

z �→ N(z, µ), z = (z1, z2)
T , µ = (µ1, µ2)

T ,

N(z, µ) =


µ1 + (1 + µ2)z1 +

1
2
az2

1 +
1
2
bz2

2 +
1
6
cz3

1 +
1
2
dz1z

2
2

−z2 + z1z2


 ,

(4)

where µ1 and µ2 are the bifurcation parameters, a, b, c and d, are coefficients that may depend smoothly
on the parameters µ. Notice that fixed points of (4) and the associated bifurcations correspond to cycles
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of (1) and their bifurcations. Local bifurcations of
fixed points (fold, flip and Neimark–Sacker) can
be studied by considering the map (4). Neverthe-
less, to study global bifurcations it is suitable to
approximate (4) by the unit shift of a vector field
as [Kuznetsov et al., 2004]

RN(z, µ) = ϕ1(z, µ) + O(‖µ‖2) + O(‖z‖2‖µ‖)
+ O(‖z‖4), (5)

where R =
(
1 0
0 −1

)
, and ϕt(z, µ) is the flow gener-

ated by the system

ż1 = µ1 +
(
−1

2
a0µ1 + µ2

)
z1 +

1
2
a0z

2
1 +

1
2
b0z

2
2

+ d1z
3
1 + d2z1z

2
2 ,

ż2 =
1
2
µ1z2 − z1z2 + d3z1z

2
2 + d4z

3
2 ,

(6)

where a0 = a(0), b0 = b(0), c0 = c(0) and d0 =
d(0) denote the critical values (µ1 = µ2 = 0) of the
coefficients of the truncated normal form, and

d1 =
1
6

(
c0 − 3

2
a2

0

)
,

d2 =
1
2

(
d0 +

1
2
b0(2 − a0)

)
,

d3 =
1
4
(a0 − 2),

d4 =
1
4
b0.

Bifurcations of the truncated normal form can
be explained by studying bifurcations of the vec-
tor field (6). Let us describe only those bifurcation
diagrams that will be present in the numerical anal-
ysis of the electric circuit considered in this paper.
These diagrams are given in Figs. 5 and 6 for a0 > 0
and a0 < 0, respectively (b0 < 0, c0 = d0 = 1).
The curves labeled F± and PD± denote fold and
flip bifurcation curves, respectively. The phase por-
traits included in Figs. 5 and 6 represent schemat-
ically the trajectories of the map by a continuous
curve. It is worth to mention that the true orbits
must consider the reflection R in (5) and actually it
alternates between the upper and lower half phase
planes. The points on the z1 (horizontal) axis are
fixed points of the map and that in the upper half
plane is a period-two fixed point. Node and focus
fixed points are represented by filled circles and sad-
dle points by empty circles.

Fig. 5. Unfolding of the fold-flip bifurcation for the case
a0 < 0, b0 < 0 and c0 = d0 = 1.

The first unfolding is obtained with a0 < 0,
and is depicted in Fig. 5. In region 1 there are three
fixed points, a stable and an unstable node on the
z1 axis; and a period-two saddle. This period-two
point does not appear in region 2 because of the
period doubling bifurcation PD+, and the unsta-
ble node is transformed into a saddle. This saddle

Fig. 6. Unfolding of the fold-flip bifurcation for the case
a0 > 0, b0 < 0 and c0 = d0 = 1.
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collapses with the stable node and both disappear
when crossing to region 3 due to the fold bifurca-
tion curve F+. On region 4, an unstable node and
a saddle point do appear because of the fold curve
F−. The saddle point bifurcates into a stable node
when crossing the curve PD− back into region 1
and a period-two fixed point is created.

The second case is shown in Fig. 6, where a0 >
0. In region 5 only a period-two saddle fixed point
exists. Crossing the curve F+ against region 6, two
equilibria on the horizontal axis do appear, a sad-
dle and an unstable node that it is connected with
the period-two point. Crossing PD+ from region 6
to 7, the unstable period-two point vanishes and the
unstable node becomes a saddle. The other saddle
point undergoes a period doubling bifurcation at
PD−, becoming into a stable node and leading to a
period-two point in region 8. This stable node col-
lides with the saddle equilibrium when crossing the
curve F− and only the period-two point exists in
region 5.

3. Case Study: A Nonlinear Electric
Circuit

Let us consider the circuit shown in Fig. 7. Defin-
ing variables vC1 = x1, iL1 = x2, vC2 = x3,
and iL2 = x4, C1 = 1/η1, R = η2, α = η3/η1,
C2 = 1/(1 +

√
2), L1 =

√
2, L2 = 1/(2 −√

2), and
characterizing the nonlinear resistance by the rela-
tion iG = −(1/2)vG −α2v

2
G +α3v

3
G, with α2 and α3

constants, the model of the system is given by

ẋ1 = η1

(
1
2
x1 + x2 − x4 − α2x

2
1 − α3x

3
1

)
+ η3x2,

ẋ2 = − 1
L1

x1,

ẋ3 =
1
C2

x4,

ẋ4 =
1
L2

(x1 − x3 − η2x4).

(7)

This circuit has been inspired in a similar model
analyzed in [Yu, 2002]. However, in this case, the
controlled current source (αiL1) introduces reso-
nances when parameter η3 is varied [Itovich &
Moiola, 2005] and then transition from nonresonant
to resonant Hopf-Hopf bifurcations can be obtained.
Similar scenarios can be recovered by setting 1/L1

as a free parameter with α = 0, i.e. without the
controlled current source.

Fig. 7. Electric circuit of the coupled oscillator.

System (7) has a unique equilibrium point at
the origin x1 = x2 = x3 = x4 = 0. It is easy
to verify that when η1 = 2 − η3 and η2 = (1+
(
√

2/2))(1 − (1/2)η3) the system linearization
around the equilibrium point has two pairs of imag-
inary eigenvalues λ1,2 = ±jω1 and λ3,4 = ±jω2

with ω1,2 =
√

γ ∓
√

−2 + γ2, and γ = (1/2)[3 −
(1−√

2)η3 − (1/4)η2
3 ]. This is a necessary condition

to have a Hopf-Hopf bifurcation. Notice that when
η3 = −6 + 4

√
2 ∼= −0.3431 both frequencies are

coincident ω1,2 = 2
1
4 , and a resonant 1:1 Hopf-Hopf

bifurcation occurs.

4. Local Analysis of the Hopf-Hopf
Bifurcation

In this section, the nonresonant Hopf-Hopf bifurca-
tion is studied by means of numerical continuation
methods. Bifurcation diagrams in the parameter
plane η1–η2 are obtained for different values of η3,
namely η3 = 0, −0.075, −0.140 and −0.220. As
will be shown next, parameter η3 allows traveling
between different bifurcation diagrams associated
to the normal form of the Hopf-Hopf bifurcation.
Parameters α2,3 are fixed at α2 = 0.6 and α3 = 1.

4.1. Case a

The bifurcation diagram for η3 = 0 is shown in
Fig. 8. This diagram is analogous to the scheme of
Fig. 1 except for the rotation on the curves. The
different phenomena associated with the bifurca-
tion diagram shown in Fig. 8 and the corresponding
phase portraits displayed in Fig. 1, are described
below. Within region 1 the origin is a stable equi-
librium point, and making a counterclockwise round
trip, first the equilibrium becomes unstable at H1

and a stable limit cycle is created (region 2).
In region 3, a second (unstable) limit cycle that
emerges from the origin at the Hopf bifurcation
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Fig. 8. Bifurcation diagram for η3 = 0 (α2 = 0.6 and
α3 = 1).

H2 coexists. The unstable cycle becomes stable
because of the Neimark–Sacker bifurcation TR2 and
an unstable 2D torus arises (region 4). This torus
collapses at a second Neimark–Sacker bifurcation
TR1, and in region 5 only two limit cycles, one sta-
ble and the other unstable, are present. The unsta-
ble cycle vanishes at H1 (region 6) and the stable
one disappears at H2 (region 1).

4.2. Case b

Fixing η3 = −0.075, the bifurcation diagram shown
in Fig. 9 is obtained. This case corresponds to the
schematic diagram represented in Fig. 2. The quali-
tative change respect to the case described before is
the swap between the Neimark–Sacker curves TR1
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Fig. 9. Bifurcation diagram for η3 = −0.075 (α2 = 0.6 and
α3 = 1).
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Fig. 10. Bifurcation diagram for η3 = −0.140 (α2 = 0.6 and
α3 = 1).

and TR2 (cf. Fig. 1). For this reason, when crossing
from region 3 to region 7, the stable cycle becomes
unstable and a stable 2D torus is created at TR1.
This torus collapses at the curve TR2 and the unsta-
ble cycle created in H2 becomes stable (region 5).
The dynamics on the remaining regions is analogous
to the case η3 = 0.

4.3. Case c

The continuation results for η3 = −0.140 are rep-
resented in Fig. 10. The corresponding schematic
diagram is shown in Fig. 3. Notice that the
Neimark–Sacker curve TR2 overpasses the Hopf
curve H1. Remember that in region 7 the origin

2.21 2.22 2.23 2.24
1.85

1.87

1.89

1.91

η
1

η
2

H
2

H
1

TR
1

TR
2

16

9

10

11

12 13 14

15

Fig. 11. Bifurcation diagram for η3 = −0.220 (α2 = 0.6 and
α3 = 1).
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is unstable, and there is a pair of unstable limit
cycles and a stable 2D torus. In region 8 only one
of these cycles survives, since the other collapses at
the Hopf bifurcation H1. Finally, the 2D torus van-
ishes at the TR2 bifurcation and the cycle becomes
stable (region 6).

4.4. Case d

The bifurcation diagram displayed in Fig. 11 is
obtained by fixing η3 = −0.220, and can be related

to the schematic diagram in Fig. 4. In this case, the
dynamical scenario is more complicated than the
previous one and corresponds to the complex cases
of the truncated normal form including bifurcations
of torus (curves Y and C in Fig. 4). To begin, it
is worth to mention that the Neimark–Sacker curve
TR1 also overpasses the curve H1, when considering
its transition from case c described before. However
a substantial difference from the previous case is
the sign of the stability index of the Hopf bifurca-
tion H1. In cases (a)–(c) the cycle born at H1 arises
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Fig. 12. (I) Unstable 2D torus in region 12. (II) Stable 3D torus present in region 13. (III) Stable 2D torus located in
region 14.
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to the left of the curve, it is stable on the upper seg-
ment of the curve (above the Hopf-Hopf bifurcation)
and unstable on the lower part. In the present case,
the cycle emerges towards the right of H1 and it is
unstable all over the curve (in the range shown in
Fig. 11). This situation produces a complete change
in the associated phase portraits and it is described
below.

In region 9, the equilibrium is unstable and it is
locally the unique limit set. In region 10 an unsta-
ble limit cycle generated by the Hopf bifurcation
H2 coexists with the equilibrium. A second unstable
limit cycle is created by means of H1 describing the
scenario of region 11. The Neimark–Sacker bifurca-
tion TR1 creates an unstable 2D torus in region 12
(see in Fig. 12(Ia) a projection over the plane x1–
x2). Bifurcation curves Y and C, actually present
in the truncated normal form (see Fig. 4), are not
shown in Fig. 11 since the implemented algorithms
on the numerical continuation package do not com-
pute bifurcations of torus.1 Nevertheless, several
simulations have been made in order to corroborate
the existence of the limit sets associated to regions
12–14. The unstable 2D torus of region 12 suffers a
heteroclinic bifurcation (curve Y in Fig. 4) leading
to a stable 3D torus (region 13). A projection of the
3D torus over the plane x1–x2 with η1 = 2.222220
and η2 = 1.888 is shown in Fig. 12(IIa). The 3D
torus collapses for increasing values of η1 (curve C
in Fig. 4) and in region 14 the 2D torus is sta-
ble. This situation is illustrated in Fig. 12(IIIa),
for η1 = 2.222225 and η2 = 1.888. Subse-
quently the torus collapses on the Neimark–Sacker
bifurcation TR2 and one of the unstable cycles
becomes stable (region 15). This cycle disappears

at the Hopf bifurcation H2, and the equilibrium
at the origin turns stable (region 16). Crossing the
curve H1, the scenario returns to the starting place
(region 9).

Temporal signals (second column) and their
corresponding frequency spectra (third column) are
shown in Figs. 12(Ib)–(IIIb), and Figs. 12(Ic)–
(IIIc), respectively. Although the three cases reveal
the existence quite distinguishably of two frequen-
cies or modes at f1

∼= 0.1285 Hz and f2
∼= 0.2130 Hz,

it is clear that the signal of the 3D torus presents an
amplitude modulation [Fig. 12(IIb)] that is observ-
able on the spectrum because of the appearance
of frequency components near f1 and f2 (see the
rectangles in Figs. 12(Ic)–(IIIc)). This third fre-
quency is approximately f3

∼= 0.0001 Hz.

5. Complex Unfolding in Detail

As mentioned before, the mechanism that turns
the “simple” Hopf-Hopf bifurcation unfolding (case
c) into the “complex” one (case d) is the vanish-
ing of the stability index of the Hopf bifurcation
curve H1. Remember that in case c (η3 = −0.140),
H1 develops a cycle to its left while in case d
(η3 = −0.220), H1 generates a cycle to its right, at
least in the neighborhood of the Hopf-Hopf point.
Let us now describe briefly the mechanism. For η3 <
−0.140946 a pair of generalized Hopf bifurcation
points, namely GH 1 and GH 2, do appear (actu-
ally these points collide for η3 = −0.140946 and
disappear for greater values of η3). This scenario
is depicted schematically in Fig. 13(a). The dashed
segment between GH 1 and GH 2 corresponds to a
generation of an unstable limit cycle to the right

(a) (b)

Fig. 13. Schematic representation of a mechanism that turns the “simple” cases of the unfolding of the Hopf-Hopf bifurcation
into “complex”.

1Actually, this is a difficult task and the readers are referred to a recent contribution of Schilder et al. [2006] for computing
the continuation of the torus and detecting its bifurcations.
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of H1. For η3
∼= −0.14965 the point GH 1 coincides

with the Hopf-Hopf point and for η3 < −0.14965
the situation is that shown in Fig. 13(b). In this
case the Hopf bifurcation H1 creates an unstable
cycle to its right in the neighborhood of the Hopf-
Hopf point leading to the complex case.

5.1. Global bifurcation analysis
for η3 = −0.220

The vanishing of the stability index of H1 is related
to a global phenomenon involving connections of
cyclic fold bifurcation curves. In order to analyze
these interactions a numerical analysis on a larger
region of the parameter plane η1–η2 for η3 = −0.220
is performed. The bifurcation diagram is displayed
in Fig. 14. The labels and colors used on the figures
are shown in Table 1, the super/sub indexes on each
individual label are used to distinguish the curves.

The generalized Hopf bifurcation GH 1 is
located at η1 = 2.21033 and η2 = 1.96332, this
point divides the Hopf bifurcation curve in two
[see Fig. 15(a)]. Therefore, the cycle emerging from
this curve is stable above the singularity GH 1,
and unstable below it. In addition, a cyclic fold
branch F a

1 emerges form GH 1, as indicated by the
normal form of the generalized Hopf bifurcation
[Kuznetsov, 1995]. This branch ends in a cusp point

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

η
1

η
2

H
2

H
1

H
1
+

H
1

TR
2

TR
1

TR
3

TR
4

GH
2

GH
1

F
1
b

F
1
d

F
2

F
3

PD
2
a

PD
2
b

C
3

C
4

C
5

R
5
1:1

R
4
1:2

R
3
1:1

Fig. 14. Bifurcation diagram for η3 = −0.220, including global phenomena.

Table 1. Labels and colors used in the figures.

Bifurcation Label Color

Hopf H black
Generalized Hopf GH blue dot
Cyclic fold F blue
Neimark–Sacker TR ocher
Period doubling PD red
Cusp C —
Resonances R red dot
Fold-Flip FF black dot

C1, with the cyclic fold F b
1 . The second generalized

Hopf bifurcation GH 2 [see Fig. 15(b)] is situated
at η1 = 2.37169 and η2 = 1.63224. The scenario is
similar to the preceding case; GH 2 divides the Hopf
branch in two. Both branches give birth to unstable
cycles, but in the upper segment the cycle grows to
the right and in the lower to the left. The cyclic fold
F c

1 emerges from GH 2 and coalesces with F d
1 at the

cusp point C2.
Let us now describe the global phenomena con-

necting GH 1 and GH 2 depicted in Fig. 14. Start-
ing from GH 1, the cyclic fold curve F a

1 forms the
cusp point C1 with F b

1 [Fig. 15(a)], also F b
1 forms

the cusp point C3 with the cyclic fold branch F2.
This curve ends in another cusp point C4 along with
the cyclic fold F3. The cusp point C5 connects the
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Fig. 15. Generalized Hopf bifurcations along the branch H1 (η3 = −0.220).

curves F3 with F d
1 , C2 joins F d

1 with F c
1 , and the

last one ends at the generalized Hopf bifurcation
GH 2 [Fig. 15(b)]. This particular structure of cyclic
fold curves along with a closed curve of period dou-
bling bifurcations plays an important role in the
dynamic of the system for increasing values of η3.
This interaction leads to fold-flip bifurcations and
will be explained in the next section.

Following the description of Fig. 14, let us
consider the detailed diagram of Fig. 16. The
Neimark–Sacker bifurcation TR1 born at the Hopf-
Hopf bifurcation point, ends on a closed curve of
period doubling bifurcations PD1. The 1 : 2 reso-
nance point R1:2

1 (two Floquet’s multipliers at −1),
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Fig. 16. Expanded view of the bifurcation diagram for η3 = −0.220.

is located at η1 = 2.26559 and η2 = 1.79021.
A second 1:2 resonance point on PD1, namely R1:2

2 ,
at η1 = 2.27452 and η2 = 1.77531 is detected.
A Neimark–Sacker bifurcation TR3 is originated
from this point. This bifurcation curve ends in the
1:1 resonance point R1:1

3 (two multipliers at 1) on
the cyclic fold curve F3, at η1 = 2.42222 and
η2 = 1.56755. A homoclinic branch and its tangent
curves are expected to be found near this point. The
study of the system dynamics near these resonance
points is beyond the scope of this work, and they
are only mentioned for the sake of completeness.

There are two other curves of period doubling
bifurcations in Fig. 14. In this case, the bifurcations
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are originated from the Hopf cycle H2 and they
are represented by the curves PDa

2 and PDb
2. In

addition, these curves also form a closed curve of
period doubling bifurcations, that it is much larger
than the previous (the complete island is not shown
in Fig. 14). There is a 1:2 resonant point R1:2

4 at
η1 = 2.27059 and η2 = 1.67033 over the curve PDa

2.
This point is connected by means of the Neimark–
Sacker bifurcation TR4, with a 1:1 resonant point
R1:1

5 on the cyclic fold curve F3 at η1 = 2.79074
and η2 = 2.00461. As mentioned for R1:1

3 , a homo-
clinic branch is expected to emanate from this
point.

6. Fold-Flip Bifurcations

The closed curve of period doubling bifurcations
interacts with a fold bifurcation structure lead-
ing to a couple of fold-flip bifurcation points for
η3 = −0.140. The global scenario is depicted in
Fig. 17. The singularities GH 1 and GH 2 no longer
exist for η3 > −0.140946, so the four branches of
cyclic fold curves F a

1 , F b
1 , F c

1 and F d
1 now form a sin-

gle and continuous curve named F1. In addition, the
curve H1 generates a limit cycle to the left: above
the Hopf-Hopf bifurcation the oscillation is stable
and below the singularity it is unstable. This is the
main difference when comparing to the bifurcation
diagram of Fig. 14, besides the change in the local

unfolding of the Hopf-Hopf bifurcation. It is worth
to mention that the isle of period doubling bifur-
cations PD1 is now located below H1. The inter-
actions of this isle and the fold curve are difficult
to be noticed, even in the corresponding blow up
of Fig. 17. Toward this end a schematic represen-
tation is given in Fig. 18(a). The remaining curves
and resonance points are similar to the preceding
case.

The fold-flip bifurcation point FF 1 is at (η1,
η2) = (2.173411, 1.748704) and FF 2 at (η1, η2) =
(2.184536, 1.728625). The schematic representa-
tions of both fold-flip bifurcations are shown in
Figs. 18(b) and 18(c). The curves are labeled in cor-
respondence to the names of Fig. 17. The dynamical
scenario on a neighborhood of the bifurcation point
FF 1 [Fig. 18(b)] is associated to the unfolding of the
truncated normal form of the fold-flip bifurcation
displayed in Fig. 5. In region 1 there exist an unsta-
ble period doubling orbit and two limit cycles, a
stable one and a saddle type cycle. The period-2
cycle coalesces with the saddle limit cycle at PD+

1 ,
therefore, in region 2 only the stable and the sad-
dle limit cycles do exist. This situation holds until
the curve F+

1 is reached, where both cycles collapse
and disappear, hence, there are no orbits in region 3.
An unstable limit cycle and a saddle cycle are cre-
ated by the cyclic fold bifurcation F−

1 and they are
present in region 4. The unstable limit cycle suffers
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Fig. 17. Bifurcation diagram for η3 = −0.140, including global phenomena.
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(a)

(b) (c)

Fig. 18. Schematic representations of the fold-flip bifurcations identified for η3 = −0.140.

a period doubling bifurcation crossing PD−
1 back

into region 1.
The unfolding of the second fold-flip bifurcation

FF 2 is represented schematically in Fig. 18(c) and
corresponds to the unfolding of the truncated normal
form illustrated in Fig. 6. This case presents a tricky
situation because all the limit cycles are saddles or
unstable, hence there is always a Floquet multiplier
outside the unit circle. This multiplier represents an
unstable manifold that does not participate in the
fold-flip bifurcation. This fact may be verified mak-
ing continuations above and below the FF 2 bifurca-
tion point (as close as possible) with η2 fixed, and
checking that there is a multiplier over the real axis
smaller than −1, which is virtually fixed before and
after the bifurcations F±

1 and PD±
1 . Therefore, if this

multiplier is not taken into account in the unfolding
of FF 2 it may be seen that, on region 5 there is a
saddle period doubling orbit. Crossing F+

1 a saddle
cycle and an unstable orbit connected to the period-
two limit cycle, appear on region 6. After passing the
curve PD+

1 , the period doubling disappears and the

unstable cycle becomes a saddle orbit on region 7.
On region 8, one of the saddle cycles suffers a period
doubling bifurcation after crossing PD−

1 , so the cycle
becomes stable and an unstable period-two orbit is
created.The stable orbit and the saddle cycle collapse
with each other because of the cyclic fold bifurcation
F−

1 , and the unstable period doubling orbit stands
alone on region 5.

It is worth to mention that the period-two
cycles born at PD±

1 suffer bifurcations that are
not included in Figs. 17 and 18. More specifically,
period-two cyclic fold curves are detected. These
bifurcations change the curvature of the cycles
emerging from PD±

1 and pave the way for the dif-
ferent scenarios surrounding FF 1 and FF 2.

7. Concluding Remarks

In this paper, four bifurcation diagrams associated
to the truncated normal form of the nonresonant
Hopf-Hopf bifurcation on a coupled electric circuit
have been presented. In all cases, the unfolding of
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the singularity has been performed numerically con-
sidering the variation of two parameters. A third
parameter has been used in order to accomplish
the transitions among the different diagrams. There
have been shown three simple cases and one com-
plex case corresponding to the truncated normal
form of the Hopf-Hopf bifurcation. Evidence of the
existence of quasi-periodic oscillations involving the
interaction of three frequencies, phenomenon known
as 3D torus, has been found. The transition between
the “simple” case (c) and the “complex” case (d) is
due to a change in the stability index of one of the
Hopf bifurcation curves. Although it has not been
included in this work, this situation may be detected
by doing a local analysis of the Hopf bifurcation,
and thus alerting about the appearance of this phe-
nomenon. Furthermore, a complex situation of a
fold-flip bifurcation of periodic solutions is detected
close to the Hopf-Hopf bifurcation. The fold-flip
bifurcation has been studied in detail very recently
and its appearance seems to be unusual. To our
knowledge, this paper is the first to show fold-flip
bifurcations close to a Hopf-Hopf bifurcation and
thus a gallery of resonance points, folds and cusps
of period solutions surrounds these degeneracies.
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