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Abstract: Here a systematic technique to design a reduced-order nonlinear observer for estimating signals in
application to energy conversion systems is introduced. This observer presents a linear error dynamics in
estimated variables and it is built in a methodical way. The proposed method has been motivated by
problems arising in power conversion systems, but its use can be extended to other areas. The introduced
observer is able to simplify the design of observer-based algorithms applied in power conversion systems.
Examples are presented to show the advantages of the proposed method.
4

1 Introduction
State, parameter and disturbance estimation is frequently
used in model-based controllers [1–3], feedforward
disturbance compensators [4], variable monitoring and
fault detection [5–7] among other applications. High-
performance controllers based on state feedback and time-
varying parameter compensation are used in many circuits
and systems appearing in engineering applications [8–12].
A problem arising in practice is associated with the
availability of sensors needed to implement a control law or
a specific algorithm. Many times, the number of sensors
must be reduced, because of either economic or technical
reasons [13, 14]. In such cases, a fixed number of variables
are measured and the others are estimated via an adequate
technique [15]. Therefore the control strategy is
implemented by using both measurements and estimates
(examples of this kind of strategy can be found in [16–18]).

In [17], the above technique is proposed for controlling
DC/DC converters. There, flatness theory is used to design
a nonlinear controller and a feedforward compensator of
the estimated load power is included to improve the
converter performance. The used estimation technique
results in time-varying error dynamics. Nevertheless, it
must be remarked that the design of controllers for
nonlinear systems based on observers with either time-
varying or nonlinear error dynamics is complex. It is
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because separation theorem [19] does not work such as
in the linear case. In the linear case, closed-loop stability
(observer-based controller plus plant) is guaranteed by
using the separation theorem. Consequently, the control
law and observer convergence rate can be fixed
independently. Since the separation theorem does not apply
in the nonlinear case, when choosing the observer gains,
some conditions should be considered to guarantee
stability. Some researchers establish sufficient conditions to
guarantee asymptotic convergence in the nonlinear case
[20–24]. In [24], conditions are presented in order to
establish how fast must the observer convergence be to
guarantee closed-loop stability. For this reason, from the
convergence rate point of view, it is preferable to construct
observers with linear error dynamics in variables to be
estimated, since estimation error trajectories are known
exactly during the convergence transient, being easier the
observer design and guaranteeing stability.

Many techniques were proposed to design nonlinear
observers, for instance [25–29] to name just a few. Several
techniques often used to design nonlinear observers can be
found in [30, 31] and references there. These approaches
obtain observer gains for stabilising the linear part of the
system or a transformated system version, and then high-
gain methods are used to keep the nonlinear part bounded.
On the other hand, observers with linear error dynamics
have been presented by some authors [32–35]. In these
IET Control Theory Appl., 2010, Vol. 4, Iss. 5, pp. 724–734
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cases, when certain conditions are verified, linear error
dynamics is guaranteed by applying a nonlinear state
coordinate transformation. Although the linear error
dynamics is attained in transformed coordinates, generally
the error dynamics is nonlinear when it is expressed
in original coordinates. As mentioned, it is more
advantageous to obtain linear error dynamics in variables
to be estimated. For this reason, this work is addressed to
the design of a reduced-order nonlinear observer in a
systematic manner, with linear error dynamics in the
original coordinates.

The paper is organised as follows. In Section 2, a
motivating example is presented. Then, in Section 3, a
systematic way of designing reduced-order nonlinear
observers with linear error dynamics in original coordinates
is introduced. In Section 4, more application examples are
presented. Finally, conclusions are drawn in Section 5.

2 Motivating example
Consider the problem of constructing an observer to estimate
a constant power load, pL, in a DC–DC boost converter
(Fig. 1), whose electrical model is given by

Li̇dc = −(1 − h)vdc + Vin (1)

Cdcv̇dc = (1 − h)idc +
pL

vdc

(2)

where idc is the current of the DC-DC boost converter (A),
vdc the capacitor voltage (V), pL the load power (W), Vin the
input voltage (V), L the circuit inductance (H), Cdc the circuit
capacitance (F) and h the control input.

In order to solve this problem, observers were introduced
in [17, 18]. These observers are full order and reduced
order, respectively, presenting time-varying error dynamics
and state variable dependency. However, as previously
mentioned, it is generally hard to design controllers for
nonlinear systems based on observers with either time-
varying or nonlinear error dynamics. From the convergence
rate point of view, it is preferable to construct observers
with linear error dynamics, since error trajectories are
predictable. Although pL is nonlinearly related with one of
the states (vdc), it is possible to construct an observer with
linear error dynamics in original coordinates. To this end,
it is possible proceed as follows. Choose the output

Figure 1 Electrical circuit of a DC–DC boost converter
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transformation

w1 = T (vdc) =
1

2
Cdcv2

dc (3)

and construct the following reduced-order observer

j̇ = −lj− l((1 − h)idcvdc + lw1) (4)

p̂L = j+ lw1 (5)

In such a case, the linear estimation error dynamics becomes,

ė = −le (6)

where e W pL − p̂L and l is a constant design parameter
fixing the convergence rate.

Many times power converters drive loads modeled as
resistances (or conductances, GL). In this case, the output
transformation needed to construct a reduced-order
nonlinear observer with linear error dynamics results

w2 = T (vdc) = Cdc ln vdc (7)

and the observer structure becomes

j̇ = −lj− l
(1 − h)idc

vdc

+ lw2

( )
(8)

ĜL = j+ lw2 (9)

Remark 1: As will be demonstrated in the next section, this
kind of observers have exponential convergence rate in
original coordinates. This feature simplifies construction of
closed- and open-loop algorithms when estimated variables
are included.

Remark 2: These observers are based on nonlinear output
transformations (w1 and w2), and they must be chosen to
obtain linear error dynamics. For this reason, it is desirable
to introduce a systematic method to design this kind of
observer. In the next section, a systematic technique is
presented. Later, others applications of the proposed
technique will be introduced.

3 Systematic nonlinear observer
design
3.1 Reduced-order nonlinear observer
structure

Consider a class of nonlinear system given by

ẋ = F(xa, u)x + g(xa, u) (10)

where x [ Rn×1 is the state vector and u [ Rm×1 is the input
vector, with F [ Rn×n and g [ Rn×1. The state vector is
partitioned as x = [xa xb]T, where xa [ Rna×1 contains
725
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measurable variables and xb [ Rnb×1 contains unmeasurable
variables.

Although (10) represents a particular class of nonlinear
systems, many circuits and systems can be modelled by
this equation (see examples in the next sections). This
representation can be rewritten as follows

ẋa

ẋb

[ ]
= N(xa, u) M(xa, u)

R(xa, u) S(xa, u)

[ ]
xa

xb

[ ]
+ ga(xa, u)

gb(xa, u)

[ ]
(11)

Now, the system given by (11) can be partitioned into two
subsystems, resulting in

ẋa = Nxa + Mxb + ga (12)

ẋb = Rxa + Sxb + gb (13)

Define T: Rna 7! Rp a transformation depending on the
measured variables

w = T(xa) (14)

where w [ Rp×1. Then, differentiating (14) with respect to
time results

ẇ = ∂T

∂xa

(Nxa + Mxb + ga) (15)

From (15), it is possible to write

y = Cxb (16)

where the following definitions apply

y W ẇ − ∂T

∂xa

(Nxa + ga) (17)

C W
∂T

∂xa

M (18)

Equation (13) describes the dynamics of the unmeasured
variables and (16) works as an output equation of the new
subsystem. Therefore, a Luenberger-like reduced-order
observer structure can be used to estimate the unmeasured
variables xb. In this way

˙̂xb = {Sx̂b + Rxa + gb +
prediction term

{G(y − Cx̂b)
correction term

(19)

where G [ Rnb×p is the observer gain matrix. The correction
term [see (19)] allows to fix the convergence rate of the
estimation error and to reject parametric uncertainties and
unmodelled dynamics appearing in the prediction term.
Uncertainty attenuation is directly proportional to the G
norm. Nevertheless, the maximum value of the G norm to
be chosen is bounded by the noise of the measurements.
6
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Replacing (17) and (18) in (19) results

˙̂xb = Ar x̂b + Br + Gẇ (20)

where it was defined

Ar W S − G
∂T

∂xa

M (21)

Br W Rxa + gb − G
∂T

∂xa

(Nxa + ga) (22)

As formulated, xb estimation needs the w time-derivative
[see (20)] to be implemented. However, the algorithm
can be reformulated to avoid the amplification of noise
appearing because of the measured variable differentiation.
To this end, a transformation is applied. By defining

j W x̂b − Gw (23)

where j [ Rnb×1, whereas its time-derivative becomes

j̇ = ˙̂xb − Gẇ (24)

Finally, by rewriting (20) and considering (24), the observer
structure is given by

j̇ = Ar(j+ Gw) + Br (25)

x̂b = j+ Gw (26)

This equation describes a reduced-order observer because
only the unknown variables (xb) are estimated. Reduced-
order observers allow to diminish the computational burden
and the peaking phenomenon influence [36].

Thus, it is possible to construct a reduced-order observer
implementing (25) and (26), where w = T(xa) is still to be
chosen. This transformation will be designed in the next
subsection in order to obtain a linear estimation error
dynamics.

3.2 Linear error dynamics design

The estimation error defined as e = xb − x̂b is analysed in the
following lines. The estimation error dynamics is obtained by
subtracting (19) from (13), consequently

ė = ẋb − ˙̂xb = (S − GC)(xb − x̂b) = Are (27)

Equation (27) shows that the error dynamics is characterised by
the matrix Ar (21). This equation is key for the development
of the proposed method. By solving the partial differential
equation (PDE) from (21), it is possible to find the
transformation T needed to obtain a constant desired matrix
Ar . Where, the PDE will be solved if the observability
conditions are verified, taking into account the available
measurements for each particular application. When Ar

is a constant matrix, the error dynamics is exponentially
IET Control Theory Appl., 2010, Vol. 4, Iss. 5, pp. 724–734
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convergent with fixed convergence rate. Note that the
exponential converge occurs in error original coordinates.
Finally, it must be remarked that linear techniques can be
used to assign the constant eigenvalues of Ar .

4 Application to energy
conversion systems
Many times, signals, parameters and disturbances must
be estimated in engineering systems, as it is needed: (i) to
variable monitoring, (ii) to design model-based high-
performance controllers with a reduced number of sensors,
(iii) to compensation of parametric uncertainties (for
instance, due to skin and temperature effect, saturation or
component modifications), (iv) to reject disturbance effects
and (v) to detect and isolate faults. Among others, variables
to be estimated in energy conversion applications are
electrical resistances, load torques, electric power and
converter losses. Generally, variables to be estimated are
related in a nonlinear way, then it is convenient to construct
nonlinear estimators instead of linear estimators which only
perform well near to the linearised point. In these cases, we
proposed to use a reduced-order nonlinear observer with
linear error dynamics, due to this kind of observer presents a
predictable transient response in the signal to be estimated.

In the signal monitoring case or detection and isolation of
faults the choice of the exponential convergence rate of the
estimation error, given by the G matrix or the l constant
in the scalar case, is designed as a trade-off between
convergence speed and measurement noise amplification.
The lesser the noise in sensors exists, the higher can be the
observer gain, presenting a faster observer convergence.
However, in case of use of the estimated signals in a
closed-loop controller, an additional item must be taken
into account when the observer gains are designed. In the
linear case, closed-loop stability (observer-based controller
plus plant) is guaranteed by using the separation theorem.
Consequently, the control law and observer convergence
rate can be fixed independently. Since the separation
theorem does not apply in the nonlinear case, when
choosing the observer gains some conditions should be
considered to guarantee stability. In [20, 22, 23], sufficient
conditions to guarantee asymptotic convergence in the
nonlinear case are established. These conditions express
how fast must the observer convergence be to guarantee
closed-loop stability [24].

4.1 AC/DC voltage–source converter

A mathematical model describing the voltage–source
converter (VSC) in a rotating d–q reference frame is given
by [37]

Li̇d = −Rid − Lviq + hd vdc − vd (28)
T Control Theory Appl., 2010, Vol. 4, Iss. 5, pp. 724–734
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Li̇q = −Riq + Lvid + hqvdc − vq (29)

Cdcv̇dc = − 3

2
(hd id + hqiq) − vdc

RL

+ pL

vdc

(30)

where id , iq are the currents in the d–q reference frame (A),
vd , vq the voltages in the d–q reference frame (V), vdc the
DC bus voltage (V), pL the power delivered, positive sign
(or demanded, negative sign) by the DC source (DC load)
(W), hd , hq the control signals in the d–q reference frame,
RL equivalent resistance of the switching loss (V), R the
coupling transformer resistance (V), L the coupling
transformer inductance (H) and v the synchronous
frequency (rad/s). In Fig. 2, the schematic electric circuit
representing a VSC is shown.

In the following lines, two cases of disturbance and
parameter estimations for VSCs are presented. The load
power in a VSC can present wide variations, coupling
reactor resistance changes due to temperature effects,
whereas VSC losses vary according to the operating point
or by an internal fault of the converter. Therefore
estimating these variables could be very useful for:
controllers to reject load power disturbances; adaptation of
the VSC parameters or monitoring internal parameters for
model identification or with fault detection purposes of
the VSC. For these reasons, two estimation cases are
introduced. In the first one, the estimation of the load
power and the VSC resistance is accomplished, whereas in
the second case an estimator of the coupling reactor and
loss equivalent resistances is designed.

4.1.1 Power load and resistance estimation: In
this case, the proposed technique is used to estimate the
load power pL (an external disturbance) and the coupling
transformer resistance (a parameter) in a VSC. It is
assumed that AC currents and DC voltage are measured.
Partition given in (11) is applied to the VSC model (28)–
(30) plus a dynamical extension of the variables to be
estimated, yielding

xa = id iq vdc

[ ]T
(31)

Figure 2 Electrical circuit of a three-phase AC/DC VSC
727
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xb = pL R
[ ]T

(32)

u = hd hq

[ ]T
(33)

where in this case

N =

0 −v
hd

L

v 0
hq

L

− 3hd

2Cdc

−
3hq

2Cdc

−1

CdcRL

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

M =

0 − id

L

0 −
iq

L
1

Cdcvdc

0

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

R = 02×3, S = 02×2

ga = − vd

L
−

vq

L
0

[ ]T

, gb = 02×1

(34)

Consequently, the estimation error dynamics, characterised
by Ar in equation (21), becomes

Ar = S − G
∂T

∂xa

M

=
− l1

Cdcvdc

∂w1

∂vdc

l1

id

L

∂w1

∂id

+
iq

L

∂w1

∂iq

( )

− l2

Cdcvdc

∂w2

∂vdc

l2

id

L

∂w2

∂id

+
iq

L

∂w2

∂iq

( )
⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

where G = diag([l1 l2]) was chosen as the gain matrix of
the observer. By equaling the above equation with a
constant matrix, the following PDE system is obtained

− l1

Cdcvdc

∂w1

∂vdc

= −l1 (35)

l1

id

L

∂w1

∂id

+
iq

L

∂w1

∂iq

( )
= 0 (36)

− l2

Cdcvdc

∂w2

∂vdc

= 0 (37)

l2

id

L

∂w2

∂id

+
iq

L

∂w2

∂iq

( )
= −l2 (38)

This PDE system can be solved in different ways. A
commercial software, for instance, MAPLE

TM

can be
employed. The solution to (35)–(38) results in the
8
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following output transformation

w = T(xa) = w1

w2

[ ]
=

1

2
Cdcv2

dc

− 1

2
L ln(i2

d + i2
q )

⎡
⎢⎣

⎤
⎥⎦ (39)

Therefore the observer dynamical structure (25) is

j̇1 = −l1 j1 + vdc − 3

2
(idhd + iqhq)

((
− vdc

RL

+ l1Cdcvdc

2

))

j̇2 = l2 −j2 +
(idhd + iqhq)vdc − id vd − iqvq

i2
d + i2

q

(

+ l2L

2
ln(i2

d + i2
q )

)

and the estimated variables are recovered by using (26)

p̂L = j1 +
1

2
l1Cdcv2

dc (40)

R̂ = j2 −
1

2
l2L ln(i2

d + i2
q ) (41)

Due to that transformation (39) was used, the estimation
error dynamics (27) becomes

ė = Are = − l1 0
0 l2

[ ]
e (42)

where e = (pL − p̂L) (R − R̂)
[ ]T

is the estimation error
vector in original coordinates. Note that a decoupled and
linear dynamics is attained. In this way, the possibility of
peaking phenomenon is avoided [36].

In order to illustrate the convergence of the estimation
error the following test was carried out. It was considered
the VSC parameters given in [13] and the load power was
varied from 20 to 10 kW at 0.04 s. Then, at 0.14 s the
resistance is increased to 0.6 V. Figs. 3a and b show the
actual values of load power and resistance and their
estimates. It is clearly seen that the convergence is
exponential in the original coordinates and decoupled.
Note that the VSC currents have transient oscillations
when disturbances appear (Fig. 3c). However, these
oscillations do not affect the exponential convergence of the
estimated variables.

4.1.2 Resistance and loss equivalent resistance
estimation: By employing the proposed procedure such
as in the above case, the resistance and loss equivalent
resistance can be estimated. In this case, the output
IET Control Theory Appl., 2010, Vol. 4, Iss. 5, pp. 724–734
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Figure 3 Exponential and decoupled convergence of

a Load power
b Resistance
c d–q axis VSC currents
transformation is given by

w = T(xa) = w1

w2

[ ]
= − 1

2
L ln(i2

d + i2
q )

−Cdc ln vdc

⎡
⎣

⎤
⎦ (43)

Note that in both cases the transformations (39) and (43) are
hard to obtain in an intuitive way; for this reason, the
systematic technique presented in this paper is very useful
for designers.

4.2 Magnetic levitation system

A simplified description of a magnetic levitation system
(MLS) is given by [38]

i̇ = R

k
(x − c)i − vi

(c − x)
+ (c − x)

k
ue (44)
Control Theory Appl., 2010, Vol. 4, Iss. 5, pp. 724–734
: 10.1049/iet-cta.2009.0095
ẋ = v (45)

v̇ = k

2m

i2

(c − x)2
− g (46)

where i is the current of the MLS electrical circuit (A), ue the
voltage of the MLS electrical circuit (V), x the levitating
piece position (m), v the levitating piece speed (m/s), R the
winding resistance (V), m the mass of the levitating piece
(kg), c the nominal position of the levitating piece (m), k
the constant that depends on the number of coil turns and
g the gravity acceleration (m/s2). These variables are shown
in Fig. 4.

Assume that the electrical resistance (a parameter) is to
be estimated. A nonlinearity results from the multiplication
between current and position states and the parameter to
be estimated.
729
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The matrix Ar results

Ar = S − G
∂T

∂xa

M = −l
(x − c)i

k

∂w

∂i
(47)

where the scalar gain G = l is selected. Then, the output
transformation obtained by solving (47) becomes

w = T (xa) = k ln i

(x − c)
(48)

In this way, the linear estimation error dynamics (27) results

ė = Are = −le (49)

which is obtained by using the output transformation given
by (48). Again the methodology gives a non-trivial output
transformation w, accomplishing an exponentially error
dynamics in the original coordinates, where convergence
rate is chosen by the design parameter l.

In electromagnetic cranes, the mass of the levitating piece
is generally unknown or it can vary during the suspension
time. For this reason, the proposed technique is applied in
order to estimate the mass of the levitating piece. In this
way, the estime can be used for tuning the crane control or
for monitoring purposes. Proceeding as in the above cases,
the matrix Ar results

Ar = S − G
∂T

∂xa

M = −l
ki2

2(x − c)2

∂w

∂v
(50)

whereas the output transformation obtained by solving (50)
becomes

w = T (xa) = 2v(x − c)2

ki2
(51)

The performance and behaviour of the levitating piece mass
estimator are depicted in the following test. Parameters of
the MLS presented in [38] were chosen. At the beginning,
the MLS is in equilibrium when at t ¼ 0.05 s, a 50% loss
of the levitating piece mass occurs. In Fig. 5a actual and
estimated mass are shown. There, it can be seen the

Figure 4 Schematic of the MLS
0
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exponential convergence of the estimator. In Fig. 5b the
estimation error is drawn. The winding current and the
levitating piece position are shown in Figs. 5c and d.

4.3 Permanent magnet synchronous
machine

The permanent magnet synchronous machine (PMSM)
model is described in rotating reference frame by the
following equations [39]

Ld i̇d = −Rid − NrvLqiq − vd (52)

Lqi̇q = −Riq + NrvLd id + NrvCm − vq (53)

J v̇ = Tm − Te − Dbv (54)

with

Te =
3Nr

2
(Cmiq + (Ld − Lq)id iq) (55)

where id and iq are the stator currents in the d–q axis (A), vd

and vq the stator voltages in the d–q axis (V), v the rotor
speed (rad/s), R the stator winding resistance (V), Ld and
Lq the d–q inductances of the stator winding (H), Cm the
magnetic flux (Nm/A), J the rotor inertia (kgm2), Db the
viscous friction constant (Nms/rad), Nr the number of
pair poles, Tm the mechanical load torque (Nm) and Te the
electrical torque (Nm). The schematic circuit of a PMSM
is shown in Fig. 6.

In a motor, the load torque can present large variations,
the stator resistance can vary due to temperature changes
and the permanent magnet flux can change because of
demagnetisation effects. Thus, different estimations of
these variables are very useful when it is needed to
construct controllers for rejecting load torque disturbances,
monitoring of the internal parameters or to build
algorithms with fault detection purposes. By keeping in
mind the above mentioned, two estimators are presented.
First, an estimator for the load torque and the stator
resistance is designed. Then, a second estimator which can
detect the magnetic flux of the PMSM is built.

4.3.1 Load torque and stator resistance
estimation: By applying the proposed method, the load
torque and the stator resistance can be estimated.
Therefore proceeding in a manner similar to the previous
examples, we can find that the output transformation is
given by

w = T(xa) = w1

w2

[ ]
= − 1

2
L ln(i2

d + i2
q )

Jv

⎡
⎣

⎤
⎦ (56)

where a round rotor (L W Ld = Lq) was assumed.
IET Control Theory Appl., 2010, Vol. 4, Iss. 5, pp. 724–734
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Figure 5 Mass change test in the MLS

a Exponential convergence of the levitating piece mass
b Estimation error
c MLS winding current
d Levitating piece position
This transformation is similar to the used in the VSC
resistance estimation case. However, a less intuitive
transformation appears when the permanent magnet flux
is to be estimated. This case is developed in what follows.
T Control Theory Appl., 2010, Vol. 4, Iss. 5, pp. 724–734
oi: 10.1049/iet-cta.2009.0095
4.3.2 Magnetic flux estimation: The permanent
magnet flux in a PMSM can vary (e.g. by either saturation
or demagnetisation effects). In this case, it is important to
estimate it, for controlling or monitoring purpose [40]. To
731
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this end, the proposed technique can be utilised. Note that
in the PMSM model, the permanent magnet flux constant
multiplies two states (one current and rotor speed) in two
different equations.

First, (11) is applied to the PMSM model, yielding

xa = id iq v
[ ]T

(57)

xb = Cm (58)

u = vd vq

[ ]T
(59)

Figure 6 Schematic circuit of loaded PMSM
32
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where

N =

− R

Ld

−
NrvLq

Ld

0

NrvLd

Lq

−R

Lq

0

−3Nr

2J
(Ld − Lq)iq 0 −Db

J

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

R = 01×3, M =

0
Nrv

Lq

− 3Nr

2J
iq

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦, S = 0

ga = − vd

Ld

−
vq

Lq

Tm

J

[ ]T

, gb = 0

(60)

Then, (21) is represented by

Ar = S − G
∂T

∂xa

M = −l
Nrv

Lq

∂w

∂iq

−
3Nriq

2J

∂w

∂v

( )
(61)

where the constant G = l is chosen. By solving (61), the
Figure 7 Exponential convergence of PMSM flux and dynamics of the observer internal state

a The actual and estimated fluxes for different values of l
b The dinamical response of the internal state j
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following output transformation is obtained

w = T (xa) =

�����
2JLq

3N 2
r

√
arctan

�����
3Lq

2J

√
iq

v

⎛
⎝

⎞
⎠ (62)

Consequently, the estimation error (e = Cm − Ĉm)
dynamics converges in an exponential way, given that
ė = Are = −le. The convergence rate is fixed by the
selection of the design parameter l, and as in the above
examples, it is independent of the state variables.

In order to show the behaviour of the designed estimator,
a test was carried out considering the PMSM presented
in [39]. Fig. 7a shows the actual and estimated fluxes for
different values of l. It can be seen that the exponential
convergence of the estimated flux, when the flux is
decreased to 35%. The dynamical response of the internal
state j is illustrated in Fig. 7b.

5 Conclusions
A systematic way to find a reduced-order nonlinear observer
with linear error dynamics has been presented. This
technique allows us to estimate signals, parameters and
disturbances, and it can be used for model-based
controllers, feedforward disturbance compensators, variable
monitoring and fault detection among others.

Several examples have been introduced to show the
behaviour of the observer designed with the proposed
methodology. In the introduced applications, the output
transformation cannot be found in an intuitive way when
linear estimation error dynamics in the original coordinates
is to be attained. In such cases, the proposed systematic
technique is useful to construct signal estimators.
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